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Why Use Differentiation Rules?

Our previous four-step method was useful for calculating the
derivative

, but it was very laborious. For every derivative, you
needed to correctly calculate a quotient and then a limit. But we
can make the process easier by proving rules about differentiation
of certain functions. Today, we’ll learn the following rules.

The Derivative of a Constant

The Power Rule

The Derivative of a Constant Multiple of a Function

The Sum Rule

The Product Rule

The Quotient Rule

First, we’ll go over each rule and its proof. Then we’ll move on to
examples.
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The Derivative of a Constant

Theorem (The Derivative of a Constant)

For any constant c ∈ R, we have

d

dx
[c] = 0.

Proof : lim
h→0

f (x+h)−f (x)
h

f (x)=c
= lim

h→0

c−c
h = lim

h→0

0
h = lim

h→0
0 = 0.
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The Power Rule

Theorem (The Power Rule)

For any n 6= −1, we have

d

dx
[xn] = nxn−1.

Proof (Assuming n ∈ N):

lim
h→0

f (x+h)−f (x)
h

f (x)=xn
= lim

h→0

(x+h)n+xn

h
binomial theorem

=

lim
h→0

(xn+nxn−1h+ n(n−1)xn−2h2

2!
+···+nxhn−1+hn)−xn

h =

lim
h→0

nxn−1h+ n(n−1)xn−2h2

2!
+···+nxhn−1+hn

h =

lim
h→0

[nxn−1 + n(n−1)xn−2h
2! + · · ·+ nxhn−2 + hn−1] = nxn−1
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The Derivative of a Constant Multiple of a Function

Theorem (The Derivative of a Constant Multiple of a Function)

For any c ∈ R, we have

d

dx
[cf (x)] = c

d

dx
[f (x)].

Proof : d
dx [cf (x)]

g(x)=cf (x)
= lim

h→0

g(x+h)−g(x)
h

g(x)=cf (x)
=

lim
h→0

cf (x+h)−cf (x)
h = c lim

h→0

f (x+h)−f (x)
h = c d

dx [f (x)].
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The Sum Rule

Theorem (The Sum Rule)

If f and g are functions, then we have

d

dx
[f (x)± g(x)] =

d

dx
f (x)± d

dx
g(x).

Proof : d
dx [f (x)± g(x)] = lim

h→0

f (x+h)±g(x+h)−f (x)∓g(x)
h =

lim
h→0

f (x+h)−f (x)
h ± lim

h→0

g(x+h)−g(x)
h = d

dx f (x)± d
dx g(x).
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h ]. And passing

through the limit on both sides of the equality proves the theorem.
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Examples: Constant Function

Looking at the graph of a constant function, it’s clear that the
slope is always flat, i.e. 0.

Here, f (x) = 2.5 and f ′(x) = 0.
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Examples: Power Rule

Find the derivative of the following functions.

f (x) = x =⇒ f ′(x) = 1 · x1−1 = 1x0 = 1.

g(h) = 1
hπ =⇒ g ′(h) = − π · h−π−1 = − π

hπ+1 .

h(x) =
√
x3 =⇒ h′(x) = 3

2 · x
3
2
−1 = 3

2x
1
2 .

y(x) = 1√
x

=⇒ y ′(x) = − 1
2x
− 1

2
−1 = − 1

2x
− 3

2 = − 1

2x
3
2
.



Examples: Power Rule

Find the derivative of the following functions.

f (x) = x =⇒

f ′(x) = 1 · x1−1 = 1x0 = 1.

g(h) = 1
hπ =⇒ g ′(h) = − π · h−π−1 = − π

hπ+1 .

h(x) =
√
x3 =⇒ h′(x) = 3

2 · x
3
2
−1 = 3

2x
1
2 .

y(x) = 1√
x

=⇒ y ′(x) = − 1
2x
− 1

2
−1 = − 1

2x
− 3

2 = − 1

2x
3
2
.



Examples: Power Rule

Find the derivative of the following functions.

f (x) = x =⇒ f ′(x) =

1 · x1−1 = 1x0 = 1.

g(h) = 1
hπ =⇒ g ′(h) = − π · h−π−1 = − π

hπ+1 .

h(x) =
√
x3 =⇒ h′(x) = 3

2 · x
3
2
−1 = 3

2x
1
2 .

y(x) = 1√
x

=⇒ y ′(x) = − 1
2x
− 1

2
−1 = − 1

2x
− 3

2 = − 1

2x
3
2
.



Examples: Power Rule

Find the derivative of the following functions.

f (x) = x =⇒ f ′(x) = 1 · x1−1 =

1x0 = 1.

g(h) = 1
hπ =⇒ g ′(h) = − π · h−π−1 = − π

hπ+1 .

h(x) =
√
x3 =⇒ h′(x) = 3

2 · x
3
2
−1 = 3

2x
1
2 .

y(x) = 1√
x

=⇒ y ′(x) = − 1
2x
− 1

2
−1 = − 1

2x
− 3

2 = − 1

2x
3
2
.



Examples: Power Rule

Find the derivative of the following functions.

f (x) = x =⇒ f ′(x) = 1 · x1−1 = 1x0 =

1.

g(h) = 1
hπ =⇒ g ′(h) = − π · h−π−1 = − π

hπ+1 .

h(x) =
√
x3 =⇒ h′(x) = 3

2 · x
3
2
−1 = 3

2x
1
2 .

y(x) = 1√
x

=⇒ y ′(x) = − 1
2x
− 1

2
−1 = − 1

2x
− 3

2 = − 1

2x
3
2
.



Examples: Power Rule

Find the derivative of the following functions.

f (x) = x =⇒ f ′(x) = 1 · x1−1 = 1x0 = 1.

g(h) = 1
hπ =⇒ g ′(h) = − π · h−π−1 = − π

hπ+1 .

h(x) =
√
x3 =⇒ h′(x) = 3

2 · x
3
2
−1 = 3

2x
1
2 .

y(x) = 1√
x

=⇒ y ′(x) = − 1
2x
− 1

2
−1 = − 1

2x
− 3

2 = − 1

2x
3
2
.



Examples: Power Rule

Find the derivative of the following functions.

f (x) = x =⇒ f ′(x) = 1 · x1−1 = 1x0 = 1.

g(h) = 1
hπ =⇒

g ′(h) = − π · h−π−1 = − π
hπ+1 .

h(x) =
√
x3 =⇒ h′(x) = 3

2 · x
3
2
−1 = 3

2x
1
2 .

y(x) = 1√
x

=⇒ y ′(x) = − 1
2x
− 1

2
−1 = − 1

2x
− 3

2 = − 1

2x
3
2
.



Examples: Power Rule

Find the derivative of the following functions.

f (x) = x =⇒ f ′(x) = 1 · x1−1 = 1x0 = 1.

g(h) = 1
hπ =⇒ g ′(h) =

− π · h−π−1 = − π
hπ+1 .

h(x) =
√
x3 =⇒ h′(x) = 3

2 · x
3
2
−1 = 3

2x
1
2 .

y(x) = 1√
x

=⇒ y ′(x) = − 1
2x
− 1

2
−1 = − 1

2x
− 3

2 = − 1

2x
3
2
.



Examples: Power Rule

Find the derivative of the following functions.

f (x) = x =⇒ f ′(x) = 1 · x1−1 = 1x0 = 1.

g(h) = 1
hπ =⇒ g ′(h) = − π · h−π−1 =

− π
hπ+1 .

h(x) =
√
x3 =⇒ h′(x) = 3

2 · x
3
2
−1 = 3

2x
1
2 .

y(x) = 1√
x

=⇒ y ′(x) = − 1
2x
− 1

2
−1 = − 1

2x
− 3

2 = − 1

2x
3
2
.



Examples: Power Rule

Find the derivative of the following functions.

f (x) = x =⇒ f ′(x) = 1 · x1−1 = 1x0 = 1.

g(h) = 1
hπ =⇒ g ′(h) = − π · h−π−1 = − π

hπ+1 .

h(x) =
√
x3 =⇒ h′(x) = 3

2 · x
3
2
−1 = 3

2x
1
2 .

y(x) = 1√
x

=⇒ y ′(x) = − 1
2x
− 1

2
−1 = − 1

2x
− 3

2 = − 1

2x
3
2
.



Examples: Power Rule

Find the derivative of the following functions.

f (x) = x =⇒ f ′(x) = 1 · x1−1 = 1x0 = 1.

g(h) = 1
hπ =⇒ g ′(h) = − π · h−π−1 = − π

hπ+1 .

h(x) =
√
x3 =⇒

h′(x) = 3
2 · x

3
2
−1 = 3

2x
1
2 .

y(x) = 1√
x

=⇒ y ′(x) = − 1
2x
− 1

2
−1 = − 1

2x
− 3

2 = − 1

2x
3
2
.



Examples: Power Rule

Find the derivative of the following functions.

f (x) = x =⇒ f ′(x) = 1 · x1−1 = 1x0 = 1.

g(h) = 1
hπ =⇒ g ′(h) = − π · h−π−1 = − π

hπ+1 .

h(x) =
√
x3 =⇒ h′(x) =

3
2 · x

3
2
−1 = 3

2x
1
2 .

y(x) = 1√
x

=⇒ y ′(x) = − 1
2x
− 1

2
−1 = − 1

2x
− 3

2 = − 1

2x
3
2
.



Examples: Power Rule

Find the derivative of the following functions.

f (x) = x =⇒ f ′(x) = 1 · x1−1 = 1x0 = 1.

g(h) = 1
hπ =⇒ g ′(h) = − π · h−π−1 = − π

hπ+1 .

h(x) =
√
x3 =⇒ h′(x) = 3

2 · x
3
2
−1 =

3
2x

1
2 .

y(x) = 1√
x

=⇒ y ′(x) = − 1
2x
− 1

2
−1 = − 1

2x
− 3

2 = − 1

2x
3
2
.



Examples: Power Rule

Find the derivative of the following functions.

f (x) = x =⇒ f ′(x) = 1 · x1−1 = 1x0 = 1.

g(h) = 1
hπ =⇒ g ′(h) = − π · h−π−1 = − π

hπ+1 .

h(x) =
√
x3 =⇒ h′(x) = 3

2 · x
3
2
−1 = 3

2x
1
2 .

y(x) = 1√
x

=⇒ y ′(x) = − 1
2x
− 1

2
−1 = − 1

2x
− 3

2 = − 1

2x
3
2
.



Examples: Power Rule

Find the derivative of the following functions.

f (x) = x =⇒ f ′(x) = 1 · x1−1 = 1x0 = 1.

g(h) = 1
hπ =⇒ g ′(h) = − π · h−π−1 = − π

hπ+1 .

h(x) =
√
x3 =⇒ h′(x) = 3

2 · x
3
2
−1 = 3

2x
1
2 .

y(x) = 1√
x

=⇒

y ′(x) = − 1
2x
− 1

2
−1 = − 1

2x
− 3

2 = − 1

2x
3
2
.



Examples: Power Rule

Find the derivative of the following functions.

f (x) = x =⇒ f ′(x) = 1 · x1−1 = 1x0 = 1.

g(h) = 1
hπ =⇒ g ′(h) = − π · h−π−1 = − π

hπ+1 .

h(x) =
√
x3 =⇒ h′(x) = 3

2 · x
3
2
−1 = 3

2x
1
2 .

y(x) = 1√
x

=⇒ y ′(x) =

− 1
2x
− 1

2
−1 = − 1

2x
− 3

2 = − 1

2x
3
2
.



Examples: Power Rule

Find the derivative of the following functions.

f (x) = x =⇒ f ′(x) = 1 · x1−1 = 1x0 = 1.

g(h) = 1
hπ =⇒ g ′(h) = − π · h−π−1 = − π

hπ+1 .

h(x) =
√
x3 =⇒ h′(x) = 3

2 · x
3
2
−1 = 3

2x
1
2 .

y(x) = 1√
x

=⇒ y ′(x) = − 1
2x
− 1

2
−1 =

− 1
2x
− 3

2 = − 1

2x
3
2
.



Examples: Power Rule

Find the derivative of the following functions.

f (x) = x =⇒ f ′(x) = 1 · x1−1 = 1x0 = 1.

g(h) = 1
hπ =⇒ g ′(h) = − π · h−π−1 = − π

hπ+1 .

h(x) =
√
x3 =⇒ h′(x) = 3

2 · x
3
2
−1 = 3

2x
1
2 .

y(x) = 1√
x

=⇒ y ′(x) = − 1
2x
− 1

2
−1 = − 1

2x
− 3

2 =

− 1

2x
3
2
.



Examples: Power Rule

Find the derivative of the following functions.

f (x) = x =⇒ f ′(x) = 1 · x1−1 = 1x0 = 1.

g(h) = 1
hπ =⇒ g ′(h) = − π · h−π−1 = − π

hπ+1 .

h(x) =
√
x3 =⇒ h′(x) = 3

2 · x
3
2
−1 = 3

2x
1
2 .

y(x) = 1√
x

=⇒ y ′(x) = − 1
2x
− 1

2
−1 = − 1

2x
− 3

2 = − 1

2x
3
2
.



Examples: Constant Multiple of a Function

Find the derivative of the following functions.

f (x) = 5
x2

=⇒ f ′(x) = 5 · (−2x−2−1) = − 10x−3 = −10
x3
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f (x) = 3x4 =⇒ f ′(x) = 3 · (4x4−1) = 12x3.
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dx [8x ]− d
dx [2x2] =

0 + 8(1x1−1)− 2(2x2−1) = 8− 4x .
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Example

Jim’s Fisheries is trying to increase the number of fish they can
farm through a breeding program over the next few years. The
population of fish Jim’s Fisheries can farm after the breeding
program has been implemented is given by (t in months)

P(t) = 2t4 − t3 − t + 250 (0 ≤ t ≤ 8).

What is the rate of change in the population after 2 months? 6
months? What is the final population after implementation of the
breeding program?
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Example

To find the rate of change, we calculate

P ′(t) =
d

dx
[2t4 − t3 − t + 250] = 8t3 − 3t2 − 1.

This means that P ′(2) = 51 and P ′(6) = 1619.

And the final population is P(8) = 7922.
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Examples: The Product Rule

Find the derivative of the following functions.

h(x) = 5x2(x2 + 1). We’ll let f (x) = 5x2 and g(x) = x2 + 1.
Then, h′(x) = f (x)g ′(x) + g(x)f ′(x) =
5x2(2x2−1 + 0) + (x2 + 1)(5 · 2x2−1) =
5x2(2x) + (x2 + 1)(10x) = 10x3 + 10x3 + 10x = 20x3 + 10x .

h(x) = x2(
√
x − 3x). We’ll let f (x) = x2 & g(x) =

√
x − 3x .

Then, h′(x) = f (x)g ′(x) + g(x)f ′(x) =

x2(12x
1
2
−1 − 3(1x1−1)) + (2x2−1)(

√
x − 3x) =

x2(12x
− 1

2 − 3) + (2x)(
√
x − 3x) = 1

2x
3
2 − 3x2 + 2x

3
2 − 6x2 =

5
2x

3
2 − 9x2.
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3
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5
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3
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Option to Avoid Product Rule

Sometimes, if you don’t want to use the product rule, you can
perform the multiplication before the differentiation.

h(x) = x2(
√
x − 3x) =⇒ h(x) = x

5
2 − 3x3

Thus, we have

h′(x) =
5

2
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5
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2
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Caution!

Be careful!

d

dx
[f (x)g(x)]6=f ′(x)g ′(x).

For example, if we used this incorrect rule, we would calculate for
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√
x − 3x) that

h′(x) = (2x)(
1
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1
2 − 6x .

But, we know this is wrong since we already calculated

h′(x) =
5

2
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3
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Examples: The Quotient Rule

Find the derivative of the following functions.

h(x) = x
x2+1

. We’ll let f (x) = x and g(x) = x2 + 1. Then,

h′(x) = g(x)f ′(x)−f (x)g ′(x)
[g(x)]2

= (x2+1)(1)−(x)(2x)
[x2+1]2

= 1−x2
(x2+1)2

.

Always check to make sure that factors cannot be cancelled!

h(x) = −
√
x

x3−1 . We’ll let f (x) = −
√
x & g(x) = x3 − 1.

Then, h′(x) = g(x)f ′(x)−f (x)g ′(x)
[g(x)]2

=

(x3−1)(− 1
2
x−

1
2 )−(−

√
x)(3x2)

(x3−1)2 =
− 1

2
x
5
2+ 1

2
x−

1
2+3x

5
2

(x3−1)2 = x−
1
2+5x

5
2

2(x3−1)2 =

1+5x3

2
√
x(x3−1)2 .
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Caution!

Be careful!

d

dx

[
f (x)

g(x)

]
6= f ′(x)

g ′(x)
.

For instance, if we used this incorrect rule, we would calculate for
h(x) = x

x2+1
that

h′(x) =
1

2x
,

but we know this is wrong since we already calculated

h(x) =
1− x2

(x2 + 1)2
.
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Assignment

Read 3.3-3.4. Do problems 28, 31, 36, 38, 42, 50, 70, 78 in 3.1
and 12, 26, 42, 62, 68 in 3.2.




