Lecture 12: Chapter 12

C C Moxley

**UAB** Mathematics

14 November 16

(ロ)、(型)、(E)、(E)、 E) の(の)

# §12.1 ANOVA (Analysis of Variance) Tests

## In Chapter 9, we tested to see if two population means were equal.

In Chapter 9, we tested to see if two population means were equal. In this chapter, we will test to see if three or more population samples are the same using a **one-way** ANOVA test. We call it "one-way" because we separate our populations into groups based on one characteristic.

In Chapter 9, we tested to see if two population means were equal. In this chapter, we will test to see if three or more population samples are the same using a **one-way** ANOVA test. We call it "one-way" because we separate our populations into groups based on one characteristic. This is often called an "analysis of variance" but this refers to the method of testing, not the thing which we are testing - which is means not variances.

A one-way ANOVA test is a method of testing the equality of three or more population means by analyzing sample variances. One-way analysis of variance is used with data categorized with one **factor**, so there is one characteristic used to separate the sample data into the different categories.

A one-way ANOVA test is a method of testing the equality of three or more population means by analyzing sample variances. One-way analysis of variance is used with data categorized with one **factor**, so there is one characteristic used to separate the sample data into the different categories.

• Populations must be approximately normally distributed.

A one-way ANOVA test is a method of testing the equality of three or more population means by analyzing sample variances. One-way analysis of variance is used with data categorized with one **factor**, so there is one characteristic used to separate the sample data into the different categories.

- Populations must be approximately normally distributed.
- They must have the same variance, roughly. (Or at least the sample sizes must be the same for each category.)

A one-way ANOVA test is a method of testing the equality of three or more population means by analyzing sample variances. One-way analysis of variance is used with data categorized with one **factor**, so there is one characteristic used to separate the sample data into the different categories.

- Populations must be approximately normally distributed.
- They must have the same variance, roughly. (Or at least the sample sizes must be the same for each category.)

• The samples must be simple random and quantitative.

A one-way ANOVA test is a method of testing the equality of three or more population means by analyzing sample variances. One-way analysis of variance is used with data categorized with one **factor**, so there is one characteristic used to separate the sample data into the different categories.

- Populations must be approximately normally distributed.
- They must have the same variance, roughly. (Or at least the sample sizes must be the same for each category.)
- The samples must be simple random and quantitative.
- The samples must be independent not matched or paired.

A one-way ANOVA test is a method of testing the equality of three or more population means by analyzing sample variances. One-way analysis of variance is used with data categorized with one **factor**, so there is one characteristic used to separate the sample data into the different categories.

- Populations must be approximately normally distributed.
- They must have the same variance, roughly. (Or at least the sample sizes must be the same for each category.)
- The samples must be simple random and quantitative.
- The samples must be independent not matched or paired.
- The different samples are from populations that are categorized in only one way.

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_n$$

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_n$$

 $H_1$ : At least one of the population means differs from the others.

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_n$$

 $H_1$ : At least one of the population means differs from the others. You can find "by hand" computations for a one-way ANOVA test, see page 605. The test is a right-tailed F test. The weights (in kg) of oak trees is given below for trees planted in the same plot but with different growth-enhancing methods applied. Use a 0.05 significance level to test the claim that the four treatment categories yield oak trees with the same mean weight. Does there appear to be a best method for enhancing growth of trees in this soil?

| Control | Fert | Irr  | Fert & Irr |  |  |
|---------|------|------|------------|--|--|
| 0.24    | 0.92 | 0.96 | 1.07       |  |  |
| 1.69    | 0.07 | 1.43 | 1.63       |  |  |
| 1.23    | 0.56 | 1.26 | 1.39       |  |  |
| 0.99    | 1.74 | 1.57 | 0.49       |  |  |
| 1.80    | 1.13 | 0.72 | 0.95       |  |  |

| Control | Fert | Irr  | Fert & Irr |
|---------|------|------|------------|
| 0.24    | 0.92 | 0.96 | 1.07       |
| 1.69    | 0.07 | 1.43 | 1.63       |
| 1.23    | 0.56 | 1.26 | 1.39       |
| 0.99    | 1.74 | 1.57 | 0.49       |
| 1.80    | 1.13 | 0.72 | 0.95       |

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

We use StatCrunch to conduct the test.

# $\S12.2$ Example

What's our null and alternative hypotheses? Based on the output, do we reject or accept the null hypothesis? What does this mean? (Use  $\alpha = 0.05$ .)

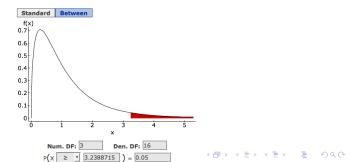
| Options           | 1    |           |           |    |            | 53      |
|-------------------|------|-----------|-----------|----|------------|---------|
|                   |      | ariance r |           |    |            |         |
| ata store         | d in | separate  | columns.  |    |            |         |
| Column s          | tati | stics     |           |    |            |         |
| Column a          | e n  | + Mean +  | Std. Dev. | ¢  | Std. Error | r ¢     |
| Control           |      | 5 1.19    | 0.6257395 | 56 | 0.2798392  | 24      |
| Fert              |      | 5 0.884   | 0.62492   | 24 | 0.279474   | 51      |
| Irr               |      | 5 1.188   | 0.3466554 | 15 | 0.1550290  | 03      |
| F & I             |      | 5 1.106   | 0.4359816 | 55 | 0.1949769  | 92      |
|                   |      |           |           |    |            |         |
| NOVA ta<br>Source | DF   | SS        | MS        |    | F-Stat     | P-value |
| Source            | DF   | 55        | MS        |    | F-Stat     | P-value |
| Columns           | 3    | 0.3114    | 0.1038    | 0. | .38010491  | 0.7687  |
| Error             | 16   | 4.36932   | 0.2730825 |    |            |         |
| Total             | 4.0  | 4.68072   |           |    |            |         |

<注▶ < 注▶ 注 の へ (?)

You can also perform the previous test using a critical value test. The F critical value is computed using the significance, the F calculator, and the "degrees of freedom of the numerator" and the "degrees of freedom of the denominator" which are, respectively, one fewer than the number of columns and the difference between the total number of data points and the number of columns.

You can also perform the previous test using a critical value test. The F critical value is computed using the significance, the F calculator, and the "degrees of freedom of the numerator" and the "degrees of freedom of the denominator" which are, respectively, one fewer than the number of columns and the difference between the total number of data points and the number of columns. Recall the F stat from the output was 0.3801.

You can also perform the previous test using a critical value test. The F critical value is computed using the significance, the F calculator, and the "degrees of freedom of the numerator" and the "degrees of freedom of the denominator" which are, respectively, one fewer than the number of columns and the difference between the total number of data points and the number of columns. Recall the F stat from the output was 0.3801.



An **analysis of variance (ANOVA)** test compares the means of multiple populations/subpopulations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An **analysis of variance (ANOVA)** test compares the means of multiple populations/subpopulations. We've compared two means before, but a one-way ANOVA compares multiple means. It follows the

DATA = FIT + RESIDUAL.



An **analysis of variance (ANOVA)** test compares the means of multiple populations/subpopulations. We've compared two means before, but a one-way ANOVA compares multiple means. It follows the

DATA = FIT + RESIDUAL.

This model arises from the assumption that all the means are equal (our hull hypothesis). And thus, the sample means should follow

$$x_{ij} = \mu_i + \epsilon_{ij},$$

where i = 1, ..., I and  $j = 1, ..., n_i$  and  $\epsilon_{ij}$  all have  $N(0, \sigma)$  distribution.

## The estimate for $\sigma$ is $s_p$ which is given by

$$\sqrt{rac{(n_1-1)s_1^2+\cdots+(n_i-1)s_i^2}{(n_1-1)+\cdots+(n_i-1)}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The estimate for  $\sigma$  is  $s_p$  which is given by

$$\sqrt{rac{(n_1-1)s_1^2+\dots+(n_i-1)s_i^2}{(n_1-1)+\dots+(n_i-1)}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We always pool the standard deviation for a one-way ANOVA.

## Definition (hypothesis for one-way ANOVA)

## The null and alternative hypothesis for a one-way ANOVA are

 $H_0: \mu_1 = \cdots = \mu_i$ 

 $H_a$ : not all of the  $\mu_i$  are equal.

## Definition (hypothesis for one-way ANOVA)

The null and alternative hypothesis for a one-way ANOVA are

 $H_0: \mu_1 = \cdots = \mu_i$ 

 $H_a$ : not all of the  $\mu_i$  are equal.

The conclusion of a one-way ANOVA can often be reached by finding the P-value from .

## Definition (hypothesis for one-way ANOVA)

The null and alternative hypothesis for a one-way ANOVA are

 $H_0: \mu_1 = \cdots = \mu_i$ 

 $H_a$ : not all of the  $\mu_i$  are equal.

The conclusion of a one-way ANOVA can often be reached by finding the *P*-value from . We will also discuss how the computations might be done by hand.

Definition (sum of squares, degrees of freedom, and mean squares)

**Sum of squares** represent variation in the data. They are calculated by summing square deviations. There are three sources of variation in a one-way ANOVA.

SST = SSG + SSE

The degrees of freedom are associated with each sum of squares.

 $\mathsf{DFT}=\mathsf{DFG}+\mathsf{DFE}$ 

The **mean squares** are  $\frac{\text{sum of squares}}{\text{degrees of freedom}}$ .

## $\S{12.2}$ Inference for One-Way ANOVA

Use the table below to calculate the values discussed in the previous slide.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Use the table below to calculate the values discussed in the previous slide.

| Source | DF    | SS                                             | MS                | F       |
|--------|-------|------------------------------------------------|-------------------|---------|
| Groups | I - 1 | $\sum_{ m groups} n_i (ar{x}_i - ar{x})^2$     | <u>SSG</u><br>DFG | MSG/MSE |
| Error  | N-I   | $\sum_{ m groups}(n_i-1)s_i^2$                 | SSE<br>DFE        |         |
| Total  | N - 1 | $\sum_{	ext{observations}} (x_{ij} - ar{x})^2$ |                   |         |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### Definition (one-way ANOVA F test)

To test the null hypothesis that three or more population means are the same versus the alternative that at least one of them if different from the others, use the F statistic

$$F = \frac{MSG}{MSE}.$$

The *P*-value is the probability that a random variable having the F(I-1, N-I) distribution is greater than or equal to the calculated value of the *F* statistic.

### Definition (one-way ANOVA F test)

To test the null hypothesis that three or more population means are the same versus the alternative that at least one of them if different from the others, use the F statistic

$$F = \frac{MSG}{MSE}.$$

The *P*-value is the probability that a random variable having the F(I-1, N-I) distribution is greater than or equal to the calculated value of the *F* statistic.

This is a right-tailed F test.

In order to perform a one-way ANOVA test, the following requirements must be mets.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In order to perform a one-way ANOVA test, the following requirements must be mets.

The smallest s<sub>i</sub> must be larger than half of the largest s<sub>i</sub> so that we can assume pooled standard deviations safely.

In order to perform a one-way ANOVA test, the following requirements must be mets.

The smallest s<sub>i</sub> must be larger than half of the largest s<sub>i</sub> so that we can assume pooled standard deviations safely.

• Each population should be roughly normal.

In order to perform a one-way ANOVA test, the following requirements must be mets.

The smallest s<sub>i</sub> must be larger than half of the largest s<sub>i</sub> so that we can assume pooled standard deviations safely.

- Each population should be roughly normal.
- The samples must be independent.

In order to perform a one-way ANOVA test, the following requirements must be mets.

- The smallest s<sub>i</sub> must be larger than half of the largest s<sub>i</sub> so that we can assume pooled standard deviations safely.
- Each population should be roughly normal.
- The samples must be independent.
- There must be only a single factor separating populations.

In order to perform a one-way ANOVA test, the following requirements must be mets.

- The smallest s<sub>i</sub> must be larger than half of the largest s<sub>i</sub> so that we can assume pooled standard deviations safely.
- Each population should be roughly normal.
- The samples must be independent.
- There must be only a single factor separating populations.

The samples must be SRSs.

We want to see if the mean credit scores are the same across three age groups. We collect the following data from three SRSs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We want to see if the mean credit scores are the same across three age groups. We collect the following data from three SRSs.

| 18-25 | 25-50 | over 50 |
|-------|-------|---------|
| 650   | 725   | 700     |
| 625   | 670   | 660     |
| 645   | 770   | 750     |
| 600   | 590   | 700     |
| 590   | 700   | 760     |
| 500   |       | 725     |
| 595   |       |         |

We want to see if the mean credit scores are the same across three age groups. We collect the following data from three SRSs.

|   | 18-25     | 25-50     | over 50   |
|---|-----------|-----------|-----------|
| x | 600.71429 | 691       | 715.83333 |
| 5 | 50.450353 | 67.305275 | 36.934627 |
| п | 7         | 5         | 6         |

We want to see if the mean credit scores are the same across three age groups. We collect the following data from three SRSs.

|   | 18-25     | 25-50     | over 50   |
|---|-----------|-----------|-----------|
| x | 600.71429 | 691       | 715.83333 |
| 5 | 50.450353 | 67.305275 | 36.934627 |
| п | 7         | 5         | 6         |

Thus,

$$s_p = \sqrt{\frac{6(50.450353)^2 + 4(67.305275)^2 + 5(36.934627)^2}{6+4+5}} = 51.777.$$

We want to see if the mean credit scores are the same across three age groups. We collect the following data from three SRSs.

|   | 18-25     | 25-50     | over 50   |
|---|-----------|-----------|-----------|
| x | 600.71429 | 691       | 715.83333 |
| 5 | 50.450353 | 67.305275 | 36.934627 |
| п | 7         | 5         | 6         |

Thus,

$$s_p = \sqrt{\frac{6(50.450353)^2 + 4(67.305275)^2 + 5(36.934627)^2}{6+4+5}} = 51.777.$$

We want to see if the mean credit scores are the same across three age groups. We collect the following data from three SRSs.

|   | 18-25     | 25-50     | over 50   |
|---|-----------|-----------|-----------|
| Ī | 600.71429 | 691       | 715.83333 |
| 5 | 50.450353 | 67.305275 | 36.934627 |
| n | 7         | 5         | 6         |

Also,  $\bar{x}_{total} = 664.16667$ , so we have

 $SSG = 7(600.71429 - 664.16667)^2 + 5(691 - 664.16667)^2 +$ 

 $6(715.83333 - 664.1667)^2 = 47800.214.$ 

We want to see if the mean credit scores are the same across three age groups. We collect the following data from three SRSs.

|   | 18-25     | 25-50     | over 50   |
|---|-----------|-----------|-----------|
| x | 600.71429 | 691       | 715.83333 |
| 5 | 50.450353 | 67.305275 | 36.934627 |
| п | 7         | 5         | 6         |

Also, we have

 $SSE = 6(50.450353)^2 + 4(67.305275)^2 + 5(36.934627)^2 = 40212.262.$ 

We want to see if the mean credit scores are the same across three age groups. We collect the following data from three SRSs.

|   | 18-25     | 25-50     | over 50   |
|---|-----------|-----------|-----------|
| x | 600.71429 | 691       | 715.83333 |
| 5 | 50.450353 | 67.305275 | 36.934627 |
| п | 7         | 5         | 6         |

Thus, we must have SST = 40212.262 + 47800.214 = 88012.5.

## Example (mean credit score)

Let's fill in our table:

| Source | DF           | SS                                             | MS                | F       |
|--------|--------------|------------------------------------------------|-------------------|---------|
| Groups | <i>I</i> – 1 | $\sum_{ m groups} n_i (ar{x}_i - ar{x})^2$     | <u>SSG</u><br>DFG | MSG/MSE |
| Error  | N – 1        | $\sum\limits_{	ext{groups}}(n_i-1)s_i^2$       | <u>SSE</u><br>DFE |         |
| Total  | N-1          | $\sum_{	ext{observations}} (x_{ij} - ar{x})^2$ |                   |         |

## Example (mean credit score)

### Let's fill in our table:

|   | Source | DF    | SS                                             | MS                | F       |
|---|--------|-------|------------------------------------------------|-------------------|---------|
| - | Groups | 2     | 47800.214                                      | SSG<br>DFG        | MSG/MSE |
|   | Error  | N - I | $\sum\limits_{	ext{groups}}(n_i-1)s_i^2$       | <u>SSE</u><br>DFE |         |
| - | Total  | N-1   | $\sum_{	ext{observations}} (x_{ij} - ar{x})^2$ |                   |         |

## Example (mean credit score)

Let's fill in our table:

| Source | DF  | SS                                             | MS                | F       |
|--------|-----|------------------------------------------------|-------------------|---------|
| Groups | 2   | 47800.214                                      | <u>SSG</u><br>DFG | MSG/MSE |
| Error  | 15  | 40212.262                                      | <u>ŠŠĒ</u><br>DFE |         |
| Total  | N-1 | $\sum_{	ext{observations}} (x_{ij} - ar{x})^2$ |                   |         |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## Example (mean credit score)

### Let's fill in our table:

| Source | DF | SS        | MS         | F       |
|--------|----|-----------|------------|---------|
| Groups | 2  | 47800.214 | SSG<br>DFG | MSG/MSE |
| Error  | 15 | 40212.262 | SSE<br>DFE |         |
| Total  | 17 | 88012.5   |            |         |

## Example (mean credit score)

Let's fill in our table:

| Source | DF | SS        | MS        | F     |
|--------|----|-----------|-----------|-------|
| Groups | 2  | 47800.214 | 23900.107 | 8.915 |
| Error  | 15 | 40212.262 | 2680.817  |       |
| Total  | 17 | 88012.5   |           |       |

### Example (mean credit score)

Let's fill in our table:

| Source | DF | SS        | MS        | F     |
|--------|----|-----------|-----------|-------|
| Groups | 2  | 47800.214 | 23900.107 | 8.915 |
| Error  | 15 | 40212.262 | 2680.817  |       |
| Total  | 17 | 88012.5   |           |       |

Thus, the *P*-value for this test is P(F > 8.915) = 0.003.

#### Example (mean credit score)

Let's fill in our table:

| Source | DF | SS        | MS        | F     |
|--------|----|-----------|-----------|-------|
| Groups | 2  | 47800.214 | 23900.107 | 8.915 |
| Error  | 15 | 40212.262 | 2680.817  |       |
| Total  | 17 | 88012.5   |           |       |

Thus, the *P*-value for this test is P(F > 8.915) = 0.003. So if we conducted the one-way ANOVA at a 5% significance level, we would reject the null hypothesis. We would not support the claim that the mean credit scores are the same across all three of these age groups.

Note: The full one-way ANOVA test can be conducted in StatCrunch! You should make sure that you know how the one-way ANOVA table could be filled in given just a few SS and DF values, though!

Note: The full one-way ANOVA test can be conducted in StatCrunch! You should make sure that you know how the one-way ANOVA table could be filled in given just a few SS and DF values, though! Let's do one more test using Statcrunch.

## Example (labor costs)

A company would like to see if its labor costs are the same over all four seasons. It takes a SRS of labor costs in each season over several years and gets the following data.

| Spring | Summer | Fall   | Winter |
|--------|--------|--------|--------|
| 300000 | 295000 | 259000 | 260000 |
| 450000 | 430000 | 460000 | 475000 |
| 375000 | 380000 | 385000 | 380000 |
| 257000 | 277000 | 259000 | 300000 |
| 280000 | 285000 | 275000 | 290000 |
| 300000 | 299000 | 301000 | 298000 |
| 440000 | 445000 | 440500 | 444000 |

### Example (labor costs)

A company would like to see if its labor costs are the same over all four seasons. It takes a SRS of labor costs in each season over several years and gets the following data. We get the following table.

| ANOVA table |    |              |             |             |                |
|-------------|----|--------------|-------------|-------------|----------------|
| Source      | DF | SS           | MS          | F-Stat      | <b>P-value</b> |
| Columns     | 3  | 3.3774107e8  | 1.1258036e8 | 0.017332332 | 0.9968         |
| Error       | 24 | 1.558895e11  | 6.4953958e9 |             |                |
| Total       | 27 | 1.5622724e11 |             |             |                |

#### Example (labor costs)

A company would like to see if its labor costs are the same over all four seasons. It takes a SRS of labor costs in each season over several years and gets the following data. We get the following table.

| ANOVA table |    |              |             |             |                |
|-------------|----|--------------|-------------|-------------|----------------|
| Source      | DF | SS           | MS          | F-Stat      | <b>P-value</b> |
| Columns     | 3  | 3.3774107e8  | 1.1258036e8 | 0.017332332 | 0.9968         |
| Error       | 24 | 1.558895e11  | 6.4953958e9 |             |                |
| Total       | 27 | 1.5622724e11 |             |             |                |

Thus, we fail to reject the null hypothesis and support the claim that the labor costs are the same across all four seasons.