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One-Sided Limits

Recall from Section 2.5 that the function below had no limit as
x — 0.
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to) a and greater than a.
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Theorem

If f is a function defined for all values x close to x = a (with the
possible exception of a itself), then

limf(x) =L < lim f(x)=L= lim f(x)
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Basically, this means that the existence of a limit means that the
left- and right-limits exist and that they equal one another. And
the converse is true as well.
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Does lim f(x) exist? What about lim f(x)? What is f(0)?
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Does lim g(x) exist? What about lim g(x)? What is g(0)?

x—0+ x—0~
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A function f is continuous at a if all of the following conditions
hold.

f(a) is defined.
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Continuity

Definition (Continuity)

A function f is continuous at a if all of the following conditions
hold.

f(a) is defined.

lim f(x) exists.
X—a

f(a) = lim £(x).

These conditions may be broken when a graph of a function has a
hole/puncture,a jump,or a vertical asymptote.



Examples of Discontinuity

m Hole:

m Jump:

m Vertical asymptote:




Intervals of Continuity: Example
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On what interval(s) is f(x) = { 1 1_ 1 i > 8 continuous?
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— <
On what interval(s) is f(x) = { 1 1_ 1 i > 8 continuous?

X

(—00,0) U (0,00)
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Continuity of Known Functions

Any polynomial is continuous everywhere! So, is a linear function
always continuous? A constant function? Yes! Because these are
special cases of polynomials.

Rational functions are continuous everywhere that their
. . 2_1 . .
denominator is not zero. For example f(x) = 3%=L is continuous

everywhere except at x =1, —1, i.e. it is continuous on the

intervals (—oo, —1) U (—1,1) U (1, 00).

A function must be defined to be continuous! So f(x) = v/x —1
cannot be continuous on (—oo, 1)!
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Properties of Continuous Functions

Theorem (Properties of Continuous Functions)
Suppose that both f(x) and g(x) are continuous at x = a, then
the following are also continuous at x = a.

m [f(x)]", with n € R (provided [f(a)]" is defined).

mftg.

m fg.

] é (provided g(a) # 0).
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Examples

Determine where f(x) is discontinuous.

4—8x+1 4—8x+1 :
| f(X) = 2);2+75);t3 We”, f(X) = m, SO f(X) IS
discontinuous at x = %, -3.

m f(x) = ZTL. What does the graph of the x> + 1 look like?

\/

Clearly, the denominator is always positive, i.e. it's never zero.
So the function has no discontinuities.
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3368m).
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Root Theorem and the Intermediate Value Theorem:

Motivation

Consider a hiker climbing from the bottom of Death Valley
(elevation: —86m) to the top of nearby Telescope Peak (elevation
3368m).

3368 meters

sea level
-86 meters

o
.
.
.
.
-
.
.
-
.
.
o

Clearly, the hiker must “cross” sea level, i.e. her elevation must be
exactly zero at some point.
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Root Theorem and the Intermediate Value Theorem:

Motivation

We can mathematically formalize this notion. The reason the
hiker's elevation must be zero at some point is because motion is a
continuous action. You cannot get to 3368 meters from —86
meters without passing every elevation on the way. In particular,
you cannot “skip” the zero-level elevation. This idea is called the
Root Theorem because it says, essentially, that a continuous
function that takes both a negative and a positive value must have
a root somewhere in the interval between the points at which it is
negative and positive.



Root Theorem

Theorem (Existence of Roots of a Continuous Function)

If a continuous function f on a closed interval [a, b] takes values
f(a) and f(b) such that f(a) - f(b) < 0, then there is at least one
solution to the equation f(x) = 0 in the interval (a, b).
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Theorem (Intermediate Value Theorem)

If a function f is continuous on a closed interval [a, b] and M is
any number between f(a) and f(b), then there exists at least one
number c in (a, b) such that f(c) = M.
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Intermediate Value Theorem

Theorem (Intermediate Value Theorem)

If a function f is continuous on a closed interval [a, b] and M is

any number between f(a) and f(b), then there exists at least one
number c in (a, b) such that f(c) = M.
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Example

Find an interval on which f(x) = x* — 5x + 3 must have a root.

Well, f(0) =3 >0, and f(1) = —1 < 0. Therefore, since f is
continuous on [0, 1] and since f(1) < 0 and f(0) > 0, we know
that there exists some ¢ € (0, 1) such that f(c) = 0.
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Example

Do the conclusions of the Intermediate Value Theorem hold if f is
not a continuous function? No! Draw an example.



Assignment

Read 2.6. Do problems 6, 10, 18, 34, 42, 52, 60, 72, 88, 94, 96 in
2.5.





