QMI Lesson 19: Integration by Substitution, Definite Integral, and Area Under Curve

C C Moxley

Samford University Brock School of Business

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Theorem (Substitution Rule)

$$
\int F'(g(x))g'(x) \;\; dx = F(g(x)) + C
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Theorem (Substitution Rule)

$$
\int F'(g(x))g'(x) \, dx = F(g(x)) + C
$$

Theorem (Generalized Power Rule)

$$
\int [g(x)]^n g'(x) \ dx = \frac{1}{n+1} g(x)^{n+1} + C, \quad (n \neq -1)
$$

Theorem (Substitution Rule)

$$
\int F'(g(x))g'(x) \, dx = F(g(x)) + C
$$

Theorem (Generalized Power Rule)

$$
\int [g(x)]^n g'(x) \ dx = \frac{1}{n+1} g(x)^{n+1} + C, \quad (n \neq -1)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

1 Let $u = g(x)$, where $g(x)$ is part of the integrand, usually the "inside function" of a composite function.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

1 Let $u = g(x)$, where $g(x)$ is part of the integrand, usually the "inside function" of a composite function.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

$$
2 \text{ Find } du = g'(x) dx.
$$

1 Let $u = g(x)$, where $g(x)$ is part of the integrand, usually the "inside function" of a composite function.

$$
2 \text{ Find } du = g'(x) dx.
$$

3 Use the substitution $u = g(x)$ and $du = g'(x)dx$ to convert the entire integral into one involving only u .

KORKAR KERKER EL VOLO

1 Let $u = g(x)$, where $g(x)$ is part of the integrand, usually the "inside function" of a composite function.

$$
2 \text{ Find } du = g'(x) dx.
$$

3 Use the substitution $u = g(x)$ and $du = g'(x)dx$ to convert the entire integral into one involving only u .

KORKAR KERKER EL VOLO

4 Evaluate the resulting integral.

1 Let $u = g(x)$, where $g(x)$ is part of the integrand, usually the "inside function" of a composite function.

$$
2 \text{ Find } du = g'(x) dx.
$$

- 3 Use the substitution $u = g(x)$ and $du = g'(x)dx$ to convert the entire integral into one involving only u .
- **4** Evaluate the resulting integral.
- 5 Replace u by $g(x)$ to obtain the final solution as a function of x.

KID KA KERKER E VOOR

Find $\int 2x(x^2 + 3)^4 dx$.

Find
$$
\int 2x(x^2 + 3)^4 dx
$$
.
Let $u = x^2 + 3$.

Find
$$
\int 2x(x^2 + 3)^4 dx
$$
.
1 Let $u = x^2 + 3$.

2 Then $du = 2x dx$.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ 9 Q @

Find
$$
\int 2x(x^2 + 3)^4 dx
$$
.
\nLet $u = x^2 + 3$.
\nThen $du = 2x dx$.
\n3 Thus, $\int 2x(x^2 + 3)^4 dx = \int \underbrace{(x^2 + 3)^4}_{u^4} \underbrace{(2xdx)}_{du} = \int u^4 du$.

Find
$$
\int 2x(x^2 + 3)^4 dx
$$
.
\n1 Let $u = x^2 + 3$.
\n2 Then $du = 2x dx$.
\n8 Thus, $\int 2x(x^2 + 3)^4 dx = \int \underbrace{(x^2 + 3)^4}_{u^4} \underbrace{(2xdx)}_{du} = \int u^4 du$.
\n4 $\int u^4 du = \frac{u^5}{5} + C$.

Find
$$
\int 2x(x^2 + 3)^4 dx
$$
.
\n1 Let $u = x^2 + 3$.
\n2 Then $du = 2x dx$.
\n3 Thus, $\int 2x(x^2 + 3)^4 dx = \int \underbrace{(x^2 + 3)^4}_{u^4} \underbrace{(2xdx)}_{du} = \int u^4 du$.
\n4 $\int u^4 du = \frac{u^5}{5} + C$.
\n5 So, $\int 2x(x^2 + 3)^4 dx = \frac{(x^2 + 3)^5}{5} + C$.

Find $\int \frac{x}{3x^2}$ $rac{x}{3x^2+1}$ dx.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ 9 Q @

Find
$$
\int \frac{x}{3x^2+1} \, dx
$$
. **1** Let $u = 3x^2 + 1$.

Find
$$
\int \frac{x}{3x^2+1} \, dx
$$
. \n\n1 Let $u = 3x^2 + 1$. \n2 Then $du = 6x \, dx$ which means $\frac{du}{6} = x \, dx$.

K ロ X (日) X (日)

Find
$$
\int \frac{x}{3x^2 + 1} dx
$$
.
\n1 Let $u = 3x^2 + 1$.
\n2 Then $du = 6x dx$ which means $\frac{du}{6} = x dx$.
\n3 Thus, $\int \frac{x}{3x^2 + 1} dx = \int \frac{1}{\frac{3x^2 + 1}{u}} \frac{x dx}{\frac{du}{6}} = \int \frac{du}{6u}$.

Find
$$
\int \frac{x}{3x^2 + 1} dx
$$
.
\n1 Let $u = 3x^2 + 1$.
\n2 Then $du = 6x$ dx which means $\frac{du}{6} = x$ dx.
\n3 Thus, $\int \frac{x}{3x^2 + 1} dx = \int \frac{1}{\frac{3x^2 + 1}{u}} \frac{x dx}{\frac{du}{6}} = \int \frac{du}{6u}$.
\n4 $\frac{1}{6} \int \frac{du}{u} = \frac{1}{6} \ln u + C$.

Find
$$
\int \frac{x}{3x^2+1} dx
$$
.
\n1 Let $u = 3x^2 + 1$.
\n2 Then $du = 6x$ dx which means $\frac{du}{6} = x$ dx.
\n3 Thus, $\int \frac{x}{3x^2+1} dx = \int \frac{1}{\frac{3x^2+1}{u}} \left(\frac{xdx}{u}\right) = \int \frac{du}{6u}$.
\n4 $\frac{1}{6} \int \frac{du}{u} = \frac{1}{6} \ln u + C$.
\n5 So, $\int \frac{x}{3x^2+1} dx = \frac{1}{6} \ln(3x^2+1) + C$.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ 9 Q @

A study forecasts that a new line of computers will have sales of 2000 $-$ 1500 $e^{-0.05t}$ units per month after t months. Find an expression for the number of computers sold in the first t months.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

A study forecasts that a new line of computers will have sales of 2000 $-$ 1500 $e^{-0.05t}$ units per month after t months. Find an expression for the number of computers sold in the first t months.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

We need to calculate $\int 2000-1500e^{-0.05t}~dt$, letting $u = -0.05t \implies du = -0.05dt$.

A study forecasts that a new line of computers will have sales of 2000 $-$ 1500 $e^{-0.05t}$ units per month after t months. Find an expression for the number of computers sold in the first t months.

We need to calculate $\int 2000-1500e^{-0.05t}~dt$, letting $u = -0.05t \implies du = -0.05dt$. So we get

$$
\int 2000-1500e^{-0.05t} dt = \int 2000-1500e^{u} (-20) du =
$$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

A study forecasts that a new line of computers will have sales of 2000 $-$ 1500 $e^{-0.05t}$ units per month after t months. Find an expression for the number of computers sold in the first t months.

We need to calculate $\int 2000-1500e^{-0.05t}~dt$, letting $u = -0.05t \implies du = -0.05dt$. So we get

$$
\int 2000 - 1500e^{-0.05t} dt = \int 2000 - 1500e^{u} (-20) du =
$$

$$
\int -40000 + 30000e^u \, du = -40000u + 30000e^u + C =
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

A study forecasts that a new line of computers will have sales of 2000 $-$ 1500 $e^{-0.05t}$ units per month after t months. Find an expression for the number of computers sold in the first t months.

We need to calculate $\int 2000-1500e^{-0.05t}~dt$, letting $u = -0.05t \implies du = -0.05dt$. So we get

$$
\int 2000 - 1500e^{-0.05t} dt = \int 2000 - 1500e^{u} (-20) du =
$$

$$
\int -40000 + 30000e^u \, du = -40000u + 30000e^u + C =
$$

 $2000t + 30000e^{-0.05t} + C.$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Naturally, no computers were sold at time $t = 0$, so to solve for C, we simply notice

$$
2000(0) + 30000e^{-0.05(0)} + C = 0 \implies C = -30000.
$$

So we get our expression for the number of computers sold after month t to be

$$
2000t + 30000e^{-0.05t} - 30000.
$$

Find $\int 2x^3(x^2 + 1)^{\frac{1}{2}} dx$.

Find
$$
\int 2x^3(x^2 + 1)^{\frac{1}{2}} dx
$$
.
1 Let $u = x^2 + 1 \implies x^2 = u - 1$.

Find
$$
\int 2x^3(x^2 + 1)^{\frac{1}{2}} dx
$$
.
\n1 Let $u = x^2 + 1 \implies x^2 = u - 1$.
\n2 Then $du = 2x dx$.

Find
$$
\int 2x^3(x^2 + 1)^{\frac{1}{2}} dx
$$
.
\n1 Let $u = x^2 + 1 \implies x^2 = u - 1$.
\n2 Then $du = 2x dx$.
\n3 Thus, $\int 2x^3(x^2 + 1)^{\frac{1}{2}} dx = \int \underbrace{(x^2)(x^2 + 1)^{\frac{1}{2}}}_{u-1} \underbrace{(2xdx)}_{u^{\frac{1}{2}}} = \int (u - 1)u^{\frac{1}{2}} du = \int u^{\frac{3}{2}} - u^{\frac{1}{2}} du$.

Find
$$
\int 2x^3(x^2 + 1)^{\frac{1}{2}} dx
$$
.
\n1 Let $u = x^2 + 1 \implies x^2 = u - 1$.
\n2 Then $du = 2x dx$.
\n3 Thus, $\int 2x^3(x^2 + 1)^{\frac{1}{2}} dx = \int \underbrace{(x^2)}_{u-1} \underbrace{(x^2 + 1)^{\frac{1}{2}}}_{u^{\frac{1}{2}}} \underbrace{(2xdx)}_{du} =$
\n $\int (u - 1)u^{\frac{1}{2}} du = \int u^{\frac{3}{2}} - u^{\frac{1}{2}} du$.
\n4 $\int u^{\frac{3}{2}} - u^{\frac{1}{2}} du = \frac{2u^{\frac{5}{2}}}{5} - \frac{2u^{\frac{3}{2}}}{3} + C$.

Find
$$
\int 2x^3(x^2 + 1)^{\frac{1}{2}} dx
$$
.
\n1 Let $u = x^2 + 1 \implies x^2 = u - 1$.
\n2 Then $du = 2x dx$.
\n3 Thus, $\int 2x^3(x^2 + 1)^{\frac{1}{2}} dx = \int \frac{(x^2)(x^2 + 1)^{\frac{1}{2}}}{u^{-1}} \frac{(2xdx)}{du} =$
\n $\int (u - 1)u^{\frac{1}{2}} du = \int u^{\frac{3}{2}} - u^{\frac{1}{2}} du$.
\n4 $\int u^{\frac{3}{2}} - u^{\frac{1}{2}} du = \frac{2u^{\frac{5}{2}}}{5} - \frac{2u^{\frac{3}{2}}}{3} + C$.
\n5 So, $\int 2x(x^2 + 3)^4 dx = \frac{2(x^2 + 1)^{\frac{5}{2}}}{5} - \frac{2(x^2 + 1)^{\frac{3}{2}}}{3} + C$.

K ロ X (日) X (日)

Recall when we talked about the differential that we interpreted $dy = f'(x)dx$ as an appoximation for Δy .

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

Recall when we talked about the differential that we interpreted $dy = f'(x)dx$ as an appoximation for Δy . On the graph of a function, we can see Δy and $\Delta x = dx$ forming an area related to the graph of a function. See the next slide for details.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

K ロ > K @ > K 할 > K 할 > 1 할 : ⊙ Q Q^

K ロ X K 個 X K 결 X K 결 X (결) 2990

K ロ X K 個 X K 결 X K 결 X (결) 2990

K ロ X K 個 X K 결 X K 결 X (결)

 2990

K ロ X K 個 X K 결 X K 결 X (결) 2990

K ロ X K 個 X K 결 X K 결 X (결) 2990

Improving Area Under the Curve of $f(x) = x^2$ on [0,1]

イロン イ部ン イ君ン イ君ンシ 活 2990

Our first division of the area under $f(x)$ on [0,1] into five intervals gave the approximation of the area as

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Our first division of the area under $f(x)$ on [0,1] into five intervals gave the approximation of the area as

$$
\frac{1}{5}f\left(\frac{1}{5}\right)+\frac{1}{5}f\left(\frac{2}{5}\right)+\frac{1}{5}f\left(\frac{3}{5}\right)+\frac{1}{5}f\left(\frac{4}{5}\right)+\frac{1}{5}f\left(1\right)=0.44,
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Our first division of the area under $f(x)$ on [0,1] into five intervals gave the approximation of the area as

$$
\frac{1}{5}f\left(\frac{1}{5}\right)+\frac{1}{5}f\left(\frac{2}{5}\right)+\frac{1}{5}f\left(\frac{3}{5}\right)+\frac{1}{5}f\left(\frac{4}{5}\right)+\frac{1}{5}f\left(1\right)=0.44,
$$

And our second division of the area under $f(x)$ on [0,1] into ten intervals gave the approximation

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Our first division of the area under $f(x)$ on [0,1] into five intervals gave the approximation of the area as

$$
\frac{1}{5}f\left(\frac{1}{5}\right)+\frac{1}{5}f\left(\frac{2}{5}\right)+\frac{1}{5}f\left(\frac{3}{5}\right)+\frac{1}{5}f\left(\frac{4}{5}\right)+\frac{1}{5}f\left(1\right)=0.44,
$$

And our second division of the area under $f(x)$ on [0,1] into ten intervals gave the approximation

$$
\frac{1}{10}(f(0.1) + f(0.2) + \cdots + f(0.9) + f(1)) = 0.385.
$$

KORK ERKER ADE YOUR

Let R be the region under the graph of $f(x)=16-x^2$ on the interval [1,3]. Find an approximation of the area of R by using four subintervals of equal length and picking the midpoint of each subinterval to evaluate the height of the approximating rectagle.

KORKAR KERKER EL VOLO

Well, our four subintervals are [1,1.5], [1.5,2], [2,2.5], and [2.5,3].

Let R be the region under the graph of $f(x)=16-x^2$ on the interval [1,3]. Find an approximation of the area of R by using four subintervals of equal length and picking the midpoint of each subinterval to evaluate the height of the approximating rectagle.

Well, our four subintervals are [1,1.5], [1.5,2], [2,2.5], and [2.5,3].The midpoints of these intervals are, respectively, 1.25, 1.75, 2.25, and 2.75.

KORKAR KERKER EL VOLO

Let R be the region under the graph of $f(x)=16-x^2$ on the interval [1,3]. Find an approximation of the area of R by using four subintervals of equal length and picking the midpoint of each subinterval to evaluate the height of the approximating rectagle.

Well, our four subintervals are [1,1.5], [1.5,2], [2,2.5], and [2.5,3].The midpoints of these intervals are, respectively, 1.25, 1.75, 2.25, and 2.75. So our approximation is:

$$
\frac{1}{2}(f(1.25) + f(1.75) + f(2.25) + f(2.75)) = 23.375
$$

KORKAR KERKER EL VOLO

We can generalize this process of approximation via Riemann sums and pass through the limit to calculate the actual area under the graph of a function.

KORK ERKER ADE YOUR

Definition (The Area Under the Graph of a Function)

We can generalize this process of approximation via Riemann sums and pass through the limit to calculate the actual area under the graph of a function.

Definition (The Area Under the Graph of a Function)

Let f be a nonnegative continuous function on $[a,b]$. Then the area A of the region under the graph of f is given by

$$
A=\lim_{n\to\infty}[f(x_1)+f(x_2)+\cdots+f(x_n)]\Delta x
$$

where x_1, x_2, \ldots, x_n are arbitrary points in the *n* subintervals of [a,b] of equal width $\Delta x = \frac{b-a}{n}$ $\frac{-a}{n}$.

KORKAR KERKER EL VOLO

We can generalize this process of approximation via Riemann sums and pass through the limit to calculate the actual area under the graph of a function.

Definition (The Area Under the Graph of a Function)

Let f be a nonnegative continuous function on $[a,b]$. Then the area A of the region under the graph of f is given by

$$
A=\lim_{n\to\infty}[f(x_1)+f(x_2)+\cdots+f(x_n)]\Delta x
$$

where x_1, x_2, \ldots, x_n are arbitrary points in the *n* subintervals of [a,b] of equal width $\Delta x = \frac{b-a}{n}$ $\frac{-a}{n}$.

If f is continuous on [a, b], then this limit always exists, to the definition is not degenerate.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Definition (The Definite Integral)

Let f be a function on $[a,b]$. If the limit

$$
\lim_{n\to\infty}[f(x_1)+f(x_2)+\cdots+f(x_n)]\Delta x
$$

exists and is the same for all choices of x_1, x_2, \ldots, x_n in the n subintervals of $[a,b]$ of equal width $\Delta x = \frac{b-a}{n}$ $\frac{-a}{n}$, then this limit is called the definite integral of f from a to b and is denoted

$$
\int_a^b f(x)dx = \lim_{n \to \infty} [f(x_1) + f(x_2) + \cdots + f(x_n)]\Delta x
$$

KORKARYKERKE POLO

Definition (The Definite Integral)

Let f be a function on $[a,b]$. If the limit

$$
\lim_{n\to\infty}[f(x_1)+f(x_2)+\cdots+f(x_n)]\Delta x
$$

exists and is the same for all choices of x_1, x_2, \ldots, x_n in the n subintervals of $[a,b]$ of equal width $\Delta x = \frac{b-a}{n}$ $\frac{-a}{n}$, then this limit is called the definite integral of f from a to b and is denoted

$$
\int_a^b f(x)dx = \lim_{n \to \infty} [f(x_1) + f(x_2) + \cdots + f(x_n)] \Delta x
$$

We call a the lower limit of integration and b the upper limit of integration.

KORKAR KERKER EL VOLO

a a function is called integrable on an interval $[a,b]$ if its definite integral exists on that interval.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

a a function is called integrable on an interval $[a,b]$ if its definite integral exists on that interval.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \blacksquare a function which is continuous on a closed interval is automatically integrable, but a function need not be continuous ot be integrable.

- **a** a function is called integrable on an interval $[a,b]$ if its definite integral exists on that interval.
- \blacksquare a function which is continuous on a closed interval is automatically integrable, but a function need not be continuous ot be integrable.
- \blacksquare if a function is non-negative, then its definite integral on an open interval is equal to the area under its curve.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- **a** a function is called integrable on an interval $[a,b]$ if its definite integral exists on that interval.
- \blacksquare a function which is continuous on a closed interval is automatically integrable, but a function need not be continuous ot be integrable.
- \blacksquare if a function is non-negative, then its definite integral on an open interval is equal to the area under its curve.
- \blacksquare a definite integral is a number whereas an indefinite integral is a family of functions.

KORKA SERKER ORA

If f is non-negative on [a, b], as we mentioned, the definite integral

 \int^b a $f(x) dx$

is the area between the curve and the x -axis. But if f takes both positive and negative values, then the definite intergral is equal to the area of the region below the graph but above the x -axis minus the area of the region blow the x-axis but above f . We can see this graphically.

KID KA KERKER E VOOR

The Definite Integral and Area Generalized

イロン イ部ン イ君ン イ君ン 重 2990

The Definite Integral and Area Generalized

 2990

重

イロン イ部ン イ君ン イ君ン

Read 6.4. Do problems 14, 26, 36, 50, 54, 66 in 6.2 and 2, 10, 14, 16, 18 in 6.3.

