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Curve Sketching: Steps

The last section discussed the optimization of given functions on
given closed intervals. This process can be extended to the
optimization of models that simulate real life applications.

As in
any model, the most difficult part of this process involves the
construction of an appropriate model. You may use the following
steps to help you create models.

1 Assign a letter to each variable mentioned in the problem. If
appropriate, draw and lable a figure.

2 Find an expression for the quantity to be optimized.

3 Use the conditions found in the problem to write the quantity
to be optimized as a fucntion f of one variable. Note any
restrictions to be placed on the domain of f from physical and
logical considerations of the problem.

4 Optimize the function f over its domain using the methods of
Section 4.4.
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Example

A man wants a rectangular enclosure and has 50 feet of fencing.
Find the dimensions (and then the area) of the largest enclosure he
can make.

1 The only variable mentioned is the dimensions of the fence:
length l and width w . The area is mentioned, which we will
call A.

2 We wish to maximize the area A = lw of the enclosure.

3 How do we relate the length to the width? We must do so
because we need an equation in a single variable.
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Example

A man wants a rectangular enclosure and has 50 feet of fencing.
Find the dimensions (and then the area) of the largest enclosure he
can make.

3 We have from the length of fencing available 50 = 2l + 2w
=⇒

25 = l + w =⇒ l = 25− w . Thus, we may rewrite our
equation A = lw by plugging in 25− w for l . We get
A(w) = (25− w)w = 25w − w2. We need to optimize this,
but over what closed interval? Well, we need the
measurements of l and w to both be positive. Thus,
l ≥ 25− w ≥ 0 and w ≥ 0. So, 25 ≥ w ≥ 0 =⇒ our closed
interval is [0, 25].
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Example

A man wants a rectangular enclosure and has 50 feet of fencing.
Find the dimensions (and thus the area) of the largest enclosure he
can make.

4 Now, we must solve this extreme value problem.

We have
that A′(w) = 25− 2w , so our only critical number in the
interval [0, 25] is w = 12.5. Thus, we test A(0) = 0,
A(25) = 0, and A(12.5) = 156.25. So, the maximum area is
achieved at w = 12.5, and it is 156.25 sq. ft.
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Example

By cutting squares out of the corners of a rectangular piece of
cardboard and folding up the resulting flaps, the cardboard may be
turned into a box (without a lid). If the cardboard is 16 by 10
inches, find the dimensions of the box yielding the largest volume.

1 Well, we have length l , height h, width w and volume V .

We
also may want to draw a figure for this problem since it is a
bit complicated.

2 We want to optimize volume V = lwh.

3 Obviously, the height h will be determined by how large the
corner squares are. So we will start here with writing V as a
function of a single variable. V = lwh, but l = 16− 2h and
w = 10− 2h. Therefore,
V (h) = (16− 2h)(10− 2h)(h) = 160h − 52h2 + 4h3.
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3 Now, We want to maximize V (h), but on what interval?

We
need l ,w , h ≥ 0, so l = 16− 2h ≥ 0, w = 10− 2h ≥ 0, and
h ≥ 0. And this implies that 0 ≤ h ≤ 5. So our interval of
optimization will be [0, 5].

4 We get, then, that
V ′(h) = 4(40− 26h + 3h2) = 4(3h − 20)(h − 2). Which
means the only critical number in our interval is h = 2. We
evaluate V (0) = 0, V (2) = 144, and V (5) = 0, and we get
that the volume is maximized when h = 2.
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Example

The Metro Transit Authority (MTA) operates a subway line for
commuters from a certain suburb to downtown. An average of
6000 people take the train per day, paying $3.00 per ride. The
MTA is considering raising the fare to $3.50 per ride, but knows
that for every $0.50 increase in fare, an average of 1000 people will
choose not to take the train. Show that this increase will reduce
revenue, and find the maximum fare increase that will not result in
a loss of revenue.

1 Well, we are concerned with the number of people riding the
train x , the fare p, and the revenue R.

2 We need are concerned with R = px . (Revenue is price per
unit times number of units.)

3 How is p related to x? Well, x = 6000− 2000(p − 3) because
1000 people will leave for every incease of $0.50 over $3.00.
Thus, R(p) = p(12000− 2000p) = 12000p − 2000p2

= 2000(6p − p2).
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3 What’s the interval for R(p)?

Well, we need p ≥ 0 and
x = 12000− 2000p ≥ 0 =⇒ 0 ≤ p ≤ 6. So our interval is
[0,6]. And R ′(p) = 12000− 4000p. So our critical number is
p = 3.

4 Thus, testing R(0) = 0,R(3) = 18000, and R(6) = 0 gives
that the maximum revenue is achieved at p = 3. Thus the
maximum fare increase that will not result in a loss of revenue
is $0.00.
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Example

Busch’s Baked Beans requires that its cans have a capacity of 54
cubic inches, are cylindrical, and be made of aluminum. Determine
the height and radius of the container that requires the least
amount of metal,

i.e. that has the least surface area.

1 We are concerned here with the height h, radius r , and surface
area S of the can. But we also have a condition involving the
volume V of the can! Here a figure may be useful!

2 The quantity to be optimized is the surface area: S has three
component parts. The top, bottom, and side of the can. The
top and bottom each have the surface area of the circle with
radium r , so their contribution to S is 2(πr2). The side has
height h and “length” 2πr (the circumference of the circle).
So its contribution to the surface area is 2πrh. Thus

S = 2πrh + 2πr2.
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the height and radius of the container that requires the least
amount of metal, i.e. that has the least surface area.

3 Now, because it is required that 54 = V = πr2h, we have that

54
πr2

= h. So, we can substitute for h and get S(r). We have

S(r) = 2πr
(

54
πr2

)
+ 2πr2 = 2πr2 + 108

r . And we are
concerned about the minimum S for r ≥ 0 (since r must be
non-negative).

4 Now, S ′(r) = 4πr − 108
r2

. Setting S ′(r) = 0, we get

0 = 4πr − 108

r2
=⇒ 108

r2
= 4πr =⇒ 27

π
= r3 =⇒ r =

3
3
√
π
≈ 2.
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the height and radius of the container that requires the least
amount of metal, i.e. that has the least surface area.

4 Now, proving that r = 3
3√π

gives an absolute minimum cannot

be done in out normal way.

Why? Because our interval is
[0,∞) which is not closed! So, we use the second derivative!

S ′′(r) = 4π +
216

r3
.

Notice, S ′′(r) > 0 for all r in [0,∞), which means that S is
concave up on the entire domain considered! Thus, r = 3

3√π

must be an absolute minimum.
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Example

A motorcycle retailer sells Shadow 250cc motorcycles exclusively.
They estimate that the demand for these motorcycles is 10,000 per
year and that they are sold at a uniform rate throughout the year.
The cost of ordering a shipment is $10000 and the yearly cost of
storing one motorcycle is $200. How large should a shipment be
and how often should orders be made to minimize ordering plus
storage costs?

1 We are concerned with the size of an order x , the frequency of
orders y in units of orders per year, and the total cost of
storage Cstorage plus shipping Cshipping .

2 We want to minimize total cost C = Cshipping + Cstorage .
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3 We may assume that the orders are placed in such a way that
an order arrives exactly as the last motorcycle is being sold.
This means that Cstorage = 200( x2 ) = 100x . Now, since there
need to be 10,000 motorcycles to meet the demand, we need
10000

x shippments, meaning Cshipping = 10000(10000x ) = 108

x .
So,

C (x) = 100x +
108

x
.
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3 Note: We need to consider maximizing C on [1,∞) and not
on [1, 10000] because it could be that ordering more than one
year’s worth of motorcycles is most cost efficient.

4 Well, C ′(x) = 100− 108

x2
which is zero when x = ±1000.

Thus, our only critical number is x = 1000.
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storing one motorcycle is $200. How large should a shipment be
and how often should orders be made to minimize ordering plus
storage costs?

3 Note: We need to consider maximizing C on [1,∞) and not
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which is positive for all x in our domain
[1,∞). Thus, x = 1000 corresponds to an absolute minimum.
So, orders should size 1000 and should be placed 10 times a
year (or every 36.5 days).
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Assignment

Read 5.1-5.2. Do problems 4, 8, 16, 26, 28, 30, 32, 34 in 4.5.




