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Substitution Rule

The following rules arise from the chain rule of differentiation.

Theorem (Substitution Rule)

∫
F ′(g(x))g ′(x) dx = F (g(x)) + C

Theorem (Generalized Power Rule)

∫
[g(x)]ng ′(x) dx =

1

n + 1
g(x)n+1 + C , (n 6= −1)



Substitution Rule

The following rules arise from the chain rule of differentiation.

Theorem (Substitution Rule)

∫
F ′(g(x))g ′(x) dx = F (g(x)) + C

Theorem (Generalized Power Rule)

∫
[g(x)]ng ′(x) dx =

1

n + 1
g(x)n+1 + C , (n 6= −1)



Substitution Rule

The following rules arise from the chain rule of differentiation.

Theorem (Substitution Rule)

∫
F ′(g(x))g ′(x) dx = F (g(x)) + C

Theorem (Generalized Power Rule)

∫
[g(x)]ng ′(x) dx =

1

n + 1
g(x)n+1 + C , (n 6= −1)



Substitution Rule

The following rules arise from the chain rule of differentiation.

Theorem (Substitution Rule)

∫
F ′(g(x))g ′(x) dx = F (g(x)) + C

Theorem (Generalized Power Rule)

∫
[g(x)]ng ′(x) dx =

1

n + 1
g(x)n+1 + C , (n 6= −1)



Method of Substitution

You can exploit the previous rules to integrate certain functions by
following the steps below.

1 Let u = g(x), where g(x) is part of the integrand, usually the
“inside function” of a composite function.

2 Find du = g ′(x)dx .

3 Use the substitution u = g(x) and du = g ′(x)dx to convert
the entire integral into one involving only u.

4 Evaluate the resulting integral.

5 Replace u by g(x) to obtain the final solution as a function of
x .
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Example

Find
∫

2x(x2 + 3)4 dx .

1 Let u = x2 + 3.

2 Then du = 2x dx .

3 Thus,
∫

2x(x2 + 3)4 dx =
∫

(x2 + 3)4︸ ︷︷ ︸
u4

(2xdx)︸ ︷︷ ︸
du

=
∫
u4 du .

4
∫
u4 du = u5

5 + C .

5 So,
∫

2x(x2 + 3)4 dx = (x2+3)5

5 + C .
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Example

Find
∫

x
3x2+1

dx .

1 Let u = 3x2 + 1.

2 Then du = 6x dx which means du
6 = x dx .

3 Thus,
∫

x
3x2+1

dx =
∫ 1

3x2 + 1︸ ︷︷ ︸
1
u

(xdx)︸ ︷︷ ︸
du
6

=
∫

du
6u .

4
1
6

∫
du
u = 1

6 ln u + C .

5 So,
∫

x
3x2+1

dx = 1
6 ln(3x2 + 1) + C .
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Example

A study forecasts that a new line of computers will have sales of
2000− 1500e−0.05t units per month after t months. Find an
expression for the number of computers sold in the first t months.

We need to calculate
∫

2000− 1500e−0.05t dt, letting
u = −0.05t =⇒ du = −0.05dt. So we get∫

2000− 1500e−0.05t dt =

∫
2000− 1500eu (−20)du =

∫
−40000 + 30000eu du = −40000u + 30000eu + C =

2000t + 30000e−0.05t + C .
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Example

Naturally, no computers were sold at time t = 0, so to solve for C ,
we simply notice

2000(0) + 30000e−0.05(0) + C = 0 =⇒ C = −30000.

So we get our expression for the number of computers sold after
month t to be

2000t + 30000e−0.05t − 30000.



Example

Find
∫

2x3(x2 + 1)
1
2 dx .

1 Let u = x2 + 1 =⇒ x2 = u − 1.

2 Then du = 2x dx .

3 Thus,
∫

2x3(x2 + 1)
1
2 dx =

∫
(x2)︸︷︷︸
u−1

(x2 + 1)
1
2︸ ︷︷ ︸

u
1
2

(2xdx)︸ ︷︷ ︸
du

=

∫
(u − 1)u

1
2 du =

∫
u

3
2 − u

1
2 du .

4
∫
u

3
2 − u

1
2 du = 2u

5
2

5 −
2u

3
2

3 + C .

5 So,
∫

2x(x2 + 3)4 dx = 2(x2+1)
5
2

5 − 2(x2+1)
3
2

3 + C .
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The Definite Integral

Recall when we talked about the differential that we interpreted
dy = f ′(x)dx as an appoximation for ∆y .

On the graph of a
function, we can see ∆y and ∆x = dx forming an area related to
the graph of a function. See the next slide for details.
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Improving Area Under the Curve of f (x) = x2 on [0,1]
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Numerically Approximating Area Under the Curve of
f (x) = x2 on [0,1]

Our first division of the area under f (x) on [0,1] into five intervals
gave the approximation of the area as

1

5
f

(
1

5

)
+

1

5
f

(
2

5

)
+

1

5
f

(
3

5

)
+

1

5
f

(
4

5

)
+

1

5
f (1) = 0.44,

And our second division of the area under f (x) on [0,1] into ten
intervals gave the approximation

1

10
(f (0.1) + f (0.2) + · · ·+ f (0.9) + f (1)) = 0.385.
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Example

Let R be the region under the graph of f (x) = 16− x2 on the
interval [1,3]. Find an approximation of the area of R by using four
subintervals of equal length and picking the midpoint of each
subinterval to evaluate the height of the approximating rectagle.

Well, our four subintervals are [1,1.5], [1.5,2], [2,2.5], and
[2.5,3].

The midpoints of these intervals are, respectively, 1.25,
1.75, 2.25, and 2.75. So our approximation is:

1

2
(f (1.25) + f (1.75) + f (2.25) + f (2.75)) = 23.375
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interval [1,3]. Find an approximation of the area of R by using four
subintervals of equal length and picking the midpoint of each
subinterval to evaluate the height of the approximating rectagle.

Well, our four subintervals are [1,1.5], [1.5,2], [2,2.5], and
[2.5,3].The midpoints of these intervals are, respectively, 1.25,
1.75, 2.25, and 2.75. So our approximation is:

1

2
(f (1.25) + f (1.75) + f (2.25) + f (2.75)) = 23.375



Riemann Sums and the Area Under a Curve

We can generalize this process of approximation via Riemann sums
and pass through the limit to calculate the actual area under the
graph of a function.

Definition (The Area Under the Graph of a Function)

Let f be a nonnegative continuous function on [a,b]. Then the
area A of the region under the graph of f is given by

A = lim
n→∞

[f (x1) + f (x2) + · · ·+ f (xn)]∆x

where x1, x2, . . . , xn are arbitrary points in the n subintervals of
[a,b] of equal width ∆x = b−a

n .

If f is continuous on [a, b], then this limit always exists, to the
definition is not degenerate.
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The Definite Integral

Definition (The Definite Integral)

Let f be a function on [a,b]. If the limit

lim
n→∞

[f (x1) + f (x2) + · · ·+ f (xn)]∆x

exists and is the same for all choices of x1, x2, . . . , xn in the n
subintervals of [a,b] of equal width ∆x = b−a

n , then this limit is
called the definite integral of f from a to b and is denoted∫ b

a
f (x)dx = lim

n→∞
[f (x1) + f (x2) + · · ·+ f (xn)]∆x

We call a the lower limit of integration and b the upper limit of
integration.
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Notes on the Definite Integral

It is useful to note that

a function is called integrable on an interval [a,b] if its definite
integral exists on that interval.

a function which is continuous on a closed interval is
automatically integrable, but a function need not be
continuous ot be integrable.

if a function is non-negative, then its definite integral on an
open interval is equal to the area under its curve.

a definite integral is a number whereas an indefinite integral is
a family of functions.
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Geometric Interpretations of the Definite Integral

If f is non-negative on [a, b], as we mentioned, the definite integral∫ b

a
f (x) dx

is the area between the curve and the x-axis. But if f takes both
positive and negative values, then the definite intergral is equal to
the area of the region below the graph but above the x-axis minus
the area of the region blow the x-axis but above f . We can see
this graphically.



The Definite Integral and Area Generalized
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Assignment

Read 6.4. Do problems 14, 26, 36, 50, 54, 66 in 6.2 and 2, 10, 14,
16, 18 in 6.3.




