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Motivating Limits

The notion of the limit is a mathematical formalization of the
natural notion of closeness. Limits are essential to defining the
concepts of the derivative and integral which are used to describe
phenomena like

the velocity and acceleration of an object

rates of change like population growth/decline

the area under a curve

the probability of an event



Motivating Limits

The notion of the limit is a mathematical formalization of the
natural notion of closeness. Limits are essential to defining the
concepts of the derivative and integral which are used to describe
phenomena like

the velocity and acceleration of an object

rates of change like population growth/decline

the area under a curve

the probability of an event



Motivating Limits

The notion of the limit is a mathematical formalization of the
natural notion of closeness. Limits are essential to defining the
concepts of the derivative and integral which are used to describe
phenomena like

the velocity and acceleration of an object

rates of change like population growth/decline

the area under a curve

the probability of an event



Motivating Limits

The notion of the limit is a mathematical formalization of the
natural notion of closeness. Limits are essential to defining the
concepts of the derivative and integral which are used to describe
phenomena like

the velocity and acceleration of an object

rates of change like population growth/decline

the area under a curve

the probability of an event



Motivating Limits

The notion of the limit is a mathematical formalization of the
natural notion of closeness. Limits are essential to defining the
concepts of the derivative and integral which are used to describe
phenomena like

the velocity and acceleration of an object

rates of change like population growth/decline

the area under a curve

the probability of an event



A Motivational Example

A train’s position can be given by s(t) = 4t2.

If you would like to
know how fast the train is moving at time t = 2 given this
information, it can be difficult. You might try finding it’s average
velocity over a small period of time around t = 2.

Interval (t) (2, 2.5) (2, 2.25) (2, 2.1) (2, 2.01) (2, 2.001)

Average 18 17 16.4 16.04 16.004

As we approach 2 on the right-hand of our interval, the average
velocity appears to approach 16.



A Motivational Example

A train’s position can be given by s(t) = 4t2. If you would like to
know how fast the train is moving at time t = 2 given this
information, it can be difficult.

You might try finding it’s average
velocity over a small period of time around t = 2.

Interval (t) (2, 2.5) (2, 2.25) (2, 2.1) (2, 2.01) (2, 2.001)

Average 18 17 16.4 16.04 16.004

As we approach 2 on the right-hand of our interval, the average
velocity appears to approach 16.



A Motivational Example

A train’s position can be given by s(t) = 4t2. If you would like to
know how fast the train is moving at time t = 2 given this
information, it can be difficult. You might try finding it’s average
velocity over a small period of time around t = 2.

Interval (t) (2, 2.5) (2, 2.25) (2, 2.1) (2, 2.01) (2, 2.001)

Average 18 17 16.4 16.04 16.004

As we approach 2 on the right-hand of our interval, the average
velocity appears to approach 16.



A Motivational Example

A train’s position can be given by s(t) = 4t2. If you would like to
know how fast the train is moving at time t = 2 given this
information, it can be difficult. You might try finding it’s average
velocity over a small period of time around t = 2.

Interval (t) (2, 2.5) (2, 2.25) (2, 2.1) (2, 2.01) (2, 2.001)

Average 18 17 16.4 16.04 16.004

As we approach 2 on the right-hand of our interval, the average
velocity appears to approach 16.



A Motivational Example

A train’s position can be given by s(t) = 4t2. If you would like to
know how fast the train is moving at time t = 2 given this
information, it can be difficult. You might try finding it’s average
velocity over a small period of time around t = 2.

Interval (t) (2, 2.5) (2, 2.25) (2, 2.1) (2, 2.01) (2, 2.001)

Average 18 17 16.4 16.04 16.004

As we approach 2 on the right-hand of our interval, the average
velocity appears to approach 16.



A Motivational Example

Consider, again, the average velocity around 2 given by
v(t) = (s(2)− s(t))/(2− t) on the left-hand side now.

Interval (t) (1.5, 2) (1.9, 2) (1.99, 2) (1.999, 2) (1.9999, 2)

Average 14 15.6 15.96 15.996 15.9996

As we approach 2 on the left-hand of our interval, the average
velocity appears to approach 16 as well.

In this case, v(t) approaches 16 (monotonically) on both the left-
and right-hand sides. We say that the limit of v(t) as t → 2 is 16.
And we write lim

t→2
v(t) = 16.
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The Limit

Definition (Limit of a Function)

The function f has the limit L as it approaches a, written

lim
x→a

v(x) = L,

if the value of f (x) can be made arbitrarily close to L by taking x
sufficiently close to (but not equal to) a.



Evaluating a Limit

There are some general approaches to evaluating limits you may
find useful.

1 At a point of continuity, just plug in.

2 At a point of discontinuity, if the discontinuity is removable,
you can evaluate using the continuous part.

3 Limits do not exist at singularities and non-removable
discontinuities.



Example: Continuity

Evaluate lim
x→0

x3.

As we approach 0 from the left and right, f (x)

approaches 0. So, lim
x→0

x3 = 0.

−4 −2 0 2 4

−4

−2

0

2

4
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Example: Removable Discontinuity

f (x) =

{
1 x = 2
2x − 1 x 6= 1
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As we approach 2 from the left and right, f (x)

approaches 3. So, lim
x→2

f (x) = 3.

In this case, we can just look at the continuous part and plug in.
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Example: Non-Removable Discontinuity
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Example: Non-Removable Discontinuity

f (x) =

{
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1 x ≤ 0

Evaluate lim
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As we approach 2 from the left, f (x)

approaches 1. As we approach 2 from the right, f (x) approaches
0. So, lim

x→0
f (x) does not exist.
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“Infinite” Limits

Some functions tend towards infinity as you approach an input
value.

Take f (x) = 1/x . As x tends to zero from the right,

f (x) grows
without bound, i.e. f (x) tends to infinity.

As x tends to zero from the left, |f (x)| grows without bound while
f (x) remains negative, i.e. f (x) tends to negative infinity.

In this case, we also say the limit does not exist. In fact, if the
function approaches infinity on either side of the x-value, the limit
cannot exist.
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Graph of “Infinite” Limit

“Infinite” limits produce vertical asymptotes.

x
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Other Limit Issues

Some limits do not exist for more exotic reasons. Why doesn’t this
limit exist?

x

f (x)

f (x) = sin) 1
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Properties of Limits

Theorem (Properties of Limits)

Suppose lim
x→a

f (x) = L and lim
x→a

g(x) = M, then

1

[ lim
x→a

f (x)r ] = [ lim
x→a

f (x)]r = Lr , r > 0

2

lim
x→a

[c · f (x)] = c lim
x→a

f (x) = cL, c ∈ R

3

lim
x→a

[f (x)± g(x)] = lim
x→a

f (x)± lim
x→a

g(x) = L±M
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Properties of Limits Continued

Theorem (Properties of Limits)

Suppose lim
x→a

f (x) = L and lim
x→a

g(x) = M, then

4
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Example

Using the properties of the limit, calculate lim
x→2

2x2−3x
(x+2)(x−4) .

lim
x→2

2x2 − 3x

(x + 2)(x − 4)
=
5

lim
x→2

(2x2 − 3x)

lim
x→2

(x + 2)(x − 4)
=
4&3

lim
x→2

2x2 − lim
x→2

3x

lim
x→2

(x + 2) lim
x→2

(x − 4)

=
1&2&3

2[ lim
x→2

x ]2 − 3 lim
x→2

x

( lim
x→2

x + lim
x→2

2)( lim
x→2

x − lim
x→2

4)
=

2[2]2 − 3 · 2
(2 + 2)(2− 4)

= − 1

4
.

Notice, the truth of this statement arises from the last
computation. (Read the theorem carefully.)
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x→2

(x + 2) lim
x→2

(x − 4)

=
1&2&3

2[ lim
x→2

x ]2 − 3 lim
x→2

x

( lim
x→2

x + lim
x→2

2)( lim
x→2

x − lim
x→2

4)
=

2[2]2 − 3 · 2
(2 + 2)(2− 4)

= − 1

4
.

Notice, the truth of this statement arises from the last
computation. (Read the theorem carefully.)



Indeterminant Forms

Sometimes, calculating a limit can not be done
straightforwardly.

Take our earlier average velocity function:
v(t) = 16−4t2

2−t . If we wanted to calculate the limit as t → 2 (as we
did numerically before), we cannot simply plug in because we will
get the indeterminant form 0/0. But, if we notice that

v(t) =
16− 4t2

2− t
=

4(4− t2)

2− t
=

4(2− t)(2 + t)

2− t
= 4(2 + t)

then it’s easy to see that lim
t→2

v(t) = 16.
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Strategy for Evaluating Indeterminant Forms

You can try tackling limit computation problems by

replacing the given function with an appropriate one that
takes on the same values as the original function everywhere
except at the value where the limit is being evaluated

evaluating the limit of this new function.

The first step usually involves factorization/cancellation (like in our
previous example) or multiplication by conjugates in the numerator
and denominator.



Strategy for Evaluating Indeterminant Forms

You can try tackling limit computation problems by

replacing the given function with an appropriate one that
takes on the same values as the original function everywhere
except at the value where the limit is being evaluated

evaluating the limit of this new function.

The first step usually involves factorization/cancellation (like in our
previous example) or multiplication by conjugates in the numerator
and denominator.



Strategy for Evaluating Indeterminant Forms

You can try tackling limit computation problems by

replacing the given function with an appropriate one that
takes on the same values as the original function everywhere
except at the value where the limit is being evaluated

evaluating the limit of this new function.

The first step usually involves factorization/cancellation (like in our
previous example) or multiplication by conjugates in the numerator
and denominator.



Strategy for Evaluating Indeterminant Forms

You can try tackling limit computation problems by

replacing the given function with an appropriate one that
takes on the same values as the original function everywhere
except at the value where the limit is being evaluated

evaluating the limit of this new function.

The first step usually involves factorization/cancellation (like in our
previous example) or multiplication by conjugates in the numerator
and denominator.



Example: Conjugates

Evaluate lim
x→0

√
1+x−1
x .

Notice:

√
1 + x − 1

x
=

√
1 + x − 1

x
·
√

1 + x + 1√
1 + x + 1

=
1 + x − 1

x(
√

x + 1 + 1)
=

1√
x + 1 + 1

.

Thus, lim
x→0

√
1+x−1
x = lim

x→0

1√
x+1+1

= 1
2 .
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Limits at Infinity

A limit of f (x) exists at infinity if, as x becomes arbitrarily
(positively) large, f (x) approaches a finite value.

Limits at infinity
appear as horizontal asymptotes on the graph of the function.

Definition (Limit of a Function at Infinity)

A function f has a limit L as x increases without bound, written
lim
x→∞

f (x) = L, if f (x) can be made arbitrarily close to L by taking

x large enough.
A function f has a limit L as x decreases without bound, written

lim
x→−∞

f (x) = L, if f (x) can be made arbitrarily close to L by taking

x negative and large (in absolute value) enough.
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Theorems for Limits at Infinity

Theorem

For all n > 0, lim
x→±∞

1
xn = 0, so long as 1

xn is defined.

Theorem

Specifically, for all polynomials p(x) and q(x), lim
x→±∞

p(x)
q(x) = 0 if

the degree of q(x) is greater than the degree of p(x).

Moreover, if the degree of p(x) and q(x) are the same, then

lim
x→±∞

p(x)
q(x) = p̃

q̃ , where p̃ and q̃ are the leading coefficients of p and

q respectively.

Finally, if the degree of p(x) is greater than the degree of q(x),

then lim
x→±∞

p(x)
q(x) does not exist.
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Examples

Evaluate the following limits.

lim
x→∞

x2+3x−1
−2+x−2x2 =

− 1
2

lim
x→∞

x3+x4−1
3−x−x2 = does not exist

lim
x→∞

x5+3x−1
−2x6−2x2 = 0
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Other Limit Issues

Does the limit of this function exist at positive or negative infinity?

x

f (x)

f (x) = sin(πx)
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Assignment

Read 2.5. Do problems 6, 12, 16, 34, 46, 60, 62, 68, 76, 96 in 2.4.




