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Curve Sketching: Steps

At this point, we have all the tools necessary to get a good
understanding of how a curve looks if we are given its equation.

By
following the steps below, we can accurately draw many curves.

1 Determine the domain of f and find x and y intercepts of f
(if possible).

2 Determine asymptotic behavior of f and find any vertical
asymptotes.

3 Determine intervals on which f increases/decreases.

4 Find relative extrema.

5 Find intervals of concavity and inflection points.

6 Plot a few additional points.
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Asymptotes

We’ve already discussed the concepts of “infinite limits” and
“limits at infinity” in Section 2.4.

These concepts correspond to
horizontal and vertical asymptotes.

Definition (Vertical Asymptote)

The line x = a is a vertival asymptote of the graph of f if

lim
x→a+

f (x) = ±∞

or if
lim

x→a−
f (x) = ±∞.
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Asymptotes

We’ve already discussed the concepts of “infinite limits” and
“limits at infinity” in Section 2.4. These concepts correspond to
horizontal and vertical asymptotes.

Definition (Horizontal Asymptote)

The line y = a is a horizontal asymptote of the graph of f if

lim
x→∞

f (x) = a

or if
lim

x→−∞
f (x) = a.



Vertical Asymptotes of Rational Functions

Theorem

If f (x) =
P(x)

Q(x)
where P and Q are polynomial functions, then the

line x = a is a vertical asymptote of the graph of f if Q(a) = 0 but
P(a) 6= 0.

Example (Is x = 1 a vertical asymptote of f (x) = x2−1
x−1 ?)

No! It’s not! The Q part is 0, but so it the top. There is just a
hole in the graph of the function.

Example (Is x = −1 a vertical asymptote of f (x) = 1
x+1?)

Yes! The Q part is 0 while the P part is 1 6= 0.
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Example

Graph the function f (x) = x3 − 10x2 − 7x − 4.

1 Because f is a polynomial function, its domain is (−∞,∞).
Setting x = 0 gives the y -intercept as (0,−4). The
x-intercept is found by setting y = 0, i.e. f (x) = 0. This
gives a cubic function, whose roots are hard to find. We skip
this step (for now).

2 Polynomials have no horizontal/vertical asymptotes.

3 f ′(x) = 3x2 − 20x − 7 = (3x + 1)(x − 7). Testing, we get f
increasing on (−∞,−1

3) ∪ (7,∞) and decreasing on (−1
3 , 7).
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Example

Graph the function f (x) = x3 − 10x2 − 7x − 4.

4 From the testing above, we see that (−1
3 ,−

26
9 ) is a relative

maximum and (7,−200) is a relative minimum.

5 Now, f ′′(x) = 6x − 20, so (103 ,−101.407) is a point of
inflection because f is concave down on (−∞, 103 ) and
concave up on (103 ,∞).

6 The points (1,−20) and (−1,−8) are also on the graph.
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Example

Graph the function f (x) =
x2 − 4

1− x2
.

1 The domain of this function is (−∞,−1) ∪ (−1, 1) ∪ (1,∞).

Setting x = 0 gives the y-intercept as (0,−4). Setting
y = f (x) = 0 gives the x-intercepts as (±2, 0).

2 The horizontal asymptote is y = −1 and the vertical
asymptotes are x = ±1.

3 f ′(x) =
(1− x2)(2x)− (x2 − 4)(−2x)

(1− x2)2
=

−6x

(1− x2)2
, so f is

increasing on (−∞,−1) ∪ (−1, 0) and decreasing on
(0, 1) ∪ (1,∞). So, (0,−4) is a relative maximum.
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Graph the function f (x) =
x2 − 4

1− x2
, recall f ′(x) =

−6x

(1− x2)2
.

4 So, testing the above, we see that (0,−4) is a relative
maximum.

5 f ′′(x) = (−6)
(1− x2)2 − (x)(2)(−2x)(1− x2)

(1− x2)4
=

− 6

[
1− 2x2 + x4 + 4x2 − 4x4

(1− x2)4

]
= − 6

[
−3x4 + 2x + 1

(1− x2)4

]
=

−6(3x2 + 1)(1− x2)

(1− x2)4
=
−6(3x2 + 1)

(1− x2)3
. So, there are no

inflection points. The graph is concave up on
(−∞,−1) ∪ (1,∞) and concave down on (−1, 1).

6 The points (3,−5
8) and (−3,−5

8) are also on the graph.
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Absolute Extrema

Relative extrema were the largest or smallest values a function
took in some open interval.

We can extend this notion globally.

Definition (Absolute Extrema)

If f (x) ≤ f (c) for all x in the domain of f , then f (c) is called the
absolute maximum value of f .
If f (x) ≥ f (c) for all x in the domain of f , then f (c) is called the
absolute minimum value of f .

Theorem (Extreme Value Theorem)

If a function f is continuous on a closed interval [a, b], then f has
both an absolute maximum and an absolute minimum value on
[a, b].
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How to Find Absolute Extrema on a Closed Interval

To find the absolute extrema of a function f on a closed interval
[a, b], you may follow these steps.

1 Find all critical numbers of f in (a, b).

2 Find the value of f at each critical point. Also find f (a) and
f (b)

3 The absolute minimum and maximum values will correspond
respectively to the smallest and largest values of f found in
the previous step.

Why does this make sense?
Well, an extreme value must either occur at a local extrema or an
endpoint, quite obviously.
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Example

Find the absolute extrema of f (x) = x
1
5 on [−1, 1].

Well, f ′(x) =
1

5x
4
5

. So, f ′(x) 6= 0 for any x , but it is undefined at

x = 0. So x = 0 is our only critical number. f (0) = 0, f (1) = 1
and f (−1) = −1. So, our absolute maximum value is f (1) = 1 and
our absolute minimum value is f (−1) = −1.
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Find the absolute extrema of f (x) = x3 − 2x2 − 4x + 4 on [0, 3].

Well, f ′(x) = 3x2 − 4x − 4 = (3x + 2)(x − 2). So, f ′(x) = 0 for
x = −2

3 , 2. And f (0) = 4, f (2) = −4 and f (3) = 1. So, our
absolute maximum value is f (0) = 4 and our absolute minimum
value is f (2) = −4.
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Assignment

Read 4.5. Do problems 16, 26, 30, 56, 68 in 4.3 and 8, 21, 37, 48,
82 in 4.4.




