Lecture 2: Chapter 2

C C Moxley

UAB Mathematics

3 September 15

(ロ)、(型)、(E)、(E)、 E) の(の)

Definition (Frequency Distribution)

Frequency distributions show how data are distributed among categories (classes) by listing the frequencies (i.e. the number of instances) alongside a category (class).

Example

Definition (Frequency Distribution)

Frequency distributions show how data are distributed among categories (classes) by listing the frequencies (i.e. the number of instances) alongside a category (class).

Example

Grade	Frequency	
A	15	
В	18	
С	12	
D	8	
F	5	

upper/lower class limits

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- upper/lower class limits
- class boundaries

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- upper/lower class limits
- class boundaries
- class midpoints

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- upper/lower class limits
- class boundaries
- class midpoints
- class width

- upper/lower class limits
- class boundaries
- class midpoints
- class width

Consider the differences in the following frequency distributions

Example

Grade	Frequency	Grade	Frequency
A	15	90-100	15
В	18	80-89	18
С	12	70-79	12
D	8	60-69	8
F	5	50-59	5

First, we want to decide how many classes we will have. How many should we have?

First, we want to decide how many classes we will have. How many should we have? 5 looks like a good number.

First, we want to decide how many classes we will have. How many should we have? 5 looks like a good number. Thus, the class width should be

First, we want to decide how many classes we will have. How many should we have? 5 looks like a good number. Thus, the class width should be 10.

First, we want to decide how many classes we will have. How many should we have? 5 looks like a good number. Thus, the class width should be 10. Thus we have classes 50-59, 60-69, 70-79, 80-89, 90-99.

Our resulting frequency distribution would look like this.

Class	Frequency
90-99	5
80-89	3
70-79	4
60-69	8
50-59	5

(ロ)、(型)、(E)、(E)、 E) の(の)

Our resulting relative frequency distribution would look like this.

Class	Frequency	Class	Relative Frequency
90-99	5	90-99	20%
80-89	3	80-89	12%
70-79	4	70-79	16%
60-69	8	60-69	32%
50-59	5	50-59	20%

Our resulting cumulative frequency distribution would look like this.

Class	Frequency	Class	Cumulative Frequency
90-99	5	\leq 99	25
80-89	3	<u>≤</u> 89	20
70-79	4	≤79	17
60-69	8	<u>≤</u> 69	13
50-59	5	\leq 59	5

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Our resulting cumulative frequency distribution would look like this.

Class	Frequency	Class	Cumulative Frequency
90-99	5	< 100	25
80-89	3	< 90	20
70-79	4	< 80	17
60-69	8	< 70	13
50-59	5	< 60	5

A normal distribution is characterized by frequencies which start out low, increase to one or two high frequencies, and finally decrease to low frequencies.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A normal distribution is characterized by frequencies which start out low, increase to one or two high frequencies, and finally decrease to low frequencies. The frequencies are roughly symmetric.

A normal distribution is characterized by frequencies which start out low, increase to one or two high frequencies, and finally decrease to low frequencies. The frequencies are roughly symmetric. A perfectly **symmetric** list of frequencies would look like 1, 2, 3, 4, 5, 5, 4, 3, 2, 1 or 1, 2, 3, 4, 5, 4, 3, 2, 1.

Was our previous frequency distribution normal?

Class	Frequency
90-99	5
80-89	3
70-79	4
60-69	8
50-59	5

What might you be able to infer about this sample of student heart rates?

Class	Frequency	
140-149	6	
130-139	2	-
120-129	0	-
110-119	0	-
100-109	0	
90-99	1	
80-89	3	
70-79	2	
60-69	6	
50-59	5	-
		-

When constructing classes for a frequency distribution, you might use the Sturges Formula, which says the number of classes can be approximated by the formula

When constructing classes for a frequency distribution, you might use the Sturges Formula, which says the number of classes can be approximated by the formula

$$1 + \frac{\log n}{\log 2}.$$

In the above formula, n is the number of data points, i.e. records.

How many classes should have been used when making our frequency distribution of heart rates for 25 students?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How many classes should have been used when making our frequency distribution of heart rates for 25 students?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Well,
$$1 + \frac{\log 25}{\log 2} \approx 6.$$

How many classes should have been used when making our frequency distribution of heart rates for 25 students?

Well, $1 + \frac{\log 25}{\log 2} \approx 6$. So, we would like there to be about six classes.

§2.3 Histograms

Definition (Histogram)

A **histogram** is a graph of a frequency distribution with classes running along the horizontal axis and frequences running along the vertical axis. The bars touch one another in a histogram (unless a class happens to have a frequency of 0).

§2.3 Histograms

Definition (Histogram)

A **histogram** is a graph of a frequency distribution with classes running along the horizontal axis and frequences running along the vertical axis. The bars touch one another in a histogram (unless a class happens to have a frequency of 0).

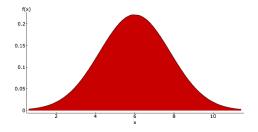
Example (Heart Rates)

Convert the frequency distribution to a histogram!

Class	Frequency
90-99	5
80-89	3
70-79	4
60-69	8
50-59	5

A normal distribution results in a histogram with a bell shape!

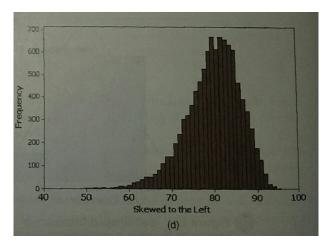
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

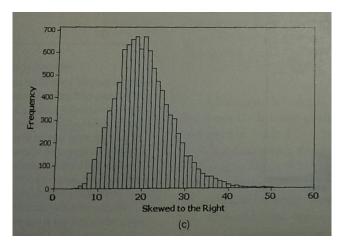

A normal distribution results in a histogram with a bell shape!

Is the histogram from the frequency distribution below bell shaped?

Class	Frequency
90-99	4
80-89	5
70-79	9
60-69	4
50-59	3

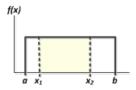
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ


A normal distribution has a bell shape and should not be skewed left or right.


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Typical Distributions

A normal distribution has a bell shape and should not can be skewed left or right.



A normal distribution has a bell shape and should not can be skewed left or right.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

A uniform distribution is (relatively) flat.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

What would a relative frequency histogram look like?

What would a relative frequency histogram look like?

What would a cumulative frequency histogram look like?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

What would a relative frequency histogram look like?

What would a cumulative frequency histogram look like?

Discuss normal quantile plots and how they can be used to identify normal distributions.

(ロ)、(型)、(E)、(E)、 E) の(の)

We will discuss correlation coefficients, cluster/gap phenomena, timeseries, dotplots and stemplots, bar graphs, Pareto charts, pie charts, frequency polygons, and ogives.

We will discuss correlation coefficients, cluster/gap phenomena, timeseries, dotplots and stemplots, bar graphs, Pareto charts, pie charts, frequency polygons, and ogives. We'll also discuss problems with pictographs and graphs which have non-zero axes.