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One-Sided Limits

Recall from Section 2.5 that the function below had no limit as
x → 0.
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One-Sided Limits

f (x) =

{
1 x ≤ 0
x x > 0

However, this function does have a limit as x → 0+ and as
x → 0−, i.e. as x approaches 0 from the right and left respectively.

We call these limits one-sided limits.
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One-Sided Limits

Definition (One-Sided Limits)

The function f has the right-hand limit L as x approaches a from
the right, written lim

x→a+
f (x) = L, if the values of f (x) can be made

arbitrarily close to L by taking x sufficiently close to (but not equal
to) a and greater than a.

The function f has the left-hand limit L as x approaches a from
the left, written lim

x→a−
f (x) = L, if the values of f (x) can be made

arbitrarily close to L by taking x sufficiently close to (but not equal
to) a and less than a.
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Relationship Between Limits and One-Sided Limits

Theorem

If f is a function defined for all values x close to x = a (with the
possible exception of a itself), then

lim
x→a

f (x) = L ⇐⇒ lim
x→a+

f (x) = L = lim
x→a−

f (x)

Basically, this means that the existence of a limit means that the
left- and right-limits exist and that they equal one another. And
the converse is true as well.
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Example
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f (x) =

{
−x x ≤ 0√

x x > 0

Does lim
x→0+

f (x) exist? What about lim
x→0−

f (x)? What is f (0)?
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g(x) =

{
−1 x < 0
1 x ≥ 0

Does lim
x→0+

g(x) exist? What about lim
x→0−

g(x)? What is g(0)?



Continuity

Definition (Continuity)

A function f is continuous at a if all of the following conditions
hold.

1 f (a) is defined.

2 lim
x→a

f (x) exists.

3 f (a) = lim
x→a

f (x).

These conditions may be broken when a graph of a function has a
hole/puncture,a jump,or a vertical asymptote.
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Examples of Discontinuity

Hole:

Jump:

Vertical asymptote:



Intervals of Continuity: Example

On what interval(s) is f (x) =

{
−1 x ≤ 0
1
x − 1 x > 0

continuous?

(−∞, 0) ∪ (0,∞)
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Continuity of Known Functions

Any polynomial is continuous everywhere!

So, is a linear function
always continuous? A constant function? Yes! Because these are
special cases of polynomials.

Rational functions are continuous everywhere that their
denominator is not zero. For example f (x) = 3x2−1

x2−1 is continuous
everywhere except at x = 1,−1, i.e. it is continuous on the
intervals (−∞,−1) ∪ (−1, 1) ∪ (1,∞).

A function must be defined to be continuous! So f (x) =
√

x − 1
cannot be continuous on (−∞, 1)!
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Properties of Continuous Functions

Theorem (Properties of Continuous Functions)

Suppose that both f (x) and g(x) are continuous at x = a, then
the following are also continuous at x = a.

[f (x)]n, with n ∈ R (provided [f (a)]n is defined).

f ± g.

fg .
f
g (provided g(a) 6= 0).
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Examples

Determine where f (x) is discontinuous.

f (x) = x4−8x+1
2x2+5x−3 . Well, f (x) = x4−8x+1

(2x−1)(x+3) , so f (x) is

discontinuous at x = 1
2 ,−3.

f (x) = 2x+1
x2+1

. What does the graph of the x2 + 1 look like?

Clearly, the denominator is always positive, i.e. it’s never zero.
So the function has no discontinuities.
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Root Theorem and the Intermediate Value Theorem:
Motivation

Consider a hiker climbing from the bottom of Death Valley
(elevation: −86m) to the top of nearby Telescope Peak (elevation
3368m).
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i.e. her elevation must be
exactly zero at some point.
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Root Theorem and the Intermediate Value Theorem:
Motivation

We can mathematically formalize this notion.

The reason the
hiker’s elevation must be zero at some point is because motion is a
continuous action. You cannot get to 3368 meters from −86
meters without passing every elevation on the way. In particular,
you cannot “skip” the zero-level elevation. This idea is called the
Root Theorem because it says, essentially, that a continuous
function that takes both a negative and a positive value must have
a root somewhere in the interval between the points at which it is
negative and positive.
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Root Theorem

Theorem (Existence of Roots of a Continuous Function)

If a continuous function f on a closed interval [a, b] takes values
f (a) and f (b) such that f (a) · f (b) < 0, then there is at least one
solution to the equation f (x) = 0 in the interval (a, b).

a

b
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Intermediate Value Theorem

Theorem (Intermediate Value Theorem)

If a function f is continuous on a closed interval [a, b] and M is
any number between f (a) and f (b), then there exists at least one
number c in (a, b) such that f (c) = M.

a b

M

c1 c2
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Example

Find an interval on which f (x) = x4 − 5x + 3 must have a root.

Well, f (0) = 3 > 0, and f (1) = −1 < 0. Therefore, since f is
continuous on [0, 1] and since f (1) < 0 and f (0) > 0, we know
that there exists some c ∈ (0, 1) such that f (c) = 0.
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Example

Do the conclusions of the Intermediate Value Theorem hold if f is
not a continuous function?

No! Draw an example.
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Assignment

Read 2.6. Do problems 6, 10, 18, 34, 42, 52, 60, 72, 88, 94, 96 in
2.5.




