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Method of Substitution

You can exploit the previous rules to integrate certain functions by
following the steps below.

Let u = g(x), where g(x) is part of the integrand, usually the
“inside function” of a composite function.

Find du = g'(x)dx.

Use the substitution u = g(x) and du = g’(x)dx to convert
the entire integral into one involving only w.

Evaluate the resulting integral.

Replace u by g(x) to obtain the final solution as a function of
X.
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Example

Find [ 2x(x2 + 3)* dx.
Let u=x?+ 3.
Then du = 2x dx.
Thus, [2x(x?+3)* dx = [ (x* +3)* (2xdx) = [u* du .
4 d
f u* du= “; + C.
So, [2x(x? +3)* dx = U 4 ¢
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Example

Find fﬁ dx.
Let u = 3x2 + 1.

Then du = 6x dx which means % = x dx.

X _ _ du
B Thus, [ 35575 dx= [ (xdx) = [

3x2+1
du
1 3
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Example

Find fﬁ dx.
Let u = 3x2 + 1.
Then du = 6x dx which means % = x dx.

X 1 u
ThUS,fde:fm (XdX): (617

du
1 6
u

Bife=L1hnu+C
So,fﬁ dX:%ln(3X2+1)+C
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Example

A study forecasts that a new line of computers will have sales of
2000 — 15007995t ynits per month after t months. Find an
expression for the number of computers sold in the first t months.

We need to calculate [2000 — 1500e~%95 dt, letting
u=—0.05t = du = —0.05dt. So we get

/ 2000 — 1500205t gt — / 2000 — 1500e" (—20)du =

/—40000 + 30000e" du = —40000u + 30000e” + C =

2000t + 30000e %%t 4 C.



Example

Naturally, no computers were sold at time t = 0, so to solve for C,
we simply notice

2000(0) + 30000e %% 4 € =0 = C = —30000

So we get our expression for the number of computers sold after
month t to be

2000t + 30000e 295t — 30000.
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Find [ 2x3(x% + 1)% dx.
Let u=x?+1 = x
Then du = 2x dx.

2—y—1.

Thus, [2x3(x®+ 1)2 dx = (3 (% + 1)% (2xdx) =

u?2

-

J(u—1)uz du:fug—u% du .
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Example

Find [ 2x3(x% + 1)% dx.
let u=x*+1 = x2=u—1.
Then du = 2x dx.
Thus, [2x3(x®+ 1)2 dx = (3 (% + 1)% (2xdx) =
N N—— N
u—1 1 du
f(u—l)u% du:fug —u? du .

5 3
2 2

3 1
A [uz—u? du:z‘é —23 +C.

5
So, [2x(x? + 3)* dx = 2CFN2 20842 | ¢
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The Definite Integral

Recall when we talked about the differential that we interpreted
dy = f'(x)dx as an appoximation for Ay. On the graph of a
function, we can see Ay and Ax = dx forming an area related to
the graph of a function. See the next slide for details.
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Numerically Approximating Area Under the Curve of

f(x) = x? on [0,1]

Our first division of the area under f(x) on [0,1] into five intervals
gave the approximation of the area as

1_/1\ 1./2\ 1./3\ 1_./4\ 1
SF(Z)+2F(2)+2F(2)+2F (=) +2F(1) =044
5 (5>+5 (5>+5 (5)+5 <5)+5 (1) =0.44,

And our second division of the area under f(x) on [0,1] into ten
intervals gave the approximation

% ((0-1) + £(0.2) + -~ + £(0.9) + f(1)) = 0.385.
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Well, our four subintervals are [1,1.5], [1.5,2], [2,2.5], and
[2.5,3].
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Example

Let R be the region under the graph of f(x) = 16 — x2 on the
interval [1,3]. Find an approximation of the area of R by using four
subintervals of equal length and picking the midpoint of each
subinterval to evaluate the height of the approximating rectagle.

Well, our four subintervals are [1,1.5], [1.5,2], [2,2.5], and
[2.5,3]. The midpoints of these intervals are, respectively, 1.25,
1.75, 2.25, and 2.75. So our approximation is:

% (F(1.25) + F(1.75) + F(2.25) + F(2.75)) = 23.375
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Riemann Sums and the Area Under a Curve

We can generalize this process of approximation via Riemann sums
and pass through the limit to calculate the actual area under the
graph of a function.

Definition (The Area Under the Graph of a Function)

Let f be a nonnegative continuous function on [a,b]. Then the
area A of the region under the graph of f is given by

A= n“j;o[f(xl) + f(Xz) G ooo e f(Xn)]AX

where x3, X2, ..., X, are arbitrary points in the n subintervals of
[a,b] of equal width Ax = 2=2.

If f is continuous on [a, b], then this limit always exists, to the
definition is not degenerate.



The Definite Integral

Definition (The Definite Integral)
Let f be a function on [a,b]. If the limit
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exists and is the same for all choices of xi, x2, ..., x, in the n
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called the definite integral of f from a to b and is denoted
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The Definite Integral

Definition (The Definite Integral)
Let f be a function on [a,b]. If the limit

nIi_)rr;O[f(xl) + f(x2) + -+ - + f(xn)] Ax
exists and is the same for all choices of xi, x2, ..., x, in the n

subintervals of [a,b] of equal width Ax = 22, then this limit is
called the definite integral of f from a to b and is denoted

/b f(x)dx = n'i)fT;o[f(Xl) + f(x2) + - - + f(x5)]Ax

We call a the lower limit of integration and b the upper limit of
integration.
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Notes on the Definite Integral

useful to note that

a function is called integrable on an interval [a,b] if its definite
integral exists on that interval.

a function which is continuous on a closed interval is
automatically integrable, but a function need not be
continuous ot be integrable.

if a function is non-negative, then its definite integral on an
open interval is equal to the area under its curve.

a definite integral is a number whereas an indefinite integral is
a family of functions.



Geometric Interpretations of the Definite Integral

If f is non-negative on [a, b], as we mentioned, the definite integral

/ab f(x) dx

is the area between the curve and the x-axis. But if f takes both
positive and negative values, then the definite intergral is equal to
the area of the region below the graph but above the x-axis minus
the area of the region blow the x-axis but above f. We can see
this graphically.
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Assignment

Read 6.4. Do problems 14, 26, 36, 50, 54, 66 in 6.2 and 2, 10, 14,
16, 18 in 6.3.





