QMI Lesson 12: Curve Sketching and the Extreme Value Theorem

C C Moxley

Samford University Brock School of Business

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

At this point, we have all the tools necessary to get a good understanding of how a curve looks if we are given its equation.

 Determine the domain of f and find x and y intercepts of f (if possible).

 Determine the domain of f and find x and y intercepts of f (if possible).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2 Determine asymptotic behavior of *f* and find any vertical asymptotes.

 Determine the domain of f and find x and y intercepts of f (if possible).

- 2 Determine asymptotic behavior of *f* and find any vertical asymptotes.
- **3** Determine intervals on which *f* increases/decreases.

 Determine the domain of f and find x and y intercepts of f (if possible).

- 2 Determine asymptotic behavior of *f* and find any vertical asymptotes.
- **3** Determine intervals on which f increases/decreases.
- 4 Find relative extrema.

 Determine the domain of f and find x and y intercepts of f (if possible).

- 2 Determine asymptotic behavior of *f* and find any vertical asymptotes.
- 3 Determine intervals on which *f* increases/decreases.
- 4 Find relative extrema.
- **5** Find intervals of concavity and inflection points.

 Determine the domain of f and find x and y intercepts of f (if possible).

- 2 Determine asymptotic behavior of *f* and find any vertical asymptotes.
- 3 Determine intervals on which *f* increases/decreases.
- 4 Find relative extrema.
- **5** Find intervals of concavity and inflection points.
- 6 Plot a few additional points.

We've already discussed the concepts of "infinite limits" and "limits at infinity" in Section 2.4.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We've already discussed the concepts of "infinite limits" and "limits at infinity" in Section 2.4. These concepts correspond to horizontal and vertical asymptotes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We've already discussed the concepts of "infinite limits" and "limits at infinity" in Section 2.4. These concepts correspond to horizontal and vertical asymptotes.

Definition (Vertical Asymptote)

The line x = a is a vertival asymptote of the graph of f if

$$\lim_{x\to a^+} f(x) = \pm \infty$$

or if

$$\lim_{x\to a^-}f(x)=\pm\infty.$$

We've already discussed the concepts of "infinite limits" and "limits at infinity" in Section 2.4. These concepts correspond to horizontal and vertical asymptotes.

Definition (Horizontal Asymptote)

The line y = a is a horizontal asymptote of the graph of f if

$$\lim_{x\to\infty}f(x)=a$$

or if

$$\lim_{x\to-\infty}f(x)=a.$$

Theorem

If $f(x) = \frac{P(x)}{Q(x)}$ where P and Q are polynomial functions, then the line x = a is a vertical asymptote of the graph of f if Q(a) = 0 but $P(a) \neq 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example (Is x = 1 a vertical asymptote of $f(x) = \frac{x^2-1}{x-1}$?)

Theorem

If $f(x) = \frac{P(x)}{Q(x)}$ where P and Q are polynomial functions, then the line x = a is a vertical asymptote of the graph of f if Q(a) = 0 but $P(a) \neq 0$.

Example (Is
$$x = 1$$
 a vertical asymptote of $f(x) = \frac{x^2 - 1}{x - 1}$?)

No! It's not! The Q part is 0, but so it the top.

Theorem

If $f(x) = \frac{P(x)}{Q(x)}$ where P and Q are polynomial functions, then the line x = a is a vertical asymptote of the graph of f if Q(a) = 0 but $P(a) \neq 0$.

Example (Is x = 1 a vertical asymptote of $f(x) = \frac{x^2-1}{x-1}$?)

No! It's not! The Q part is 0, but so it the top. There is just a hole in the graph of the function.

Example (Is x = -1 a vertical asymptote of $f(x) = \frac{1}{x+1}$?)

Theorem

If $f(x) = \frac{P(x)}{Q(x)}$ where P and Q are polynomial functions, then the line x = a is a vertical asymptote of the graph of f if Q(a) = 0 but $P(a) \neq 0$.

Example (Is x = 1 a vertical asymptote of $f(x) = \frac{x^2 - 1}{x - 1}$?)

No! It's not! The Q part is 0, but so it the top. There is just a hole in the graph of the function.

Example (Is x = -1 a vertical asymptote of $f(x) = \frac{1}{x+1}$?)

Yes! The Q part is 0 while the P part is $1 \neq 0$.

1 Because f is a polynomial function, its domain is $(-\infty, \infty)$.

Graph the function $f(x) = x^3 - 10x^2 - 7x - 4$.

■ Because f is a polynomial function, its domain is (-∞,∞). Setting x = 0 gives the y-intercept as (0, -4). The x-intercept is found by setting y = 0, i.e. f(x) = 0. This gives a cubic function, whose roots are hard to find. We skip this step (for now).

Graph the function $f(x) = x^3 - 10x^2 - 7x - 4$.

■ Because f is a polynomial function, its domain is (-∞,∞). Setting x = 0 gives the y-intercept as (0, -4). The x-intercept is found by setting y = 0, i.e. f(x) = 0. This gives a cubic function, whose roots are hard to find. We skip this step (for now).

2 Polynomials have no horizontal/vertical asymptotes.

Graph the function $f(x) = x^3 - 10x^2 - 7x - 4$.

■ Because f is a polynomial function, its domain is (-∞,∞). Setting x = 0 gives the y-intercept as (0, -4). The x-intercept is found by setting y = 0, i.e. f(x) = 0. This gives a cubic function, whose roots are hard to find. We skip this step (for now).

2 Polynomials have no horizontal/vertical asymptotes.

3
$$f'(x) = 3x^2 - 20x - 7 =$$

Graph the function $f(x) = x^3 - 10x^2 - 7x - 4$.

■ Because f is a polynomial function, its domain is (-∞,∞). Setting x = 0 gives the y-intercept as (0, -4). The x-intercept is found by setting y = 0, i.e. f(x) = 0. This gives a cubic function, whose roots are hard to find. We skip this step (for now).

2 Polynomials have no horizontal/vertical asymptotes.

3
$$f'(x) = 3x^2 - 20x - 7 = (3x + 1)(x - 7).$$

Graph the function $f(x) = x^3 - 10x^2 - 7x - 4$.

- Because f is a polynomial function, its domain is (-∞,∞). Setting x = 0 gives the y-intercept as (0, -4). The x-intercept is found by setting y = 0, i.e. f(x) = 0. This gives a cubic function, whose roots are hard to find. We skip this step (for now).
- 2 Polynomials have no horizontal/vertical asymptotes.
- 3 $f'(x) = 3x^2 20x 7 = (3x + 1)(x 7)$. Testing, we get f increasing on $(-\infty, -\frac{1}{3}) \cup (7, \infty)$ and

(日) (同) (三) (三) (三) (○) (○)

Graph the function $f(x) = x^3 - 10x^2 - 7x - 4$.

- Because f is a polynomial function, its domain is (-∞,∞). Setting x = 0 gives the y-intercept as (0, -4). The x-intercept is found by setting y = 0, i.e. f(x) = 0. This gives a cubic function, whose roots are hard to find. We skip this step (for now).
- 2 Polynomials have no horizontal/vertical asymptotes.
- 3 $f'(x) = 3x^2 20x 7 = (3x + 1)(x 7)$. Testing, we get f increasing on $(-\infty, -\frac{1}{3}) \cup (7, \infty)$ and decreasing on $(-\frac{1}{3}, 7)$.

(日) (同) (三) (三) (三) (○) (○)

4 From the testing above, we see that $\left(-\frac{1}{3}, -\frac{26}{9}\right)$ is a relative maximum

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

4 From the testing above, we see that $\left(-\frac{1}{3}, -\frac{26}{9}\right)$ is a relative maximum and (7, -200) is a relative minimum.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

4 From the testing above, we see that $\left(-\frac{1}{3}, -\frac{26}{9}\right)$ is a relative maximum and (7, -200) is a relative minimum.

(日) (同) (三) (三) (三) (○) (○)

5 Now, f''(x) = 6x - 20, so $(\frac{10}{3}, -101.407)$ is a point of inflection because f is concave down on $(-\infty, \frac{10}{3})$

- 4 From the testing above, we see that $\left(-\frac{1}{3}, -\frac{26}{9}\right)$ is a relative maximum and (7, -200) is a relative minimum.
- 5 Now, f''(x) = 6x 20, so $(\frac{10}{3}, -101.407)$ is a point of inflection because f is concave down on $(-\infty, \frac{10}{3})$ and concave up on $(\frac{10}{3}, \infty)$.
- **6** The points (1, -20) and (-1, -8) are also on the graph.

(日) (同) (三) (三) (三) (○) (○)

Graph

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Graph

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Graph

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Graph the function $f(x) = \frac{x^2 - 4}{1 - x^2}$. The domain of this function is $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Graph the function $f(x) = \frac{x^2 - 4}{1 - x^2}$.

 The domain of this function is (-∞, -1) ∪ (-1, 1) ∪ (1,∞). Setting x = 0 gives the y-intercept as (0, -4).

Graph the function $f(x) = \frac{x^2 - 4}{1 - x^2}$.

1 The domain of this function is $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$. Setting x = 0 gives the y-intercept as (0, -4). Setting y = f(x) = 0 gives the x-intercepts as $(\pm 2, 0)$.
Graph the function $f(x) = \frac{x^2 - 4}{1 - x^2}$.

1 The domain of this function is $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$. Setting x = 0 gives the y-intercept as (0, -4). Setting y = f(x) = 0 gives the x-intercepts as $(\pm 2, 0)$.

2 The horizontal asymptote is y = -1

Graph the function $f(x) = \frac{x^2 - 4}{1 - x^2}$.

1 The domain of this function is $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$. Setting x = 0 gives the y-intercept as (0, -4). Setting y = f(x) = 0 gives the x-intercepts as $(\pm 2, 0)$.

2 The horizontal asymptote is y = -1 and the vertical asymptotes are $x = \pm 1$.

3
$$f'(x) = \frac{(1-x^2)(2x) - (x^2 - 4)(-2x)}{(1-x^2)^2} =$$

Graph the function $f(x) = \frac{x^2 - 4}{1 - x^2}$.

1 The domain of this function is $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$. Setting x = 0 gives the y-intercept as (0, -4). Setting y = f(x) = 0 gives the x-intercepts as $(\pm 2, 0)$.

2 The horizontal asymptote is y = -1 and the vertical asymptotes are $x = \pm 1$.

3
$$f'(x) = \frac{(1-x^2)(2x) - (x^2 - 4)(-2x)}{(1-x^2)^2} = \frac{-6x}{(1-x^2)^2}$$

Graph the function $f(x) = \frac{x^2 - 4}{1 - x^2}$.

- 1 The domain of this function is $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$. Setting x = 0 gives the y-intercept as (0, -4). Setting y = f(x) = 0 gives the x-intercepts as $(\pm 2, 0)$.
- 2 The horizontal asymptote is y = -1 and the vertical asymptotes are $x = \pm 1$.

3
$$f'(x) = \frac{(1-x^2)(2x) - (x^2 - 4)(-2x)}{(1-x^2)^2} = \frac{-6x}{(1-x^2)^2}$$
, so f is increasing on $(-\infty, -1) \cup (-1, 0)$

Graph the function $f(x) = \frac{x^2 - 4}{1 - x^2}$.

- 1 The domain of this function is $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$. Setting x = 0 gives the y-intercept as (0, -4). Setting y = f(x) = 0 gives the x-intercepts as $(\pm 2, 0)$.
- 2 The horizontal asymptote is y = -1 and the vertical asymptotes are $x = \pm 1$.

3
$$f'(x) = \frac{(1-x^2)(2x) - (x^2 - 4)(-2x)}{(1-x^2)^2} = \frac{-6x}{(1-x^2)^2}$$
, so f is increasing on $(-\infty, -1) \cup (-1, 0)$ and decreasing on $(0, 1) \cup (1, \infty)$. So, $(0, -4)$ is a relative maximum.

Graph the function
$$f(x) = \frac{x^2 - 4}{1 - x^2}$$
, recall $f'(x) = \frac{-6x}{(1 - x^2)^2}$.

<□ > < @ > < E > < E > E のQ @

Graph the function
$$f(x) = \frac{x^2 - 4}{1 - x^2}$$
, recall $f'(x) = \frac{-6x}{(1 - x^2)^2}$.

4 So, testing the above, we see that (0, -4) is a relative maximum.

Graph the function
$$f(x) = \frac{x^2 - 4}{1 - x^2}$$
, recall $f'(x) = \frac{-6x}{(1 - x^2)^2}$.

4 So, testing the above, we see that (0, -4) is a relative maximum.

5
$$f''(x) = (-6) \frac{(1-x^2)^2 - (x)(2)(-2x)(1-x^2)}{(1-x^2)^4} =$$

Graph the function
$$f(x) = \frac{x^2 - 4}{1 - x^2}$$
, recall $f'(x) = \frac{-6x}{(1 - x^2)^2}$.
4 So, testing the above, we see that $(0, -4)$ is a relative maximum.

5
$$f''(x) = (-6) \frac{(1-x^2)^2 - (x)(2)(-2x)(1-x^2)}{(1-x^2)^4} = -6 \left[\frac{1-2x^2+x^4+4x^2-4x^4}{(1-x^2)^4} \right] =$$

Graph the function
$$f(x) = \frac{x^2 - 4}{1 - x^2}$$
, recall $f'(x) = \frac{-6x}{(1 - x^2)^2}$.
4 So, testing the above, we see that $(0, -4)$ is a relative maximum.
5 $f''(x) = (-6)\frac{(1 - x^2)^2 - (x)(2)(-2x)(1 - x^2)}{(1 - x^2)^4} = -6\left[\frac{1 - 2x^2 + x^4 + 4x^2 - 4x^4}{(1 - x^2)^4}\right] = -6\left[\frac{-3x^4 + 2x + 1}{(1 - x^2)^4}\right]$

Graph the function
$$f(x) = \frac{x^2 - 4}{1 - x^2}$$
, recall $f'(x) = \frac{-6x}{(1 - x^2)^2}$.
4 So, testing the above, we see that $(0, -4)$ is a relative maximum.
5 $f''(x) = (-6)\frac{(1 - x^2)^2 - (x)(2)(-2x)(1 - x^2)}{(1 - x^2)^4} = -6\left[\frac{1 - 2x^2 + x^4 + 4x^2 - 4x^4}{(1 - x^2)^4}\right] = -6\left[\frac{-3x^4 + 2x + 1}{(1 - x^2)^4}\right] = -\frac{-6(3x^2 + 1)(1 - x^2)}{(1 - x^2)^4} = -\frac{$

Graph the function
$$f(x) = \frac{x^2 - 4}{1 - x^2}$$
, recall $f'(x) = \frac{-6x}{(1 - x^2)^2}$.
4 So, testing the above, we see that $(0, -4)$ is a relative maximum.
5 $f''(x) = (-6)\frac{(1 - x^2)^2 - (x)(2)(-2x)(1 - x^2)}{(1 - x^2)^4} = -6\left[\frac{1 - 2x^2 + x^4 + 4x^2 - 4x^4}{(1 - x^2)^4}\right] = -6\left[\frac{-3x^4 + 2x + 1}{(1 - x^2)^4}\right] = -\frac{-6(3x^2 + 1)(1 - x^2)}{(1 - x^2)^4} = \frac{-6(3x^2 + 1)}{(1 - x^2)^3}.$

Graph the function
$$f(x) = \frac{x^2 - 4}{1 - x^2}$$
, recall $f'(x) = \frac{-6x}{(1 - x^2)^2}$.
4 So, testing the above, we see that $(0, -4)$ is a relative maximum.
5 $f''(x) = (-6)\frac{(1 - x^2)^2 - (x)(2)(-2x)(1 - x^2)}{(1 - x^2)^4} = -6\left[\frac{1 - 2x^2 + x^4 + 4x^2 - 4x^4}{(1 - x^2)^4}\right] = -6\left[\frac{-3x^4 + 2x + 1}{(1 - x^2)^4}\right] = -\frac{-6(3x^2 + 1)(1 - x^2)}{(1 - x^2)^4} = \frac{-6(3x^2 + 1)}{(1 - x^2)^3}$. So, there are no inflection points. The graph is concave up on $(-\infty, -1) \cup (1, \infty)$ and concave down on $(-1, 1)$.

Graph the function
$$f(x) = \frac{x^2 - 4}{1 - x^2}$$
, recall $f'(x) = \frac{-6x}{(1 - x^2)^2}$.
4 So, testing the above, we see that $(0, -4)$ is a relative maximum.
5 $f''(x) = (-6) \frac{(1 - x^2)^2 - (x)(2)(-2x)(1 - x^2)}{(1 - x^2)^4} = -6 \left[\frac{1 - 2x^2 + x^4 + 4x^2 - 4x^4}{(1 - x^2)^4} \right] = -6 \left[\frac{-3x^4 + 2x + 1}{(1 - x^2)^4} \right] = \frac{-6(3x^2 + 1)(1 - x^2)}{(1 - x^2)^4} = \frac{-6(3x^2 + 1)}{(1 - x^2)^3}$. So, there are no inflection points. The graph is concave up on $(-\infty, -1) \cup (1, \infty)$ and concave down on $(-1, 1)$.
6 The points $(3, -\frac{5}{8})$ and $(-3, -\frac{5}{8})$ are also on the graph.

Relative extrema were the largest or smallest values a function took in some open interval.

Relative extrema were the largest or smallest values a function took in some open interval. We can extend this notion globally.

Relative extrema were the largest or smallest values a function took in some open interval. We can extend this notion globally.

Definition (Absolute Extrema)

If $f(x) \leq f(c)$ for all x in the domain of f, then f(c) is called the absolute maximum value of f.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Relative extrema were the largest or smallest values a function took in some open interval. We can extend this notion globally.

Definition (Absolute Extrema)

If $f(x) \le f(c)$ for all x in the domain of f, then f(c) is called the absolute maximum value of f. If $f(x) \ge f(c)$ for all x in the domain of f, then f(c) is called the

absolute minimum value of f.

Relative extrema were the largest or smallest values a function took in some open interval. We can extend this notion globally.

Definition (Absolute Extrema)

If $f(x) \leq f(c)$ for all x in the domain of f, then f(c) is called the absolute maximum value of f.

If $f(x) \ge f(c)$ for all x in the domain of f, then f(c) is called the absolute minimum value of f.

Theorem (Extreme Value Theorem)

If a function f is continuous on a closed interval [a, b], then f has both an absolute maximum and an absolute minimum value on [a, b].

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1 Find all critical numbers of f in (a, b).

- **1** Find all critical numbers of f in (a, b).
- **2** Find the value of f at each critical point.

- **1** Find all critical numbers of f in (a, b).
- 2 Find the value of f at each critical point. Also find f(a) and f(b)

- **1** Find all critical numbers of f in (a, b).
- 2 Find the value of f at each critical point. Also find f(a) and f(b)
- 3 The absolute minimum and maximum values will correspond respectively to the smallest and largest values of *f* found in the previous step.

Why does this make sense?

- **1** Find all critical numbers of f in (a, b).
- 2 Find the value of f at each critical point. Also find f(a) and f(b)
- 3 The absolute minimum and maximum values will correspond respectively to the smallest and largest values of f found in the previous step.

Why does this make sense?

Well, an extreme value must either occur at a local extrema or an endpoint, quite obviously.

Find the absolute extrema of $f(x) = x^{\frac{1}{5}}$ on [-1, 1].

Find the absolute extrema of $f(x) = x^{\frac{1}{5}}$ on [-1, 1].

Well,
$$f'(x) = \frac{1}{5x^{\frac{4}{5}}}$$

Find the absolute extrema of $f(x) = x^{\frac{1}{5}}$ on [-1, 1].

Well,
$$f'(x)=rac{1}{5x^{rac{4}{5}}}.$$
 So, $f'(x)
eq 0$ for any $x,$

Find the absolute extrema of $f(x) = x^{\frac{1}{5}}$ on [-1, 1].

Well,
$$f'(x) = \frac{1}{5x^{\frac{4}{5}}}$$
. So, $f'(x) \neq 0$ for any x , but it is undefined at $x = 0$.

Find the absolute extrema of $f(x) = x^{\frac{1}{5}}$ on [-1, 1].

Well,
$$f'(x) = \frac{1}{5x^{\frac{4}{5}}}$$
. So, $f'(x) \neq 0$ for any x , but it is undefined at $x = 0$. So $x = 0$ is our only critical number.

Find the absolute extrema of $f(x) = x^{\frac{1}{5}}$ on [-1, 1].

Well, $f'(x) = \frac{1}{5x^{\frac{4}{5}}}$. So, $f'(x) \neq 0$ for any x, but it is undefined at x = 0. So x = 0 is our only critical number. f(0) = 0, f(1) = 1 and f(-1) = -1. So, our absolute maximum value is f(1) = 1 and our absolute minimum value is f(-1) = -1.

Well,
$$f'(x) = 3x^2 - 4x - 4 =$$

Well,
$$f'(x) = 3x^2 - 4x - 4 = (3x + 2)(x - 2)$$
.

Well,
$$f'(x) = 3x^2 - 4x - 4 = (3x + 2)(x - 2)$$
. So, $f'(x) = 0$ for $x = -\frac{2}{3}, 2$. And $f(0) = 4$, $f(2) = -4$ and $f(3) = 1$.

Well, $f'(x) = 3x^2 - 4x - 4 = (3x + 2)(x - 2)$. So, f'(x) = 0 for $x = -\frac{2}{3}$, 2. And f(0) = 4, f(2) = -4 and f(3) = 1. So, our absolute maximum value is f(0) = 4 and our absolute minimum value is f(2) = -4.

Graph

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Read 4.5. Do problems 16, 26, 30, 56, 68 in 4.3 and 8, 21, 37, 48, 82 in 4.4.

