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Applications of the Second Derivative

What does the second derivative tell us?

It tells us the rate of change of the rate of change. In particular,
it tells us the way in which the slopes of the tangent lines are
changing.

So, if the second derivative is positive, the slopes of the tangent
lines are increasing. And if its negative, the slopes of the tangent
lines are decreasing.
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Definition: Concavity

This phenomenon of an increasing/decreasing first derivative can
be captured in the notion of concavity. The geometric notion has
to do with shapes.

Definition

A figure (i.e. a shape) is convex if, given any two points x and y
inside the figure, the line L connecting the figure
(L =tx+ (1 —t)y) lies entirely in the figure.
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Definition: Concavity

The graph of a function can form one side of a convex shape. If
this shape occurs below the graph of the function on an interval,
we call the function concave down on that interval. If this shape
occurs above the graph of the function on an interval, we call the
function concave up on that interval. These notions relate to the
second derivative in the following way.

Definition (Concave Up and Down)

A differentiable function f is concave up on an interval (a, b) if f/
is increasing on that interval.
And it is concave down if f’ is decreasing on that interval.
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Theorem: Concavity and the Second Derivative

The above definition is equivalent to the following theorem,
considering f has a second derivative.

If f"(x) > 0 for every x in (a, b), then the graph of f is
concave up on (a, b).

If f”(x) < 0 for every x in (a, b), then the graph of f is
concave down on (a, b).




Finding Intervals of Concavity

Using the previous theorem, we can find the intervals on which a
function is concave up/down by following these steps.



Finding Intervals of Concavity

Using the previous theorem, we can find the intervals on which a
function is concave up/down by following these steps.

Find all points where f” = 0 or is undefined, and break the
number line over these points.



Finding Intervals of Concavity

Using the previous theorem, we can find the intervals on which a
function is concave up/down by following these steps.

Find all points where f” = 0 or is undefined, and break the
number line over these points.

Test the intervals. If f” is positive in an interval, then f is
concave up on the corresponding interval. If it's negative,
then f is concave down on the corresponding interval.

If f is concave up on (a, b) and on (b, c), then it is concave
up on (a,c).
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concave up/down.
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concave up/down.

Well, f'(x) = —4x3 — 6x% + 24x + 1, and
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Thus 0 = f’(x) = —12(x®> — x +2) = —12(x — 1)(x + 2).



Example

Find the intervals on which f(x) = —x* —2x3 + 12x2 + x — 1 is
concave up/down.

Well, f'(x) = —4x3 — 6x% + 24x + 1, and
f'(x) = —12x% — 12x + 24.

Thus 0 = f’(x) = —12(x®> — x +2) = —12(x — 1)(x + 2). Thus,
f”(x) = 0 when x = =2, 1.

Interval ‘ Test ‘ Concavity
(—o00,=2) | "(-3) <0 down
(—-2,1) f’(0) >0 up

(1,00) f"(3) <0 down
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Example

Find the intervals on which f(x) = x + L is concave up/down?

Well, f'(x) =1— % so f(x) = % Therefore, we break the
number line into (—o0,0) and (0, o).



Example

Find the intervals on which f(x) = x + L is concave up/down?

Well, f'(x) =1— % so f(x) = % Therefore, we break the
number line into (—o0,0) and (0, 00). Testing, we get
f"(-=1) <0, and (1) > 0.



Example

Find the intervals on which f(x) = x + L is concave up/down?

Well, f'(x) =1— % so f(x) = % Therefore, we break the
number line into (—o0,0) and (0, 00). Testing, we get

f"(—=1) <0, and f”(1) > 0. Therefore, f(x) is concave down on
(—00,0) and concave up on (0, 00).
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Inflection Points

A function f has an inflection point at x if the tangent line exists
at x and the concavity changes at x.




Inflection Points

Definition
A function f has an inflection point at x if the tangent line exists
at x and the concavity changes at x.

Note: It's important that the tangent line exists!
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This function has no inflection points.



Inflection Points: Graph

This function has no inflection points. Although the concavity
changes as you pass over x = 0, the tangent line does not exist at
x =0.
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How to Find Inflection Points

You can use the following steps to identify points inflection points.
Find f”(x).

Determine all values ¢ in the domain of f where f”(c) =0 (or
where it does not exist).

Determine the sign of f” immediately to the left and right of
each number ¢ found in the previous step. If there is a change
in sign of f” as we move across x = ¢ and if the tangent line
at x = c exists, then (c, f(c)) is an inflection point of f.
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Well, f/(x) = % + &, so

4__
Fr(x) = x — 18 = x516
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x3

Find the inflection points of f(x) = % —
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Well, f/(x) = % + % so

f(x) =x— —g = _ (x2+4))(gx2_4) _ (X2+4)(>;2)(X+2).

So, the numbers we need to break the real line over are
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So, the numbers we need to break the real line over are
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f"(—3) < 0, £/(=1) > 0, f"(1) <0, and ”(3) > 0.

Therefore, (-2, %) and (2, —%) are inflection points.



Example

x3

Find the inflection points of f(x) = % —

X |

Well, f/(x) = % + % so

x?2 x2— x2 x—2)(x
PI() = x— 16 = ot _ (258028) _ (e 2(ctn)

So, the numbers we need to break the real line over are
x=-2,0,2.

f"(=3) <0, f(-1) >0, f"(1) < 0, and f"(3) > 0.
Therefore, (-2, 3) and (2, %) are inflection points. But x =0

does not correspond to an inflection point because f has no
tangent line at 0!
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Concept Questions

Determine if the following statements are true or false.
If a function f has an inflection point at x = ¢, then f cannot
have a relative maximum at f(c). True!
A polynomial of degree 3 has exactly one inflection point.
True! Why?



Graph Sketching

Sketch the graph of a function f where

f(-1)=-4 f(1)=-2,f(3) = 1.

f'(x) >0on (—1,3) and f'(x) < 0 on (—o0,—1) U (3,00).
f'(-1)=f"(1)=f'(3)=0.

f"(x) > 0 on (—o0,1) and f’(x) < 0 on (1,00).
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Example

An economy'’s consumer price index (CPI) is described by the
function f(t) = —0.2¢3 + 3t% + 100 with (0 < t < 10), where
t = 0 corresponds to 2003. Find the point of inflection of the
function f, and discuss its significance.
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function f(t) = —0.2¢3 + 3t% + 100 with (0 < t < 10), where
t = 0 corresponds to 2003. Find the point of inflection of the
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f"(t) = 0 when t = 5. And because f”(t) > 0 on (—00,5) and
f"(t) < 0 on (5,00), we have that (5,150) is an inflection point.

Therefore, the rate of inflation (i.e. the rate of change of the rate
of change of the CPI) is increasing between 2003 and 2008



Example

An economy'’s consumer price index (CPI) is described by the
function f(t) = —0.2¢3 + 3t% + 100 with (0 < t < 10), where
t = 0 corresponds to 2003. Find the point of inflection of the
function f, and discuss its significance.

Well, f'(t) = —0.6t> + 6x and f"(t) = —1.2t + 6. Then,
f"(t) = 0 when t = 5. And because f”(t) > 0 on (—00,5) and
f"(t) < 0 on (5,00), we have that (5,150) is an inflection point.

Therefore, the rate of inflation (i.e. the rate of change of the rate
of change of the CPI) is increasing between 2003 and 2008 and
decreasing between 2008 and 2013.
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The Second Derivative Test

When a function f has a critical number at x = ¢ (i.e. f’(c) =0),
we may use the second derivative to determine if f has a local
extrema at x = ¢. The second derivative also tells us the type of
extrema (min/max) occuring at x = c.
Compute f’(x) and f”(x).
Find all the critical numbers of f at which '(x) = 0.
Compute f(c):
A If f(c) > 0, then f has a relative minimum at x = c.
B If f’(c) <0, then f has a relative maximum at x = c.



The Second Derivative Test

When a function f has a critical number at x = ¢ (i.e. f’(c) =0),
we may use the second derivative to determine if f has a local
extrema at x = ¢. The second derivative also tells us the type of
extrema (min/max) occuring at x = c.

Compute f’(x) and f”(x).

Find all the critical numbers of f at which '(x) = 0.

Compute f(c):

A If f(c) > 0, then f has a relative minimum at x = c.

B If f’(c) <0, then f has a relative maximum at x = c.
C If f”(c) = 0 or does not exist, then the test fails.
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Well, f/(x) = 3x> — 6x — 24 and f”(x) = 6x — 6. So, we have that
f'(x) = 0 when

0=3x2—6x—24 = 0=x>—-2x—8=(x—4)(x +2).

Therefore, the critical numbers are x = —2,4. A local maximum
occurs at x = —2 because f”’(-2) <0



Example

Find the relative extrema of f(x) = x3 — 3x? — 24x + 32.

Well, f/(x) = 3x> — 6x — 24 and f”(x) = 6x — 6. So, we have that
f'(x) = 0 when

0=3x2—6x—24 = 0=x>—-2x—8=(x—4)(x +2).

Therefore, the critical numbers are x = —2,4. A local maximum
occurs at x = —2 because f”(—2) < 0 and a local minimum
occurs at x = 4 because f”(4) > 0



Assignment

Read 4.3-4.4. Do problems 6, 8, 12, 16, 26, 40, 60, 72, 80, 92, 108
in 4.2.





