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Exponential Function: A Motivating Example

Suppose that you wanted to invest $1000 in a fund providing an
annual return of 6%. How much money would you have after one
year?

1000(0.06)
interest

+ 1000
principal

= 1060.

What would happen if, every six months, you were paid half of
your yearly interest and were allowed to reinvest it? How much
would you have after a year? This is called compounding your
interest twice per year.

1000

(
0.06

2

)
interest1

+

(
1000

(
0.06

2

)
+ 1000

)(
0.06

2

)
interest2

+ 1000
principal

= 1060.9.



Exponential Function: A Motivating Example

Suppose that you wanted to invest $1000 in a fund providing an
annual return of 6%. How much money would you have after one
year?

1000(0.06)
interest

+ 1000
principal

= 1060.

What would happen if, every six months, you were paid half of
your yearly interest and were allowed to reinvest it? How much
would you have after a year?

This is called compounding your
interest twice per year.

1000

(
0.06

2

)
interest1

+

(
1000

(
0.06

2

)
+ 1000

)(
0.06

2

)
interest2

+ 1000
principal

= 1060.9.



Exponential Function: A Motivating Example

Suppose that you wanted to invest $1000 in a fund providing an
annual return of 6%. How much money would you have after one
year?

1000(0.06)
interest

+ 1000
principal

= 1060.

What would happen if, every six months, you were paid half of
your yearly interest and were allowed to reinvest it? How much
would you have after a year? This is called compounding your
interest twice per year.

1000

(
0.06

2

)
interest1

+

(
1000

(
0.06

2

)
+ 1000

)(
0.06

2

)
interest2

+ 1000
principal

= 1060.9.



Exponential Function: A Motivating Example

Below is a table of how much money you would make by investing
$1000 at 6% while compounding your interest n times per year.

n 4 12 365 1000 10000

Value V 1061.36 1061.68 1061.831 1061.835 1061.836

The function we use to evaluate this is

V (n) = 1000

(
1 +

0.06

n

)n

,

and when we take the limit of this function as n→∞ we get

lim
n→∞

V (n) = 1000e0.06,

where e ≈ 2.718 is the natural constant. This is continuous
compounding!
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Exponential Functions

Exponential functions are useful, as we’ve seen, in calculating
values of investments, and they are also used in modeling
population change, bacteria colonization, and many other
real-world applications.

Definition (Exponential Function)

A function defined by

f (x) = bx (b > 0, b 6= 1)

is called an exponential function with base b and exponent x . Its
domain is all real numbers.

Example (f (x) = 2x)

Domain = (−∞,∞). And f (1) = 2, f (12) =
√

2, f (0) = 1, and
f (−2

3) = 1
3√4

.
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Laws of Exponents

These rules were in Section 1.1, but because they are used so
much in this chapter and section, we repeat them here.

Lemma (Law of Exponents)

Let a and b be positive numbers and let x and y be real numbers.
Then,

1 bx · by = bx+y .

2
bx

by
= bx−y .

3 (bx)y = bxy .

4 (ab)x = axbx .

5

(a

b

)
=

ax

bx
.
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Examples

Use the rules above to calculate the following (without a
calculator).

1 16
7
4 16−

1
2 =

16
7
4
− 1

2 = 16
5
4 = (16

1
4 )5 = 25 = 32.

2
8

5
3

8−
1
3

= 8
6
3 = 82 = 64.

3 (64
4
3 )−

1
2 = 64(

4
3
)(− 1

2
) = 64−

2
3 = 1

64
2
3

= 1

(64
1
3 )2

= 1
42

= 1
16 .

4 (16 · 81)−
1
4 = 16−

1
4 · 81−

1
4 = 1

16
1
4
· 1

81
1
4

= 1
2 ·

1
3 = 1

6 .

5

(
3
1
2

2
1
3

)4

= 3
4
2

2
4
3

= 9

2
4
3
.
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Solving Equations with Exponential Expressions

Let f (x) = 22x−1, and find x such that f (x) = 16.

First, set 22x−1 = 16. Note

22x−1 = 24

is an equivalent equation. We may use the theorem:

Theorem (Injectiveness of Exponential Functions)

If bx = bz , then x = z. The converse is also true. Here,
b > 0, b 6= 1.

Thus, 2x − 1 = 4 =⇒ 2x = 5 =⇒ x =
5

2
.
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Graphs of Exponential Functions

If b > 1, then the graph of f (x) = bx is

increasing

contains the points (0, 1), (1, b), (−1, 1b )

has the limit lim
x→−∞

f (x) = 0, and increases without bound as
x →∞
has the range (0,∞)

is continuous everywhere.

See the graph on the next slide.
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The Natural Constant e

Our first example involved lim
n→∞

1000
(
1 + 0.06

n

)n
= 1000e0.06.

Specifically, we have the following definitions involving limits:

Definition (The Natural Constant e)

e = lim
n→∞

(
1 + 1

n

)n
Definition (The Value of ex)

ex = lim
n→∞

(
1 + x

n

)n
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Logarithms

We’ve become very familiar with exponential equations of the form

by = x .

We may understand these equations in a different way involving
the logarithm.The exponential exponential equation above tells us
what we get (x) if we raise the base b to the power y . What if we
wanted to answer the question “To what power y must I raise b to
get the value x?” This equivalent problem is often written as

logb x = y

.
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Logarithms

Because the notion of logarithmic equations is equivalent to the
notion of exponential equations, we have the following property.

Lemma

y = logb x if and only if by = x for b > 0, b 6= 1, and x > 0.

Note: The logarithm is defined only for x positive. Why? Because
the exponential function is always positive!

log5 125 = 3 because 53 = 125.

log3
1
27 = −3 because 3−3 = 1

33
= 1

27 .

logx 8 = 3 =⇒ x8 = 3 =⇒ x = 2.

log3 x = 4 =⇒ 34 = x =⇒ x = 81.

log16 4 = x =⇒ 16x = 4 =⇒ x = 1
2 .
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Logarithm Conventions and Laws

Usually we denote the base b of a logarithm explicitly logb x .

Though, we often call the logarithm with b = e, where e is the
natural constant, the natural logarithm. We denote loge x = ln x .
The logarithm with no base has the implied base 10, i.e.
log10 x = log x .

Lemma (Laws of Logarithms)

If n and m are positive numbers and b > 0, b 6= 1, then

logb mn = logb m + logb n.

logb
m
n = logb m − logb n.

logb mn = n logb m.

logbb = 1.

logb1 = 0.

Note: logb m
logb n

6= logb m − logb n.
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Examples

log(2 · 3) =

log 2 + log 3.

log 5
3 = log 5− log 3.

log
√

7 = 1
2 log 7.

log5 1 = 0.

log45 45 = 1.
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Examples

Given that log 2 ≈ 0.3010, log 3 ≈ 0.4771, and log 5 ≈ 0.6990,
calcuate

log 15 =

log(3 ·5) = log 3+log 5 ≈ 0.4771+0.6990 = 1.1761.

log 7.5 = log 15
2 = log 15− log 2 ≈ 1.1761− 0.3010 = 0.8751.

log 81 = log 34 = 4 log 3 ≈ 4(0.4771) = 1.9084.

log 50 = log 5 · 10 = log 5 + log 10 ≈ 0.6990 + 1 = 1.6990.
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Examples

Expand and simplify the expression log2
x2−1
2xx2

.

Well,

log2
x2 − 1

2xx2
= log2(x2 − 1)− log2(2xx2)

= log2((x − 1)(x + 1))− log2(2x)− log2(x2)

= log2(x − 1) + log2(x − 1)− x log2 2− 2 log2 x

= log2(x − 1) + log2(x + 1)− x − 2 log2 x .
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Example

Write the expression 2 ln x + 1
2 ln(x2 + 1)− x as a single logarithm

Well,

2 ln x +
1

2
ln(x2 + 1)− x = ln x2 +

√
x2 + 1− ln ex

= ln
x2
√

x2 + 1
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Graphs of Logarithmic Functions

Definition (The Logarithmic Function)

The function defined by f (x) = logb x with b > 0, b 6= 1 is called
the logarithmic function with base b. The domain of f is all
positive numbers.

If b < 1, then the graph of f (x) = logb x is

decreasing

contains the points (1, 0), (b, 1), ( 1
b ,−1)

has the limit lim
x→0+

f (x) =∞, and decreases without bound as

x →∞
has the range (−∞,∞)

is continuous and defined for x > 0.

See the graph on the next slide.
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Change of Base and Relationship Between Logarithmic and
Exponential Functions

Your calculator does not have a button for calculating log3 4.

But
you can calculate log 4

log 3 = log3 4.

Lemma (Change of Base Formula)

When all of the following logarithms are defined, we have

logb a =
logc a

logc b

Also, the logarithmic and exponential functions are inverses!

Lemma (Relationship Between Logarithmic and Exponential
Functions)

ln ex = x for all real numbers x.
e ln x = x for all x > 0.
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Examples

Solve 5 ln x + 3 = 0.

Well,

5 ln x + 3 = 0 =⇒

ln x = −3

5
=⇒

e ln x = e−
3
5 =⇒

x = e−0.6 ≈ 0.55.
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5

2
=⇒
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x = ln
5

2
− 2 ≈ −1.08.
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Assignment

Read 5.3. Do problems 8, 16, 24, 32, 38, 46 in 5.1 and 10, 14, 20,
28, 34, 40, 50 in 5.2.




