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Higher Order Derivatives

A function f (x) has a first-order derivative which we have
discussed at length: f ′(x)

or df
dx or D1

x f (x).

But it also has second-, third-, and nth-order derivatives.

First Order: f ′(x) df
dx D1

x f (x)

Second Order: f ′′(x) d2f
dx2

D2
x f (x)

Third Order: f ′′′(x) d3f
dx3

D3
x f (x)

nth Order: f (n)(x) dnfn
dxn Dn

x f (x)



Higher Order Derivatives

A function f (x) has a first-order derivative which we have
discussed at length: f ′(x) or df

dx

or D1
x f (x).

But it also has second-, third-, and nth-order derivatives.

First Order: f ′(x) df
dx D1

x f (x)

Second Order: f ′′(x) d2f
dx2

D2
x f (x)

Third Order: f ′′′(x) d3f
dx3

D3
x f (x)

nth Order: f (n)(x) dnfn
dxn Dn

x f (x)



Higher Order Derivatives

A function f (x) has a first-order derivative which we have
discussed at length: f ′(x) or df

dx or D1
x f (x).

But it also has second-, third-, and nth-order derivatives.

First Order: f ′(x) df
dx D1

x f (x)

Second Order: f ′′(x) d2f
dx2

D2
x f (x)

Third Order: f ′′′(x) d3f
dx3

D3
x f (x)

nth Order: f (n)(x) dnfn
dxn Dn

x f (x)



Higher Order Derivatives

A function f (x) has a first-order derivative which we have
discussed at length: f ′(x) or df

dx or D1
x f (x).

But it also has second-, third-, and nth-order derivatives.

First Order: f ′(x) df
dx D1

x f (x)

Second Order: f ′′(x) d2f
dx2

D2
x f (x)

Third Order: f ′′′(x) d3f
dx3

D3
x f (x)

nth Order: f (n)(x) dnfn
dxn Dn

x f (x)



Higher Order Derivatives

A function f (x) has a first-order derivative which we have
discussed at length: f ′(x) or df

dx or D1
x f (x).

But it also has second-, third-, and nth-order derivatives.

First Order: f ′(x) df
dx D1

x f (x)

Second Order: f ′′(x) d2f
dx2

D2
x f (x)

Third Order: f ′′′(x) d3f
dx3

D3
x f (x)

nth Order: f (n)(x) dnfn
dxn Dn

x f (x)



Higher Order Derivatives: Example

The higher order derivatives give useful information about the
function they describe.

For instance, if s(t) = 2t2 − 3t + 20 is a
function giving position s with respect to time t, then the
first-derivative gives velocity while the second derivative gives
acceleration. Find the velocity and acceleration at x = 2.

Well, f ′(x) = 4t − 3, and f ′′(x) = 4. So the velocity is f ′(2) = 5,
and the acceleration is f ′′(2) = 4.
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Example: The CPI and Inflation

The Consumer Price Index (CPI) is a measure of prices of good
across the economy. If I (t) is a function giving the CPI at a

certain time t, then how could you describe

I ′(t)
I (t) ?

This is the relative rate of change in the consumer price index, i.e.
it is the inflation rate. Because the CPI is always positive, the
inflation rate takes the same sign as the rate of change of the CPI,
i.e. of I ′(t).

The second derivative I ′′(t) describes the acceleration of the CPI.
You can think of this as the rate of change of inflation. (But is it?)
What would it mean for I ′(t) to be positive with I ′′(t) negative?
This would mean that CPI was increasing at a decreasing rate.
This would be the case if you paid $400 more for goods this year
than you did last yearbut will pay only $300 more for goods next
year than you did this year.
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Implicit Differentiation

Often, a function is not given in its explicit form, i.e. with one
variable isolated on one side of the equation.

Implicit form: yx + x = 1.
Explicit form: y = 1

x − 1.

Sometimes, it is difficult or impossible to write a function in its
explicit form! How can we find the derivative of these sorts of
functions?

Simply use the Chain Rule!
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Implicit Differentiation: Steps

If you wanted to find dy
dx with y3x2 + 6x2 = y + 12, you must

1 Differentiate both sides of the equation with respect to x ,
using the Chain Rule where necessary,

remembering that y is
really y(x), a function and not a variable!

2 Solve for y ′, i.e. for dy
dx .
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Implicit Differentiation: Steps

With dy
dx with y3x2 + 6x2 = y + 12, we have (differentiating both

sides with respect to x)

y3(2x) + 3y2
dy

dx
x2 + 12x =

dy

dx
=⇒

2y3x + 12x =
dy

dx
− 3y2

dy

dx
x2 =⇒

2y3x + 12x =
dy

dx
(1− 3y2x2) =⇒

2y3x + 12x

1− 3y2x2
=

dy

dx

So, at (1,2), the slope of the tangent line is 2·23(1)+12(1)
1−3(2)2(1)2 = −28

11 .

Note: It’s not always necessary to find an explicit expression for dy
dx .
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Marginal Rate of Technical Substitution

The chief economist of a nation estimates the output of the

country as Q(x , y) = 10x
3
4 y

1
4 , where x is the amount of money

spent on labor and y is the amount spent on capital, all measured
in billions of dollars.

What’s the output when y = 81 and
x = 625? Suppose the economist wants the nation’s output to
remain constant at that level. By how much should the amount
spent on capital be changed if the amount spent on labor is to
increased by $1 billion?

Well, Q(625, 81) = 3750. So, we need to solve
Q(626, 81 + δy) = 3750. This yields that δy = −0.38756. But we
can also approximate this change using the derivative.
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Marginal Rate of Technical Substitution

We get the implicit form
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So, at (625,81), we have dy
dx = −0.3888, which approximates the

exact answer.

The negative of this quantity is called the marginal
rate of technical substitution. Generally speaking, it measures the
rate at which a producer is technically capable of reducing one
input (capital) in favor of another (labor) while maintaining the
same output.
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Related Rates

The framework of a related rates problem follows this description:

Suppose we know that x and y are two quantities depending on t
and that there is some expression relating x to y . Can we then find
a relationship between dy

dt and dx
dt . We do so using these steps:

1 Assign a variable to each quantity and draw a diagram if
needed.

2 Write the given values of the variables and their rates of of
change with respect to t.

3 Find an equation relating x and y .

4 Differentiate the equation with respect to t.

5 Replace the variables and their derivatives by the numerical
data from Step 2 and solve the resulting equation for the
required rate of change.
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Related Rates

A supplier is willing to make a x thousand solid-state drives for $p
given the demand equation x2 − 3xp + p2 = 5. How fast is the
supply of drives changing when the price per drive is $11, the
quantity supplied is 4000 drives, and the price of the drives is
increasing at the rate of $0.10 per drive each week?

Steps 1-3 have been taken care of for us. So,

x2 − 3xp + p2 = 5 =⇒ 2xx ′(t)− 3xp′(t)− 3px ′(t) + 2pp′(t) = 0

Thus, plugging in, we get
2(4)x ′(t)− 3(4)(0.1)− 3(11)x ′(t) + 2(11)(0.1) = 0. Solving for
x ′(t), we get x ′(t) = 0.04, meaning that the supply is increasing at
the rate of 40 drives per week.
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The Differential

We have actually been using the (unit) differential (where dx = 1)
without naming it. We’ve been using it to estimate things like
marginal cost, etc. We will now formalize it.

First, though, note that the increment between two points is
simply the change between them. So if we have two x values
x1 = 2.01 and x2 = 2.02, then the increment (∆x) is just
2.02− 2.01 = 0.01 = ∆x .

The corresponding y increment (∆y) if y = f (x) is given by
f (x1 + ∆x)− f (x1) = ∆y .
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Increments: Graph
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Here, ∆x is given in red and ∆y is given in black.



Definition: The Differential

In this definition, we assume that f is differentiable at x .

Definition (Differential of f at x)

The differential dx of the independent variable x is given by
dx = ∆x .
The differential dy of the dependent variable y is given by
dy = f ′(x)∆x = f ′(x)dx .
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Here, dx = ∆x is given in red and dy = f ′(x)dx is given in black.



Example

Suppose the side of a cube is measured with maximum percentage
error of 2%. Use differentials to estimate the maximum
percentage error in the calculated volume of the cube.

Well, the volume of a cube is given by s3 = V , where s is the
length of a side and V is the volume. Thus, 3s2ds = dV , so

3s2ds

s3
=

dV

V
.

Now, the right-hand side of this equation is the percentage
differential of the volume. And on the left-hand side, we have
3s2ds
s3

= 3ds
s , which is three times the percentage differential of the

length of one side. Thus,∣∣∣∣dVV
∣∣∣∣ =

∣∣∣∣3 · dss
∣∣∣∣ ≤ 3(0.02) = 0.06.
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Example

Approximate 3
√

28.5 using differentials.

Consider the function f (x) = 3
√
x . Then the differential dy is just

dy = f ′(x)dx =
1

3x
2
3

dx .

And since 3
√

28.5− 3
√

27 = ∆y ≈ dy , we have 3
√

28.5 ≈ 3
√

27 + dy ,
where dy is evaluated at 27 with dx = 1.5. We get

dy =
1

3 · 27
2
3

(1.5) =
1

27
(1.5) ≈ 0.056.

So 3
√

28.5 ≈ 3
√

27 + 0.056 ≈ 3.056. The actual value is 3.0546.



Example

Approximate 3
√

28.5 using differentials.

Consider the function f (x) = 3
√
x . Then the differential dy is just

dy = f ′(x)dx =
1

3x
2
3

dx .

And since 3
√

28.5− 3
√

27 = ∆y ≈ dy , we have 3
√

28.5 ≈ 3
√

27 + dy ,
where dy is evaluated at 27 with dx = 1.5. We get

dy =
1

3 · 27
2
3

(1.5) =
1

27
(1.5) ≈ 0.056.

So 3
√

28.5 ≈ 3
√

27 + 0.056 ≈ 3.056. The actual value is 3.0546.



Example

Approximate 3
√

28.5 using differentials.

Consider the function f (x) = 3
√
x . Then the differential dy is just

dy = f ′(x)dx =
1

3x
2
3

dx .

And since 3
√

28.5− 3
√

27 = ∆y ≈ dy , we have 3
√

28.5 ≈ 3
√

27 + dy ,
where dy is evaluated at 27 with dx = 1.5. We get

dy =
1

3 · 27
2
3

(1.5) =
1

27
(1.5) ≈ 0.056.

So 3
√

28.5 ≈ 3
√

27 + 0.056 ≈ 3.056. The actual value is 3.0546.



Example

Approximate 3
√

28.5 using differentials.

Consider the function f (x) = 3
√
x . Then the differential dy is just

dy = f ′(x)dx =
1

3x
2
3

dx .

And since 3
√

28.5− 3
√

27 = ∆y ≈ dy ,

we have 3
√

28.5 ≈ 3
√

27 + dy ,
where dy is evaluated at 27 with dx = 1.5. We get

dy =
1

3 · 27
2
3

(1.5) =
1

27
(1.5) ≈ 0.056.

So 3
√

28.5 ≈ 3
√

27 + 0.056 ≈ 3.056. The actual value is 3.0546.



Example

Approximate 3
√

28.5 using differentials.

Consider the function f (x) = 3
√
x . Then the differential dy is just

dy = f ′(x)dx =
1

3x
2
3

dx .

And since 3
√

28.5− 3
√

27 = ∆y ≈ dy , we have 3
√

28.5 ≈ 3
√

27 + dy ,
where dy is evaluated at 27 with dx = 1.5. We get

dy =
1

3 · 27
2
3

(1.5) =
1

27
(1.5) ≈ 0.056.

So 3
√

28.5 ≈ 3
√

27 + 0.056 ≈ 3.056. The actual value is 3.0546.



Example

Approximate 3
√

28.5 using differentials.

Consider the function f (x) = 3
√
x . Then the differential dy is just

dy = f ′(x)dx =
1

3x
2
3

dx .

And since 3
√

28.5− 3
√

27 = ∆y ≈ dy , we have 3
√

28.5 ≈ 3
√

27 + dy ,
where dy is evaluated at 27 with dx = 1.5. We get

dy =
1

3 · 27
2
3

(1.5) =
1

27
(1.5) ≈ 0.056.

So 3
√

28.5 ≈ 3
√

27 + 0.056 ≈ 3.056. The actual value is 3.0546.



Example

Approximate 3
√

28.5 using differentials.

Consider the function f (x) = 3
√
x . Then the differential dy is just

dy = f ′(x)dx =
1

3x
2
3

dx .

And since 3
√

28.5− 3
√

27 = ∆y ≈ dy , we have 3
√

28.5 ≈ 3
√

27 + dy ,
where dy is evaluated at 27 with dx = 1.5. We get

dy =
1

3 · 27
2
3

(1.5) =
1

27
(1.5) ≈ 0.056.

So 3
√

28.5 ≈ 3
√

27 + 0.056 ≈ 3.056.

The actual value is 3.0546.



Example

Approximate 3
√

28.5 using differentials.

Consider the function f (x) = 3
√
x . Then the differential dy is just

dy = f ′(x)dx =
1

3x
2
3

dx .

And since 3
√

28.5− 3
√

27 = ∆y ≈ dy , we have 3
√

28.5 ≈ 3
√

27 + dy ,
where dy is evaluated at 27 with dx = 1.5. We get

dy =
1

3 · 27
2
3

(1.5) =
1

27
(1.5) ≈ 0.056.

So 3
√

28.5 ≈ 3
√

27 + 0.056 ≈ 3.056. The actual value is 3.0546.



Assignment

Read 4.1. Do problems 18, 26, 30, 42 in 3.5; 6, 26, 32, 52 in 3.6;
and 6, 18, 24, 40 in 3.7.




