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Motivation for the Chain Rule

The Chain Rule is a differentiation rule used to take the derivative
of composite functions.

If h(x) = g(f (x)), then we can think of
the derivative of h in the following way.

Say f ′(x0) is 4, i.e. the rate of change of f at x0 is 4.

Moreover, say f (x0) = y0 and that g ′(y0) is 3.

Then, the rate of change of h(x0) is the rate of change of
g(f (x0)).

What, then, is this rate? We would expect h′(x0) = g ′(y0) · f ′(x0),
i.e.

dh

dx0
=

dh

df
· df
dx0

,

since f (xo) = y . Then, h′(x0) = 4 · 3 = 12.
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Motivation for the Chain Rule: Image

f g

g ◦ f



The Chain Rule

Theorem (The Chain Rule)

If h(x) = g(f (x)), then

h′(x) = g ′(f (x)) · f ′(x).

We may write equivalently

dy

dx
=

dy

du
· du
dx

,

where h(x) = y = g(u) and u = f (x).



The Chain Rule

Theorem (The Chain Rule)

If h(x) = g(f (x)), then

h′(x) = g ′(f (x)) · f ′(x).

We may write equivalently

dy

dx
=

dy

du
· du
dx

,

where h(x) = y = g(u) and u = f (x).



The Generalized Power Rule

The chain rule is used so often with composite functions in which
the outer function is a power function that it is useful to state a
theorem for the combination of these two rules.

Theorem (The Generalized Power Rule)

If h(x) = [f (x)]n where n ∈ R \ {0}, then

h′(x) = n[f (x)]n−1 · f ′(x).
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Examples

Using the Chain Rule, find the derivative of the following
functions.

f (x) = (4x + 1)3 =⇒ f ′(x) = 3(4x + 1)3−1 · d
dx [4x + 1] =

3(4x + 1)2(4) = 12(4x + 1)2.

f (x) =
√√

x + 1 =⇒ f ′(x) = 1
2(
√
x + 1)0.5−1 · d

dx [
√
x + 1] =

1
2(
√
x + 1)−0.5 12x

−0.5 = 1

4
√
x
√√

x+1
.
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Examples: Combining Generalized Power Rule with
Product Rule

Using the Chain Rule, find the derivative of the following function.

f (x) = (x2 + 1)3(−2x + 1)2 =⇒ f ′(x) =

d

dx
[(x2 + 1)3] · [(−2x + 1)2] + [(x2 + 1)3]

d

dx
[(−2x + 1)2] =

3(x2 + 1)2(2x)(−2x + 1)2 + (x2 + 1)3(2)(−2x + 1)(−2) =

2(x2 + 1)2(−2x + 1)[3x(−2x + 1)− 2(x2 + 1)] =

2(x2 + 1)2(−2x + 1)[−8x2 + 3x − 2].
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Examples: Combining Generalized Power Rule with
Quotient Rule

Using the Chain Rule, find the derivative of the following function.

f (x) =

(
2x + 1

3x + 2

)3

First, let’s calculate

g ′(x) =
d

dx

[
2x + 1

3x + 2

]
=

(3x + 2)(2)− (2x + 1)(3)

(3x + 2)2
=

1

(3x + 2)2
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So we have

f ′(x) =
d

dx

[(
2x + 1

3x + 2

)3
]

=

3 ·
(

2x + 1

3x + 2

)2

· 1

(3x + 2)2
= 3 · (2x + 1)2

(3x + 2)4
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A Tip to Avoid the Quotient Rule

When you have a quotient with a 1 in the numerator, you can
rewrite it to use the Chain Rule rather than the Quotient Rule.

f (x) =
1

(3x + 2)2
= (3x + 2)−2 =⇒

f ′(x) = − 2(3x + 2)−2−1(3) =
−6

(3x + 2)3
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Marginal Analysis

When an economist studies a quantity like the unemployment rate,
she’s not just interested in the actual value of the unemployment
rate.

She’s also interested in the rate of change of the
unemployment rate, i.e. its rate of increase/decline.

Similarly, a factory owner isn’t solely interested in the number of
units his factory is producing. He’s also interested in the rate of
change in cost of production relative to the number of units being
produced.

These concepts form the basis of marginal analysis.
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Definitions

Definition (Marginal Cost)

The actual cost incurred by producing an additional unit of a
certain commodity is the marginal cost.

Definition (Marginal Cost Function)

This function is used to approximate the true marginal cost. It is
the first derivative of the cost function.

The marginal cost function does not give exactly the marginal
cost, but it is a good approximation in most smooth, i.e.
differentiable, cases.
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Example

The cost of producing ovens is given by

C (x) = 7084 + 150x − 0.25x2 (0 ≤ x ≤ 644).

What is the actual cost of producing 251 ovens rather than 250
ovens?
Well, C (251)− C (250) = 24.75.
What is the rate of change at x = 250?
Well C ′(250) = 150− 0.5(250) = 25.
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Definition

Another concept of concern to producers is the average cost of
producing a good.

Below, C (x) is a total cost function.

Definition (Average Cost)

The average cost function, denoted C̄ (x) is given by

C̄ (x) =
C (x)

x
.

Definition (Marginal Average Cost)

The marginal average cost function, denoted C̄ ′(x) is given by

C̄ ′(x) =
d

dx

[
C (x)

x

]
.
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Example

The total cost of producing x units of a certain commodity is given
by C (x) = 400 + 20x (in dollars). Find C̄ (x) and C̄ ′(x) then
discuss the economic implications of these results.

Well, C̄ (x) = 400+20x
x = 400

x + 20.

And C̄ ′(x) = −400
x2

.

Notice, the marginal average cost is always negative! So,
producing an extra unit always lowers the average cost, meaning
that C̄ (x) must be a decreasing function. Moreover, notice that
lim
x→∞

C̄ (x) = 20. This makes sense, because the fixed cost of

producing any units ($400) becomes “swallowed up” in the
variable cost of producing large x number of units.
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Example

The daily total cost of producing x DVD players is given by
C (x) = 0.0001x3 − 0.08x2 + 40x + 5000 (in dollars). Find C̄ (x),
C̄ ′(x), and C̄ ′(500). Then discuss the economic implications of
these results, using the graph of C̄ (x) to help interpret results

Well, C̄ (x) = 0.0001x2 − 0.08x + 40 + 5000
x .

And C̄ ′(x) = 0.0002x − 0.08− 5000
x2

.

The graph of C̄ (x) follows with analysis of the results.
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Example

Because C̄ ′(500) = 0, we know that there is a horizontal tangent
line at the point (500, 35) on the graph of C̄ (x).

The graph of C̄ (x)
becomes arbitrarily large as x → 0+ and as x →∞.The average
cost is at a minimum when x = 500, and it is decreasing before
that point and increasing after. This situation is typical when the
marginal cost increases at some point on as production increases.
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Definition

Definition (Marginal Revenue)

If R(x) = xp(x) is a revenue function with price per unit given by
p(x), then the marginal revenue function is given by
R ′(x) = p(x) + xp′(x).

Note: Sometimes, it is easier to calculate R ′ directly by performing
the multiplication xp(x) first and then taking the derivative. It’s
up to you.
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Example

Suppose the relationship between the price p in dollars of a
loudspeaker and the quantity demanded x is given by
p(x) = −0.02x + 400 (0 ≤ x ≤ 20000). Find the revenue function,
the marginal revenue function, compute R ′(2000), and interpret
your results.

R(x) = xp(x) = −0.02x2 + 400x . And R ′(x) = −0.04x + 400.
Thus, R ′(2000) = −0.04(2000) + 400 = 320. Thus, the actual
revenue realized by the sale of the 2001st loudspeaker is
approximately $320.
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Definition

Definition (Marginal Profit)

If P(x) = R(x)− C (x) is a revenue function with R(x) and C (x)
being revenue and cost functions respectively, then the marginal
profit function is given by P ′(x) = R ′(x)− C ′(x).



Example

Using the previous example, say also that the cost of producing x
loudspeakers is given by C (x) = 100x + 200000. Find P, P ′,
compute P ′(2000), and interpret your results.

Well, P(x) = (−0.02x2 + 400x)− (100x + 200000) =
−0.02x2 + 300x − 200000, so P ′(x) = −0.04x + 300, and
P ′(2000) = −0.04(2000) + 300 = 220. Thus, the actual profit
realized from the sale of the 2001st loudspeaker is approximately
$220.



Example

Using the previous example, say also that the cost of producing x
loudspeakers is given by C (x) = 100x + 200000. Find P, P ′,
compute P ′(2000), and interpret your results.

Well, P(x) = (−0.02x2 + 400x)− (100x + 200000) =
−0.02x2 + 300x − 200000,

so P ′(x) = −0.04x + 300, and
P ′(2000) = −0.04(2000) + 300 = 220. Thus, the actual profit
realized from the sale of the 2001st loudspeaker is approximately
$220.



Example

Using the previous example, say also that the cost of producing x
loudspeakers is given by C (x) = 100x + 200000. Find P, P ′,
compute P ′(2000), and interpret your results.

Well, P(x) = (−0.02x2 + 400x)− (100x + 200000) =
−0.02x2 + 300x − 200000, so P ′(x) = −0.04x + 300,

and
P ′(2000) = −0.04(2000) + 300 = 220. Thus, the actual profit
realized from the sale of the 2001st loudspeaker is approximately
$220.



Example

Using the previous example, say also that the cost of producing x
loudspeakers is given by C (x) = 100x + 200000. Find P, P ′,
compute P ′(2000), and interpret your results.

Well, P(x) = (−0.02x2 + 400x)− (100x + 200000) =
−0.02x2 + 300x − 200000, so P ′(x) = −0.04x + 300, and
P ′(2000) = −0.04(2000) + 300 = 220.

Thus, the actual profit
realized from the sale of the 2001st loudspeaker is approximately
$220.



Example

Using the previous example, say also that the cost of producing x
loudspeakers is given by C (x) = 100x + 200000. Find P, P ′,
compute P ′(2000), and interpret your results.

Well, P(x) = (−0.02x2 + 400x)− (100x + 200000) =
−0.02x2 + 300x − 200000, so P ′(x) = −0.04x + 300, and
P ′(2000) = −0.04(2000) + 300 = 220. Thus, the actual profit
realized from the sale of the 2001st loudspeaker is approximately
$220.



Elasticity of Demand

Often, it is useful to think of a change in a relative sense.

Imagine
the cost of a bottle of water increased by $0.25. If the bottle
already cost $1.25, then the change represents a 20% increase.
But if the bottle cost $5, then the change represents only a 5%
increase.

This notion can be generalized to the derivative of a function in the
following way. The relative change of f with respect to x at x is

f ′(x)
f (x) or 100·f ′(x)

f (x) %
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which is the ratio of the relative rate of change of f to the relative
rate of change of p. The negative of this quantity is called the
elasticity of demand by economists.
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Elasticity of Demand

Definition (Elasticity of Demand Function)

If f is a differentiable demand function defined by x = f (p), then

the elasticity of demand at price p is given by E (p) = −pf ′(p)
f (p) .

Definition (Intervals of Elasticity)

E (p) > 1 defines elastic demand.
E (p) = 1 defines unitary demand.
E (p) < 1 defines inelastic demand.
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Elasticity of Demand

What does the elasticity of demand tell us about the relationship
between the relative change in price and the relative change in
demand?

1 > E (p) = −pf ′(p)

f (p)
=⇒ 1

p
> − f ′(p)

f (p)

This means a small (positive) relative change in price results in a
smaller relative (negative) change in quantity demanded for a price
corresponding to an inelastic demand. What are the corresponding
interpretations of unitary and elastic demands?
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between the relative change in price and the relative change in
revenue?

R(p) = px = pf (p) =⇒ R ′(p) = f (p) + pf ′(p)

= f (p)

[
1 +

pf ′(p)

f (p)

]
= f (p)[1− E (p)]

So, for a price at which demand is elastic, R ′(p) would be
negative. Thus, R(p) would be decreasing at that price, and a
small increase in p would result in a decrease in R. How could you
correspondingly interpret unitary and inelastic demands?
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Example

Consider the demand equation p(x) = −0.02x + 400
(0 ≤ x ≤ 20000) which describes the relationship between

the
quantity demanded, x , and the price p.

1 Find the elasticity of demand E (p). Solving for x in the
demand equation gives x = f (p) = −50p + 20000. Thus,
f ′(p) = −50,and E (p) = p

400−p .

2 Compute E (100) and E (300) and interpret your results.
E (100) = 1

3 and E (300) = 3, so demand is elastic at p = 300
and inelastic at p = 100. What does this mean for quantity
demanded at those prices? What does it mean for revenue at
those prices?
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Assignment

Read 3.5-3.7. Do problems 16, 32, 52, 64, 78, 90 in 3.3 and 4, 12,
28, 32, 36 in 3.4.




