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Motivating Example

The graph gives the number of pensions a company pays (y in
thousands) at a certain point in time (x=0 corresponds to 2005, x
in years).
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Motivating Example

Consider the points on the graph (6, 4.58) and (4, 2.98). What can
we say about these points in general?
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What can we say about the rates of change at these two points?



Motivating Example

Well, to do this, we look at the slope of the graph at these points,
i.e. the tangent line.
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Motivating Example

So we can tell now that, although the number of pensions has
increased from 2009 to 2011, the rate has decreased. How does
this translate to budget planning?
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Motivating Example

This means that the business would need to find more money in
2010 to cover the increase in number of pensions than it would
need to find in 2012.
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The Tangent Line

In our previous example, we estimated the tangent line (the line
having the same slope as the graph)

by drawing it directly onto the
graph. However, there is a mathematically formal approach to
calculating the tangent line using secant lines, which are lines
drawn connecting two points on the graph. This is done through a
limiting process. See the next slide.
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Tangent as Limit of Secants

We are trying to calculate the tangent line at x = 4. We do this by
drawing secant lines between (4, f (4)) and (4 + h, f (4 + h)),
letting h→ 0.
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Tangent as Limit of Secants

This limiting process can be captured by taking the limit as h→ 0,
so to find the slope of the tangent line at a point (x , f (x)), we
must calculate

lim
h→0

f (x + h)− f (x)

(x + h)− x
= lim

h→0

f (x + h)− f (x)

h
.
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The Derivative and the Slope of a Tangent Line

Definition

The derivative of a function f with respect to the variable x is the
function f ′ where

f ′(x) := lim
h→0

f (x + h)− f (x)

h
.

The domain of f ′ is simply all points x at which the limit exists.

The derivative also gives the slope of the tangent line at (x , f (x)).
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The Derivative and Average Rate of Change

Definition

The average rate of change m of a function f between (x , f (x))
and (x + h, f (x + h)) is just the slope of the secant line connecting
those points.

m =
f (x + h)− f (x)

(x + h)− x
=

f (x + h)− f (x)

h

The derivative relates the average rate of change to the
instantaneous rate of change through the limit as h→ 0.
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Notation

The following are also used to denote the derivative of a function f
with respect to x .

Dx f (x)

df
dx

f ′(x)
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Computing a Derivative

You can use the four-step process to compute a derivative without
applying any differentiation rules which we will learn later.

1 Compute f (x + h).

2 Calculate the difference f (x + h)− f (x).

3 Form the quotient

f (x + h)− f (x)

h
.

4 Take the limit

lim
h→0

f (x + h)− f (x)

h
.
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Example

Compute f ′(x) where f (x) = 1
x+1 .

1 f (x + h) = 1
x+h+1 .

2 f (x + h)− f (x) = 1
x+h+1 −

1
x+1 =

x+1
(x+h+1)(x+1) −

x+h+1
(x+h+1)(x+1) = −h

(x+h+1)(x+1) .

3
f (x+h)−f (x)

h = −1
(x+h+1)(x+1) .

4 lim
h→0

f (x+h)−f (x)
h = lim

h→0

−1
(x+h+1)(x+1) = −1

(x+1)2
.
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Example

Compute f ′(2) where f (x) = 2x2.

1 f (2 + h) = 2(2 + h)2 = 2(4 + 4h + h2) = 8 + 8h + 2h2.

2 f (2 + h)− f (2) = 8h + 2h2.

3
f (2+h)−f (2)

h = 8 + 2h.

4 lim
h→0

f (2+h)−f (2)
h = 8.



Example

Compute f ′(2) where f (x) = 2x2.

1 f (2 + h) = 2(2 + h)2 = 2(4 + 4h + h2) = 8 + 8h + 2h2.

2 f (2 + h)− f (2) = 8h + 2h2.

3
f (2+h)−f (2)

h = 8 + 2h.

4 lim
h→0

f (2+h)−f (2)
h = 8.



Example

Compute f ′(2) where f (x) = 2x2.

1 f (2 + h) = 2(2 + h)2 = 2(4 + 4h + h2) = 8 + 8h + 2h2.

2 f (2 + h)− f (2) = 8h + 2h2.

3
f (2+h)−f (2)

h = 8 + 2h.

4 lim
h→0

f (2+h)−f (2)
h = 8.



Example

Compute f ′(2) where f (x) = 2x2.

1 f (2 + h) = 2(2 + h)2 = 2(4 + 4h + h2) = 8 + 8h + 2h2.

2 f (2 + h)− f (2) = 8h + 2h2.

3
f (2+h)−f (2)

h = 8 + 2h.

4 lim
h→0

f (2+h)−f (2)
h = 8.



Example

Compute f ′(2) where f (x) = 2x2.

1 f (2 + h) = 2(2 + h)2 = 2(4 + 4h + h2) = 8 + 8h + 2h2.

2 f (2 + h)− f (2) = 8h + 2h2.

3
f (2+h)−f (2)

h = 8 + 2h.

4 lim
h→0

f (2+h)−f (2)
h = 8.



Example

Compute f ′(x) where f (x) = − 1
x2

and write the equation for the

tangent line at the point (2,−1
4).
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tangent line at the point (2,−1
4).

So, we have f ′(x) = 2
x3

, so the slope of the tangent line at (2,−1
4)

is f ′(2) = 1
4 . Then the equation of the tangent line must be

(point-slope)

y −
(
−1

4

)
=

1

4
(x − (2)),

or, equivalently, (slope-intercept)

y =
1

4
x − 3

4
.
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Example: Flat Tangent Line

Find where the tangent line of f (x) = 2x2 + 8x is horizontal.

Doing the four-step method, it’s easy to calculate that
f ′(x) = 4x + 8. The tangent line will be horizontal when its slope
is zero, i.e. when f ′(x) = 0. So, we solve

4x + 8 = 0 =⇒ 4x = −8 =⇒ x = −2.

So, the tangent line is has slope zero at (-2,-8)
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Example: Flat Tangent Line

What does it mean for the tangent line to be horizontal?

It means
that the instantaneous rate of change is zero!
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Differentiability Implies Continuity

Theorem

If a function f is differentiable at x = a, then it is also continuous
at x = a.

Thus, discontinuity implies that a function is not differentiable. A
function may also fail to be differentiable at a point if it has a
sharp turn (corner) or if its tangent line is vertical.
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Non-Differentiability: Corner

Consider f (x) = |x |.

Then f ′(x) = lim
h→0

|x+h|−|x |
h .

So, f ′(0) = lim
h→0

|h|
h .

But this limit doesn’t exist because lim
h→0+

|h|
h = 1 and lim

h→0−

|h|
h = −1
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Non-Differentiability: Corner

Consider f (x) = |x |.

Then f ′(x) = lim
h→0

|x+h|−|x |
h .

So, f ′(0) = lim
h→0

|h|
h .

But this limit doesn’t exist because lim
h→0+

|h|
h = 1 and lim
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|h|
h = −1



Non-Differentiability: Corner

The graph of f (x) = |x |. Observe the corner at the origin.
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Non-Differentiability: Vertical Tangent Line

Consider f (x) = x
1
3 . Then,

f ′(0) = lim
h→0

h
1
3

h
= lim

h→0

1

h
2
3

which does not exist because as h→ 0+, 1

h
2
3

increases without

bound.



Non-Differentiability: Vertical Tangent Line

The graph of f (x) = x
1
3 . Observe the vertical tangent line that the

y -axis makes with the graph.
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Applied Example

The weekly demand for car washes at GooGoo’s Car Wash can be
modeled by d(p) = 15625− p2, where the quantity demanded d
depends on the price p. Find the average rate of change in the
unit demand for car washes if the price changes from $30 to $50,
from $30 to $35, and from $30 to $31.

Well, d(50)−d(30)
20 = −80 car washes per dollar increase.

And, d(35)−d(30)
5 = −65 car washes per dollar increase.

And, d(31)−d(30)
1 = −61 car washes per dollar increase.
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Applied Example

The weekly demand for car washes at GooGoo’s Car Wash can be
modeled by d(p) = 15625− p2, where the quantity demanded d
depends on the price p. Find the instantaneous rate of change in
the unit demand for car washes at p = 30.

Well, f ′(30) = lim
h→0

(15625−(30+h)2)−(15625−302)
h =

lim
h→0

−900−60h−h2+900
h = lim

h→0
(−60 + h) = − 60.
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Assignment

Read 3.1-3.2. Do problems 6, 14, 22, 26, 34, 38, 44, 62 in 2.6.




