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Antidifferentiation

Remember a few weeks back when we gave an example of a train
whose position was given by a function s(t).

We were interested in
finding the speed of the train given its position function, and we
used the derivative to do so.

What if we wanted to do the opposite, i.e. what if, given a speed
fucntion and initial position, how might be find the position
function? Naturally, we would want to do the opposite of
differentiation! We call this antidifferentiation.
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The Antiderivative

Definition (The Antiderivative)

A function F is an antiderivative of another function f on an
interval I if F ′(x) = f (x) for all x in I .

Thus, an antiderivative of a function f is just another function
whose derivative is equal to the function f .

Example

The function F (x) = x3 + 2x + 1 is an antiderivative of
f (x) = 3x2 + 2 because F ′(x) = 3x2 + 2− = f (x).
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Antiderivatives Are Not Unique

Show that F (x) = 1
3x

3 − 2x2 − x − 1 and
G (x) = 1

3x
3 − 2x2 − x − 9 are both antiderivatives of

f (x) = x2 − 4x − 1.

Well,
F ′(x) = x2 − 4x − 1 = G ′(x) = f (x).

Moreover, notice that FC (x) = 1
3x

3 − 2x2 − x + C , where C is just
some constant is also an antiderivative of f (x). In fact, this is true
in general!

Theorem

Let G be an antiderivative of a function f on an interval I . Then
every antiderivative F of f on I must be of the form
F (x) = G (x) + C, where C is some constant. Also, any function F
of this form is an antiderivative of f on I .
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Antiderivatives of the Function f (x) = 2x

Prove that F (x) = x2 + 1 is an antiderivative of the function
f (x) = 2x . Write a general formula for the antiderivative of f .

Well, F ′(x) = 2x + 0 = 2x = f (x), so F is an antiderivative of f .
Due to the previous theorem, we have that F (x) + C = x2 + 1 + C
is a general formula for antiderivatives of f .

Notice, we could simply rewrite this formula as F (x) = x2 + C .
Why? Because the constant term C can be made to “swallow up”
all other constant terms.



Antiderivatives of the Function f (x) = 2x

Prove that F (x) = x2 + 1 is an antiderivative of the function
f (x) = 2x . Write a general formula for the antiderivative of f .

Well, F ′(x) = 2x + 0 = 2x = f (x), so F is an antiderivative of f .

Due to the previous theorem, we have that F (x) + C = x2 + 1 + C
is a general formula for antiderivatives of f .

Notice, we could simply rewrite this formula as F (x) = x2 + C .
Why? Because the constant term C can be made to “swallow up”
all other constant terms.



Antiderivatives of the Function f (x) = 2x

Prove that F (x) = x2 + 1 is an antiderivative of the function
f (x) = 2x . Write a general formula for the antiderivative of f .

Well, F ′(x) = 2x + 0 = 2x = f (x), so F is an antiderivative of f .
Due to the previous theorem, we have that F (x) + C = x2 + 1 + C
is a general formula for antiderivatives of f .

Notice, we could simply rewrite this formula as F (x) = x2 + C .
Why? Because the constant term C can be made to “swallow up”
all other constant terms.



Antiderivatives of the Function f (x) = 2x

Prove that F (x) = x2 + 1 is an antiderivative of the function
f (x) = 2x . Write a general formula for the antiderivative of f .

Well, F ′(x) = 2x + 0 = 2x = f (x), so F is an antiderivative of f .
Due to the previous theorem, we have that F (x) + C = x2 + 1 + C
is a general formula for antiderivatives of f .

Notice, we could simply rewrite this formula as F (x) = x2 + C .

Why? Because the constant term C can be made to “swallow up”
all other constant terms.



Antiderivatives of the Function f (x) = 2x

Prove that F (x) = x2 + 1 is an antiderivative of the function
f (x) = 2x . Write a general formula for the antiderivative of f .

Well, F ′(x) = 2x + 0 = 2x = f (x), so F is an antiderivative of f .
Due to the previous theorem, we have that F (x) + C = x2 + 1 + C
is a general formula for antiderivatives of f .

Notice, we could simply rewrite this formula as F (x) = x2 + C .
Why?

Because the constant term C can be made to “swallow up”
all other constant terms.



Antiderivatives of the Function f (x) = 2x

Prove that F (x) = x2 + 1 is an antiderivative of the function
f (x) = 2x . Write a general formula for the antiderivative of f .

Well, F ′(x) = 2x + 0 = 2x = f (x), so F is an antiderivative of f .
Due to the previous theorem, we have that F (x) + C = x2 + 1 + C
is a general formula for antiderivatives of f .

Notice, we could simply rewrite this formula as F (x) = x2 + C .
Why? Because the constant term C can be made to “swallow up”
all other constant terms.



Antiderivatives of the Function f (x) = 2x

−4 −2 2 4

−4

−2

2

4



The Indefinite Integral

The process of finding all antiderivatives of a function is called
antidifferentiation or integration.

We use the symbol
∫

to denote
the integral operation. Thus, if f is the derivative of F , then∫

f (x) dx = F (x) + C .

This is read as “The integral of f of x with respect to x equals F
of x plus C .” This indefinite integral is a family of functions. We
call f (x) the integrand and C the constant of integration.

Using this notation, we can write∫
1 + x dx = x +

1

2
x2 + C ,

where C is an arbitrary constant.
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Rules of Integration

The following rules for integration all follow from the rules for
differentiation that we proved earlier in the course. We’re just
“going backwards” to integrate.

Theorem (Indefinite Integral of a Constant Function)

∫
k dx = kx + C , h a constant

Theorem (The Power Rule)

∫
xn dx =

1

n + 1
xn+1 + C , n 6= −1
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Rules of Integration

Theorem (Indefinite Integral of a Constant Multiple of a Function)

∫
kf (x) dx = k

∫
f (x) dx , k a constant

Theorem (The Sum Rule)

∫
f (x)± g(x) dx =

∫
f (x) dx ±

∫
g(x) dx
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Rules of Integration

Theorem (The Indefinite Integral of the Exponential Function)

∫
ex dx = ex + C , C a constant

Theorem (The Indefinite Integral of f (x) = x−1)

∫
x−1 dx = ln |x |+ C , C a constant
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Examples

Find the indefinite integrals of the following functions.

f (x) = 2x + 1 =⇒

∫
2x + 1 dx =

∫
2x dx +

∫
1 dx =

2
∫
x dx +

∫
1 dx = 2

(
1
2x

2
)

+ x + C = x2 + x + C .

f (x) = − 2
x + 3

x4
=⇒

∫
− 2

x + 3
x4

dx =
∫
− 2

x dx +
∫

3
x4

dx =

− 2
∫

1
x dx + 3

∫
1
x4

dx = − 2
∫
x−1 dx + 3

∫
x−4 dx =

− 2 ln |x |+ 3
(

1
−3

)
x−3 = − 2 ln |x | − 1

x3
+ C .

f (x) = 2ex − π2x3 =⇒
∫

2ex − π2x3 dx =∫
2ex dx −

∫
π2x3 dx = 2

∫
ex dx − π2

∫
x3 dx =

2ex − π2
(
1
4x

4
)

+ C = 2ex − π2

4 x
4 + C .
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Caution!

Do not misuse the rule for the indefinite integral of a constant
multiple of a function! You cannot pull out a function like to can a
constant!

∫
f (x)g(x) dx 6= f (x)

∫
g(x) dx

For instance, we know that
∫
x2 dx = x3

3 , but if we misapply the
rule for the indefinite integral of a constant multiple of a function,
we may get ∫

x2 dx = x2
∫

1 dx = x2(x) = x3,

which is wrong!
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Differential Equations

Any equation involving a derivative is a differential equation.

For
example, the equation

f ′(x) = 2x − 1

is a differential equation. We have been finding general solutions
to differential equations. However, if we are given an initial value
problem we can find a particular solution to a differential eqution.

An initial value problem includes a differential equation (like
f ′(x) = 2x − 1 and an inition condition (like f (0) = 1). To solve
an initial value problem, simply

1 find a general solution and

2 solve for C using the initial condition.
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Example

Let’s solve the differential equation from the previous slide where

f ′(x) = 2x − 1, f (0) = 1.

Then f (x) =
∫

2x − 1 dx = x2 − x + C . Thus, we have that

02 − 0 + C = 1 =⇒ C = 1.

So we have that f (x) = x2 − x + 1 must be our particular solution.
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Example

Solve the differential equation given by

f ′(x) = 3x2 − 4x + 8, f (1) = 9.

Then f (x) =
∫

3x2 − 4x + 8 dx = x3 − 2x2 + 8x + C . Thus, we
have that

13 − 2(12) + 8(1) + C = 9 =⇒ C = 2.

So we have that f (x) = x3 − 2x2 + 8x + 2 must be our particular
solution.
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Example

The circulation of Investor’s Digest is 3000 copies per week
currently. The managing editor of this magazine projects a growth

rate of 4 + 5t
2
3 copies per week, where t is measured in weeks.

This projection is good for the next three years. On the basis of
her projection, what will be the circulation of the digest 125 weeks
from now?

Well, let S(t) denote the circulation t weeks from now. We know
then that

S ′(t) = 4 + 5t
2
3 , S(0) = 3000.

Thus, S(t) = 4t + 3t
5
3 + C . Using the initial condition, we get

S(0) = 4(0) + 3(0
5
3 + C = 3000 =⇒ C = 3000,

so S(t) = 4t + 3t
5
3 + 3000. Therefore,

S(125) = 4(125) + 3(125
5
3 + 3000 = 12875.
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Acceleration, Velocity, and Position

A train is accelerating at 2 miles per hour, it’s speed at time t = 0
is 0 miles per hour, and its initial position at time t = 1 is 10 miles
down the track. Time is measure in hours. Knowing that the
derivative of position gives velocity and that the derivative of
velocity gives acceleration, find a formula for the train’s position at
time t.

We need to solve first the differential equation

v ′(t) = 2, v(0) = 0.

This gives v(t) = 2t. Then, we use that v(t) = s ′(t) to solve the
differential equation

s ′(t) = 2t. s(1) = 10,

which gives that s(t) = t2 + 9, our particular solution.
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Assignment

Read 6.2-6.3. Do problems 4, 8, 20, 36, 38, 50, 54, 58, 62, 70, 100
in 6.1.




