QMI Lesson 5: One-Sided Limits & Continuity

C C Moxley

Samford University Brock School of Business

10 September 2014

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Recall from Section 2.5 that the function below had no limit as $x \rightarrow 0$.

$$
f(x) = \left\{ \begin{array}{ll} 1 & x = 2 \\ 2x - 1 & x \neq 1 \end{array} \right.
$$

However, this function does have a limit as $x\to 0^+$ and as $x \rightarrow 0^-$, i.e. as x approaches 0 from the right and left respectively.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

$$
f(x) = \left\{ \begin{array}{ll} 1 & x = 2 \\ 2x - 1 & x \neq 1 \end{array} \right.
$$

However, this function does have a limit as $x\to 0^+$ and as $x \rightarrow 0^-$, i.e. as x approaches 0 from the right and left respectively. We call these limits one-sided limits.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Definition (One-Sided Limits)

The function f has the right-hand limit L as x approaches a from the right, written $\lim_{x \to a^+} f(x) = L$, if the values of $f(x)$ can be made arbitrarily close to L by taking x sufficiently close to (but not equal to) a and greater than a.

Definition (One-Sided Limits)

The function f has the right-hand limit L as x approaches a from the right, written $\lim_{x \to a^+} f(x) = L$, if the values of $f(x)$ can be made arbitrarily close to L by taking x sufficiently close to (but not equal to) a and greater than a.

The function f has the **left-hand** limit L as x approaches a from the left, written $\lim_{x\to a^{-}} f(x) = L$, if the values of $f(x)$ can be made arbitrarily close to L by taking x sufficiently close to (but not equal to) a and less than a.

Relationship Between Limits and One-Sided Limits

Theorem

If f is a function defined for all values x close to $x = a$ (with the possible exception of a itself), then

$$
\lim_{x \to a} f(x) = L \iff \lim_{x \to a^+} f(x) = L = \lim_{x \to a^-} f(x)
$$

KORK STRAIN A BAR SHOP

Theorem

If f is a function defined for all values x close to $x = a$ (with the possible exception of a itself), then

$$
\lim_{x \to a} f(x) = L \iff \lim_{x \to a^+} f(x) = L = \lim_{x \to a^-} f(x)
$$

Basically, this means that the existence of a limit means that the left- and right-limits exist and that they equal one another.

Theorem

If f is a function defined for all values x close to $x = a$ (with the possible exception of a itself), then

$$
\lim_{x \to a} f(x) = L \iff \lim_{x \to a^+} f(x) = L = \lim_{x \to a^-} f(x)
$$

Basically, this means that the existence of a limit means that the left- and right-limits exist and that they equal one another. And the converse is true as well.

Example

Does $\lim_{x\to 0^+} f(x)$ exist? What about $\lim_{x\to 0^-} f(x)$? What is $f(0)$?

Example

Does $\lim_{x\to 0^+} g(x)$ exist? What about $\lim_{x\to 0^-} g(x)$? What is $g(0)$?

A function f is continuous at a if all of the following conditions hold.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \Box $f(a)$ is defined. $\lim_{x\to a} f(x)$ exists. 3 $f(a) = \lim_{x \to a} f(x)$.

A function f is continuous at a if all of the following conditions hold.

 \Box $f(a)$ is defined. $\lim_{x\to a} f(x)$ exists. 3 $f(a) = \lim_{x \to a} f(x)$.

These conditions may be broken when a graph of a function has a hole/puncture,

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

A function f is continuous at a if all of the following conditions hold.

 \Box $f(a)$ is defined. $\lim_{x\to a} f(x)$ exists. 3 $f(a) = \lim_{x \to a} f(x)$.

These conditions may be broken when a graph of a function has a hole/puncture,a jump,

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

A function f is continuous at a if all of the following conditions hold.

 \Box $f(a)$ is defined. $\lim_{x\to a} f(x)$ exists. 3 $f(a) = \lim_{x \to a} f(x)$.

These conditions may be broken when a graph of a function has a hole/puncture,a jump,or a vertical asymptote.

Examples of Discontinuity

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

On what interval(s) is $f(x) = \begin{cases} -1 & x < 0 \\ 1 & x > 0 \end{cases}$ $\frac{1}{x} - 1$ $x \ge 0$ continuous?

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

On what interval(s) is $f(x) = \begin{cases} -1 & x < 0 \\ 1 & x > 0 \end{cases}$ $\frac{1}{x} - 1$ $x \ge 0$ continuous? $(-\infty,0)\cup(0,\infty)$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Any polynomial is continuous everywhere!

Any polynomial is continuous everywhere! So, is a linear function always continuous? A constant function?

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Rational functions are continuous everywhere that their denominator is not zero.

Rational functions are continuous everywhere that their denominator is not zero. For example $f(x) = \frac{3x^2-1}{x^2-1}$ $\frac{3x^2-1}{x^2-1}$ is continuous everywhere except at

Rational functions are continuous everywhere that their denominator is not zero. For example $f(x) = \frac{3x^2-1}{x^2-1}$ $\frac{3x^2-1}{x^2-1}$ is continuous everywhere except at $x = 1, -1$,

Rational functions are continuous everywhere that their denominator is not zero. For example $f(x) = \frac{3x^2-1}{x^2-1}$ $\frac{3x^2-1}{x^2-1}$ is continuous everywhere except at $x = 1, -1$, i.e. it is continuous on the intervals

Rational functions are continuous everywhere that their denominator is not zero. For example $f(x) = \frac{3x^2-1}{x^2-1}$ $\frac{3x^2-1}{x^2-1}$ is continuous everywhere except at $x = 1, -1$, i.e. it is continuous on the intervals $(-\infty, -1)$ ∪ $(-1, 1)$ ∪ $(1, \infty)$.

Rational functions are continuous everywhere that their denominator is not zero. For example $f(x) = \frac{3x^2-1}{x^2-1}$ $\frac{3x^2-1}{x^2-1}$ is continuous everywhere except at $x = 1, -1$, i.e. it is continuous on the intervals $(-\infty, -1)$ ∪ $(-1, 1)$ ∪ $(1, \infty)$.

KORKAR KERKER EL VOLO

A function must be defined to be continuous!

Rational functions are continuous everywhere that their denominator is not zero. For example $f(x) = \frac{3x^2-1}{x^2-1}$ $\frac{3x^2-1}{x^2-1}$ is continuous everywhere except at $x = 1, -1$, i.e. it is continuous on the intervals $(-\infty, -1)$ ∪ $(-1, 1)$ ∪ $(1, \infty)$.

A function must be defined to be continuous! So $f(x) = \sqrt{x-1}$ cannot be continuous on $(-\infty, 1)!$

Suppose that both $f(x)$ and $g(x)$ are continuous at $x = a$, then the following are also continuous at $x = a$.

Suppose that both $f(x)$ and $g(x)$ are continuous at $x = a$, then the following are also continuous at $x = a$.

$$
\blacksquare [f(x)]^n, with n \in \mathbb{R}.
$$

Suppose that both $f(x)$ and $g(x)$ are continuous at $x = a$, then the following are also continuous at $x = a$.

\n- $$
[f(x)]^n
$$
, with $n \in \mathbb{R}$.
\n- $f \pm g$.
\n

Suppose that both $f(x)$ and $g(x)$ are continuous at $x = a$, then the following are also continuous at $x = a$.

$$
\blacksquare [f(x)]^n, with n \in \mathbb{R}.
$$

$$
\blacksquare \, f \pm g.
$$

$$
\blacksquare \ \mathit{fg}.
$$

Suppose that both $f(x)$ and $g(x)$ are continuous at $x = a$, then the following are also continuous at $x = a$.

$$
\blacksquare [f(x)]^n, with n \in \mathbb{R}.
$$

$$
\blacksquare f \pm g.
$$

$$
\blacksquare \ \ \text{fg.}
$$

$$
\blacksquare \frac{f}{g}, \text{ provided } g(a) \neq 0.
$$

Determine where $f(x)$ is discontinuous.

Determine where $f(x)$ is discontinuous.

K □ ▶ K @ ▶ K 할 K X 할 K : 할 \ 10 Q Q Q

$$
f(x) = \frac{x^4 - 8x + 1}{2x^2 + 5x - 3}.
$$

Determine where $f(x)$ is discontinuous.

•
$$
f(x) = \frac{x^4 - 8x + 1}{2x^2 + 5x - 3}
$$
. Well, $f(x) = \frac{x^4 - 8x + 1}{(2x - 1)(x + 3)}$, so $f(x)$ is discontinuous at

K □ ▶ K @ ▶ K 할 K X 할 K : 할 \ 10 Q Q Q

Determine where $f(x)$ is discontinuous.

■
$$
f(x) = \frac{x^4 - 8x + 1}{2x^2 + 5x - 3}
$$
. Well, $f(x) = \frac{x^4 - 8x + 1}{(2x - 1)(x + 3)}$, so $f(x)$ is
discontinuous at $x = \frac{1}{2}, -3$.

K □ ▶ K @ ▶ K 할 K X 할 K : 할 \ 10 Q Q Q

Determine where $f(x)$ is discontinuous.

■
$$
f(x) = \frac{x^4 - 8x + 1}{2x^2 + 5x - 3}
$$
. Well, $f(x) = \frac{x^4 - 8x + 1}{(2x - 1)(x + 3)}$, so $f(x)$ is
discontinuous at $x = \frac{1}{2}, -3$.

 $f(x) = \frac{2x+1}{x^2+1}$. What does the graph of the $x^2 + 1$ look like?

K ロ ▶ K 御 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익단

Determine where $f(x)$ is discontinuous.

■
$$
f(x) = \frac{x^4 - 8x + 1}{2x^2 + 5x - 3}
$$
. Well, $f(x) = \frac{x^4 - 8x + 1}{(2x - 1)(x + 3)}$, so $f(x)$ is
discontinuous at $x = \frac{1}{2}, -3$.

 $f(x) = \frac{2x+1}{x^2+1}$. What does the graph of the $x^2 + 1$ look like?

K ロ ▶ K 御 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익단

Determine where $f(x)$ is discontinuous.

1
$$
f(x) = \frac{x^4 - 8x + 1}{2x^2 + 5x - 3}
$$
. Well, $f(x) = \frac{x^4 - 8x + 1}{(2x - 1)(x + 3)}$, so $f(x)$ is
discontinuous at $x = \frac{1}{2}, -3$.

 $f(x) = \frac{2x+1}{x^2+1}$. What does the graph of the $x^2 + 1$ look like?

Clearly, the denominator is always positive, i.e. it's never zero.

Determine where $f(x)$ is discontinuous.

1
$$
f(x) = \frac{x^4 - 8x + 1}{2x^2 + 5x - 3}
$$
. Well, $f(x) = \frac{x^4 - 8x + 1}{(2x - 1)(x + 3)}$, so $f(x)$ is
discontinuous at $x = \frac{1}{2}, -3$.

 $f(x) = \frac{2x+1}{x^2+1}$. What does the graph of the $x^2 + 1$ look like?

Clearly, the denominator is always positive, i.e. it's never zero. So the function has no discontinuities.

Consider a hiker climbing from the bottom of Death Valley (elevation: −86m) to the top of nearby Telescope Peak (elevation 3368m).

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Consider a hiker climbing from the bottom of Death Valley (elevation: −86m) to the top of nearby Telescope Peak (elevation 3368m).

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$

Consider a hiker climbing from the bottom of Death Valley (elevation: −86m) to the top of nearby Telescope Peak (elevation 3368m).

3368 meters

E LIZER KENNED K

Consider a hiker climbing from the bottom of Death Valley (elevation: −86m) to the top of nearby Telescope Peak (elevation 3368m).

E LIZER KENNED K

Consider a hiker climbing from the bottom of Death Valley (elevation: −86m) to the top of nearby Telescope Peak (elevation 3368m).

E LIZER KENNED K

Consider a hiker climbing from the bottom of Death Valley (elevation: −86m) to the top of nearby Telescope Peak (elevation 3368m).

E LIZER KENNED K

Consider a hiker climbing from the bottom of Death Valley (elevation: −86m) to the top of nearby Telescope Peak (elevation 3368m).

Consider a hiker climbing from the bottom of Death Valley (elevation: −86m) to the top of nearby Telescope Peak (elevation 3368m).

Consider a hiker climbing from the bottom of Death Valley (elevation: −86m) to the top of nearby Telescope Peak (elevation 3368m).

KORKA SERKER ORA

Clearly, the hiker must "cross" sea level,

Consider a hiker climbing from the bottom of Death Valley (elevation: −86m) to the top of nearby Telescope Peak (elevation 3368m).

Clearly, the hiker must "cross" sea level, i.e. her elevation must be exactly zero at some point.

K ロ X K (P) X (E) X (E) X (E) X (P) Q (P)

We can mathematically formalize this notion.

We can mathematically formalize this notion. The reason the hiker's elevation must be zero at some point is because motion is a continuous action.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

We can mathematically formalize this notion. The reason the hiker's elevation must be zero at some point is because motion is a continuous action. You cannot get to 3368 meters from −86 meters without passing every elevation on the way.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

We can mathematically formalize this notion. The reason the hiker's elevation must be zero at some point is because motion is a continuous action. You cannot get to 3368 meters from −86 meters without passing every elevation on the way. In particular, you cannot "skip" the zero-level elevation.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

We can mathematically formalize this notion. The reason the hiker's elevation must be zero at some point is because motion is a continuous action. You cannot get to 3368 meters from −86 meters without passing every elevation on the way. In particular, you cannot "skip" the zero-level elevation. This idea is called the Root Theorem because it says, essentially, that a continuous function that takes both a negative and a positive value must have a root somewhere in the interval between the points at which it is negative and positive.

KORKAR KERKER E VOOR

Theorem (Existence of Roots of a Continuous Function)

If a continuous function f on a closed interval $[a, b]$ takes values $f(a)$ and $f(b)$ such that $f(a) \cdot f(b) < 0$, then there is at least one solution to the equation $f(x) = 0$ in the interval (a, b) .

Theorem (Existence of Roots of a Continuous Function)

If a continuous function f on a closed interval $[a, b]$ takes values $f(a)$ and $f(b)$ such that $f(a) \cdot f(b) < 0$, then there is at least one solution to the equation $f(x) = 0$ in the interval (a, b) .

Theorem (Existence of Roots of a Continuous Function)

If a continuous function f on a closed interval $[a, b]$ takes values $f(a)$ and $f(b)$ such that $f(a) \cdot f(b) < 0$, then there is at least one solution to the equation $f(x) = 0$ in the interval (a, b) .

Theorem (Existence of Roots of a Continuous Function)

If a continuous function f on a closed interval $[a, b]$ takes values $f(a)$ and $f(b)$ such that $f(a) \cdot f(b) < 0$, then there is at least one solution to the equation $f(x) = 0$ in the interval (a, b) .

Theorem (Existence of Roots of a Continuous Function)

If a continuous function f on a closed interval $[a, b]$ takes values $f(a)$ and $f(b)$ such that $f(a) \cdot f(b) < 0$, then there is at least one solution to the equation $f(x) = 0$ in the interval (a, b) .

If a continuous function f on a closed interval $[a, b]$ and M is any number between $f(a)$ and $f(b)$, then there exists at least one number c in (a, b) such that $f(c) = M$.

If a continuous function f on a closed interval $[a, b]$ and M is any number between $f(a)$ and $f(b)$, then there exists at least one number c in (a, b) such that $f(c) = M$.

If a continuous function f on a closed interval $[a, b]$ and M is any number between $f(a)$ and $f(b)$, then there exists at least one number c in (a, b) such that $f(c) = M$.

If a continuous function f on a closed interval $[a, b]$ and M is any number between $f(a)$ and $f(b)$, then there exists at least one number c in (a, b) such that $f(c) = M$.

K ロ ▶ K 레 ▶ K 로 ▶ K 로 ▶ - 로 - K 이 Q Q @

Well, $f(0) = 3 > 0$,

K ロ ▶ K 御 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익단

Well, $f(0) = 3 > 0$, and $f(1) = -1 < 0$.

Well, $f(0) = 3 > 0$, and $f(1) = -1 < 0$. Therefore, since f is continuous on [0, 1]

Well, $f(0) = 3 > 0$, and $f(1) = -1 < 0$. Therefore, since f is continuous on [0, 1] and since $f(1) < 0$ and $f(0) > 0$,

Well, $f(0) = 3 > 0$, and $f(1) = -1 < 0$. Therefore, since f is continuous on [0, 1] and since $f(1) < 0$ and $f(0) > 0$, we know that there exists some $c \in (0,1)$ such that

KORKAR KERKER EL VOLO

Well, $f(0) = 3 > 0$, and $f(1) = -1 < 0$. Therefore, since f is continuous on [0, 1] and since $f(1) < 0$ and $f(0) > 0$, we know that there exists some $c \in (0,1)$ such that $f(c) = 0$.

KORKAR KERKER EL VOLO

Do the conclusions of the Intermediate Value Theorem hold if f is not a continuous function?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Do the conclusions of the Intermediate Value Theorem hold if f is not a continuous function? No! Draw an example.

Read 2.6. Do problems 6, 10, 18, 34, 42, 52, 60, 72, 88, 94, 96 in 2.5.

イロト イ御 トイミト イミト ニミー りんぴ