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Properties of the Definite Integral

We have the following properties of the definite integral. They can
all be derived from properies of the derivative and trivial
observations.

Let f and g be integrable functions on [a, b].

1

∫ a

a
f (x) dx = 0.

2

∫ a

b
f (x) dx = −

∫ b

a
f (x) dx .

3

∫ b

a
c · f (x) dx = c ·

∫ b

a
f (x) dx , where c is a constant.
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Properties of the Definite Integral

Let f and g be integrable functions on [a, b].

4

∫ b

a
·f (x)± g(x) dx =
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a
f (x) dx ±

∫ b

a
g(x) dx .

5

∫ c

a
·f (x) dx =

∫ b

a
f (x) dx +

∫ c

b
f (x) dx where a ≤ b ≤ c .
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The Method of Substitution for Definite Integrals

When calculating definite integrals, substitution changes the limits
of integration! To see this, let’s use a simple example.

Calculate∫ 2

0
6x(x2 + 1)2 dx .

Well, if we let x2 + 1 = u, then we can see that an indefinite
integral of 6x(x2 + 1)2 is simply (x2 + 1)3 = u3. But notice:

(x2 + 1)3

∣∣∣∣∣
2

0

= 124 6= u3

∣∣∣∣∣
2

0

= 8.

Therefore, you have to change the limits of integration or
back-substitute!
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The Method of Substitution for Definite Integrals

If you would like to change the limits of integration, you must
make sure that u(x) is a monotonic function with respect to x , i.e.
it must be strictly increasing or decreasing on the interval of
integration in question.

Our function u(x) = x2 + 1 is strictly
increasing on [0,1], so we’re fine. Then you must calculate

lim
x→b

u(x) = b′ & lim
x→a

u(x) = a′.

Then you can simply calculate the new integral with the new upper
and lower limits b′ and a′ respectively.
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The Method of Substitution for Definite Integrals

In our example, we need to calculate lim
x→2

[x2 + 1] =

5 and

lim
x→0

[x2 + 1] = 1. The we can calculate

∫ 5

1
3(u)2 du = u3

∣∣∣∣∣
5

1

= 125− 1 = 124.

And this is the correct integral!
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The Method of Substitution for Definite Integrals

You can always back-substitute and get the correct integral, too.
Consider ∫ 4

0
x
√

9 + x2 dx .

Letting u = 9 + x2, we see that du = 2x , so we get that∫
x
√

9 + x2 dx =

∫
1

2

√
u du =

1

2
u

3
2

2

3
=

1

3
u

3
2 =

1

3
(x2 + 9)

3
2 .

So, ∫ 4

0
x
√

9 + x2 dx =
1

3
(x2 + 9)

3
2

∣∣∣∣∣
4

0

=
1

3
(125)− 1

3
(27) = 32.
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Of course, we could have calculated∫ 4

0
x
√

9 + x2 dx =

∫ 25

9

1

2

√
u dx .

Notice the changes in the limits of the integral!

Then we would
have gotten:

1

3
u

3
2

∣∣∣∣∣
2

59 = 32.

And this is the correct integral!
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Example

Calculate the area under the curve of f (x) = e
1
2
x between the lines

x = −1 and x = 1.

∫ 1

−1
e

1
2
x dx =

∫ 0.5

−0.5
2eu du = 2eu

∣∣∣∣∣
0.5

−0.5

= 2(e0.5 − e−0.5).
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The Average Value of a Function

Remember (from grade school) that the average value of a set of
numbers y1, y2, . . . , yn is just

y1 + y2 + · · ·+ yn
n

.

Now, the average value of a function at n points can be written
similarly as

f (x1) + f (x2) + · · ·+ f (xn)

n
.

And we may use this to approximate the average value of a
function on an interval [a, b] from which the xi ’s are taken.
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The Average Value of a Function

Let’s rewrite this last expression.

f (x1) + f (x2) + · · ·+ f (xn)

n
=

b − a

b − a

[
f (x1)

n
+

f (x2)

n
+ · · ·+ f (xn)

n

]
.

And we can rewrite this as

1

b − a

[
b − a

n
f (x1) +

b − a

n
f (x2) + · · ·+ b − a

n
f (xn)

]
=

1

b − a
[f (x1)∆x + f (x2)∆x + · · ·+ f (xn)∆x .]

Passing through the limit, this function is simply

1

b − a

∫ b

a
f (x) dx .
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The Average Value of a Function

Because the approximation we derived earlier only improves as n
grows, we have the following definition.

Definition (The Average Value of a Function)

If f is integrable on [a, b], then the average value of f on [a, b] is

1

b − a

∫ b

a
f (x) dx .

There is also a clear geometric interpretation of this!
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Geometric Interpretation

If a function’s integral over [a, b] is C , then the area under f is the

same as the area under the line y = C
b−a =

1
b−a

∫ b
a f (x) dx .

1 2 3 4
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2

3
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Example

Calculate the average value of f (x) =
√
x on [0,4].

1

4− 0

∫ 4

0

√
x dx =

1

6
x

3
2
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Example

The amount of a certain drug in a patient’s body t days after first
taking it is given by C (t) = 5e−0.2t units. Determine the average
amount of the drug present during the first four days after first
taking it.

We calculate

1

4

∫ 4

0
5e−0.2t dt = −25

4
e−0.2t

∣∣∣∣∣
4

0

≈ 3.44.
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Assignment

Read 6.6. Do problems 2, 8, 14, 22, 28, 34, 44, 52, 64, 68, 72 in
6.5.




