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The Derivative of Exponential Fucntions

Exponential functions appear so widely in mathematical models
that understanding their rates of change is immensely important.
We have

Theorem (Derivative of f (x) = ex)

If f (x) = ex , then f ′(x) = ex .

Note: The exponential function is the only function which is its
own derivative! We also have

Theorem (Derivative of f (x) = ax)

If f (x) = ax , then f ′(x) = ax ln(a).
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Verifying the Derivative of Exponential Fucntions

A rigorous proof that
d

dx
(ex) = ex is beyond the scope of this

course, but we will show that the derivative makes sense.

lim
h→0

ex+h − ex

h
= lim

h→0

ex(eh − 1)

h
= ex lim

h→0

eh − 1

h
.

Using the table below, we see that lim
h→0

eh − 1

h
= 1

x 0.1 0.01 0.001 -0.1 -0.01 -0.001
eh−1
h 1.0517 1.0050 1.0005 0.9516 0.9950 0.9995

So, lim
h→0

ex+h − ex

h
= ex lim

h→0

eh − 1

h
= ex · 1 = ex



Verifying the Derivative of Exponential Fucntions

A rigorous proof that
d

dx
(ex) = ex is beyond the scope of this

course, but we will show that the derivative makes sense.

lim
h→0

ex+h − ex

h
= lim

h→0

ex(eh − 1)

h
= ex lim

h→0

eh − 1

h
.

Using the table below, we see that lim
h→0

eh − 1

h
= 1

x 0.1 0.01 0.001 -0.1 -0.01 -0.001
eh−1
h 1.0517 1.0050 1.0005 0.9516 0.9950 0.9995

So, lim
h→0

ex+h − ex

h
= ex lim

h→0

eh − 1

h
= ex · 1 = ex



Verifying the Derivative of Exponential Fucntions

A rigorous proof that
d

dx
(ex) = ex is beyond the scope of this

course, but we will show that the derivative makes sense.

lim
h→0

ex+h − ex

h
= lim

h→0

ex(eh − 1)

h
= ex lim

h→0

eh − 1

h
.

Using the table below, we see that lim
h→0

eh − 1

h
= 1

x 0.1 0.01 0.001 -0.1 -0.01 -0.001
eh−1
h 1.0517 1.0050 1.0005 0.9516 0.9950 0.9995

So, lim
h→0

ex+h − ex

h
= ex lim

h→0

eh − 1

h
= ex · 1 = ex



Verifying the Derivative of Exponential Fucntions

A rigorous proof that
d

dx
(ex) = ex is beyond the scope of this

course, but we will show that the derivative makes sense.

lim
h→0

ex+h − ex

h
= lim

h→0

ex(eh − 1)

h
= ex lim

h→0

eh − 1

h
.

Using the table below, we see that lim
h→0

eh − 1

h
= 1

x 0.1 0.01 0.001 -0.1 -0.01 -0.001
eh−1
h 1.0517 1.0050 1.0005 0.9516 0.9950 0.9995

So, lim
h→0

ex+h − ex

h
= ex lim

h→0

eh − 1

h
= ex · 1 = ex



The Derivative of f (x) = ax .

We can now prove rigorously that
d

dx
(ax) = ax ln(a).

Recall: e ln(a) = a. Therefore,

d

dx
ax =

d

dx

(
e ln(a)

)x
=

d

dx
ex ln(a) chain rule

=

d
dx (x ln(a)) · d

dx

(
e ln(a)

)x
= ln(a) ·

(
e ln(a)

)x
= ax ln(a).



The Derivative of f (x) = ax .

We can now prove rigorously that
d

dx
(ax) = ax ln(a).

Recall: e ln(a) = a. Therefore,

d

dx
ax =

d

dx

(
e ln(a)

)x
=

d

dx
ex ln(a) chain rule

=

d
dx (x ln(a)) · d

dx

(
e ln(a)

)x
= ln(a) ·

(
e ln(a)

)x
= ax ln(a).



The Derivative of f (x) = ax .

We can now prove rigorously that
d

dx
(ax) = ax ln(a).

Recall: e ln(a) = a. Therefore,

d

dx
ax =

d

dx

(
e ln(a)

)x
=

d

dx
ex ln(a) chain rule

=

d
dx (x ln(a)) · d

dx

(
e ln(a)

)x
= ln(a) ·

(
e ln(a)

)x
= ax ln(a).



The Derivative of f (x) = ax .

We can now prove rigorously that
d

dx
(ax) = ax ln(a).

Recall: e ln(a) = a. Therefore,

d

dx
ax =

d

dx

(
e ln(a)

)x
=

d

dx
ex ln(a) chain rule

=

d
dx (x ln(a)) · d

dx

(
e ln(a)

)x
= ln(a) ·

(
e ln(a)

)x
= ax ln(a).



The Derivative of f (x) = ax .

We can now prove rigorously that
d

dx
(ax) = ax ln(a).

Recall: e ln(a) = a. Therefore,

d

dx
ax =

d

dx

(
e ln(a)

)x
=

d

dx
ex ln(a) chain rule

=

d
dx (x ln(a)) · d

dx

(
e ln(a)

)x
= ln(a) ·

(
e ln(a)

)x
= ax ln(a).



The Derivative of f (x) = ax .

We can now prove rigorously that
d

dx
(ax) = ax ln(a).

Recall: e ln(a) = a. Therefore,

d

dx
ax =

d

dx

(
e ln(a)

)x
=

d

dx
ex ln(a) chain rule

=

d
dx (x ln(a)) · d

dx

(
e ln(a)

)x
=

ln(a) ·
(
e ln(a)

)x
= ax ln(a).



The Derivative of f (x) = ax .

We can now prove rigorously that
d

dx
(ax) = ax ln(a).

Recall: e ln(a) = a. Therefore,

d

dx
ax =

d

dx

(
e ln(a)

)x
=

d

dx
ex ln(a) chain rule

=

d
dx (x ln(a)) · d

dx

(
e ln(a)

)x
= ln(a) ·

(
e ln(a)

)x
=

ax ln(a).



The Derivative of f (x) = ax .

We can now prove rigorously that
d

dx
(ax) = ax ln(a).

Recall: e ln(a) = a. Therefore,

d

dx
ax =

d

dx

(
e ln(a)

)x
=

d

dx
ex ln(a) chain rule

=

d
dx (x ln(a)) · d

dx

(
e ln(a)

)x
= ln(a) ·

(
e ln(a)

)x
= ax ln(a).



The Derivative of g(x) = e f (x)

In the same manner as in the previous slide, we can calculate

d

dx
ef (x) =

ef (x) · d

dx
f (x) = ef (x) · f ′(x).

Theorem (The Chain Rule for Exponential Functions)

If f is differentiable at x, then
d

dx
ef (x) = ef (x)f ′(x).

The proof of this theorem is just a direct application of the chain
rule!
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Examples

Find the derivative of the following:

d

dx
[x2ex ] =

d

dx
[x2]ex + x2 d

dx
[ex ] = 2xex + x2ex = xex(2 + x).

d

dx
[(ex + 2)

3
2 ] =

3

2
(et + 2)

1
2

d

dx
[et + 2] =

3

2
(et + 2)

1
2 et =

3

2
et(et + 2)

1
2 .

d

dx

[ x

ex

]
=

ex(x)′ − x(ex)′

(ex)2
=

ex − xex

e2x
=

ex(1− x)

e2x
=

1− x

ex
.
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Exponential Growth

A quantity Q(t) = Q0ekt experiences exponential growth as t
grows (and is positive).

Show that a quantity experiencing
exponential growth has a growth rate that is directly proportional
to the amount of the quantity present. Recall: Two things a and b
are directly proportional if their ratio is a constant, i.e. if a

b = c
with c a constant.

Well, Q ′(t) = kQ0ekt , so

Q ′(t)

Q(t)
= k ,

as desired.
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Example from Section 5.3

Blakely Properties owns a building in the commercial district of
Birmingham. The present value of the market price of the property
is given by P(t) = 300000e−0.09t+0.5

√
t , where P is in dollars and t

in years from present (for the next ten years). Find the optimal
present value of the building’s market price.

Well, P ′(t) =
(
−0.09 + 1

4
√
x

)
300000e−0.09t+0.5

√
t . So, setting

P ′(t) = 0, we get

0 = −0.09 +
1

4
√

t

0.09(4) =
1√
t

1

0.09(4)
=
√

t

7.72 ≈ t.
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present value of the building’s market price.

We check the critical points x = 0, 7.72, 10 and see that the
maximum present value of market price is $600,779.
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The Derivative of the Logarithmic Function

Now we turn to the logarithmic function.

Theorem (The Derivative of the Natural Logarithm)

If x 6= 0, then
d

dx
ln |x | =

1

x
.

What’s more, we have the following theorem for logarithms of any
base.

Theorem (The Derivative of Logarithmic Functions)

If f (x) = logb(|x |), then when x 6= 0 we have f ′(x) = 1
x ln(b) .

As an exercise, you might try to show why these derivatives work!
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Examples

Find the following derivatives.

d

dx

ln x

x

=
x(ln x)′ − ln x(x)′

x2
=

xx−1 − ln x

x2
=

1− ln x

x2
.

d

dx
(x ln x) = (x)′(ln x) + x(ln x)′ = ln x + xx−1 = ln x + 1.

d

dx
[(log3 x)(log2 x ] = (log3 x)′(log2 x) + (log3 x)(log2 x)′ =

1

x ln 3
(log2 x) + (log3 x)

1

x ln 2
.
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The Chain Rule for Logarithmic Fuctions

We can combine the chain rule with the derivative of the natural
logarithmic function to get the following rule.

Theorem (The Chain Rule for the Natural Logarithm)

If f (x) > 0, then we have d
dx [ln f (x)] = f ′(x)

f (x) .

The proof of this theorem is just a direct application of the Chain
Rule. You might consider proving this theorem as an exercise. We
also have

Theorem (The Chain Rule for Logarithmic Functions)

If f (x) > 0, then we have d
dx [logb f (x)] = f ′(x)

log(b)f (x) .
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+
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x3 + 2
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Examples

Find the following derivative.
d

dt
ln(t2e−t

2
)

=
d

dx
(2 ln t + t2 ln e) =

d
dx (2 ln t) + d

dx (t2) = 2
t − 2t = 2(1−t2)

t .

Clearly, it is easier to differentiate logarithmic fucntions when they
are written in an expanded form. We can exploit the ease of this
process to simplify the differentiation of other functions. In
particular, logarithmic differentiation can make functions that
are products of other functions easier to differentiate.
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Logarithmic Differentiation

You an take the following steps to differentiate functions involving
many products.

1 Take the natural logarithm of both sides of the expression and
rewrite any complicated expression using the rules of
logarithms.

2 Differentiate both sides of the expression with respect to x .

3 Solve for dy
dx , i.e. for y ′.
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Example

The population of a town t months after the opening of an auto
assembly plant in the surrounding area is given by the function
P(t) = 18000e−(ln 9)e

−0.1t
. What is the relative rate of growth of

the population 6 months after the opening of the auto assembly
plant?

We need to calculate P ′(t)/P(t), but we’ll use logarithmic
differentiation.

ln(P) = ln 18000− (ln 9)e−0.1t

So, P′

P = (ln 9)(0.1)e−0.1t and so P′(6)
P(6) = 0.1(ln 9)e−0.1(6) ≈ 0.121.

So, 6 months after the auto assembly plant opens, the population
will be growing at a relative rate of approximately 12.1%.
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Assignment

Read 5.6. Do problems 8, 16, 28, 32, 46, 76 in 5.4 and 16, 30, 40,
48, 58, 78, 84 in 5.5.




