Lecture 2: Chapter 2

C C Moxley

UAB Mathematics

7 September 2016

§2.2 Frequency Distributions

Definition (Frequency Distribution)

Frequency distributions show how data are distributed among categories (classes) by listing the frequencies (i.e. the number of instances) alongside a category (class).

Example

§2.2 Frequency Distributions

Definition (Frequency Distribution)

Frequency distributions show how data are distributed among categories (classes) by listing the frequencies (i.e. the number of instances) alongside a category (class).

Example

Grade	Frequency
A	15
В	18
С	12
D	8
F	5

upper/lower class limits

- upper/lower class limits
- class boundaries

- upper/lower class limits
- class boundaries
- class midpoints

- upper/lower class limits
- class boundaries
- class midpoints
- class width

- upper/lower class limits
- class boundaries
- class midpoints
- class width

Consider the differences in the following frequency distributions

Example

Grade	Frequency	Grade	Frequency
А	15	90-100	15
В	18	80-89	18
С	12	70-79	12
D	8	60-69	8
F	5	50-59	5

A sample of 25 students in MA180 gave the following heart rates in beats per minute: 60, 52, 77, 88, 87, 90, 58, 65, 67, 77, 59, 80, 90, 67, 66, 59, 69, 93, 94, 70, 71, 60, 95, 58, 61. Construct a frequency distribution.

A sample of 25 students in MA180 gave the following heart rates in beats per minute: 60, 52, 77, 88, 87, 90, 58, 65, 67, 77, 59, 80, 90, 67, 66, 59, 69, 93, 94, 70, 71, 60, 95, 58, 61. Construct a frequency distribution.

First, we want to decide how many classes we will have. How many should we have?

A sample of 25 students in MA180 gave the following heart rates in beats per minute: 60, 52, 77, 88, 87, 90, 58, 65, 67, 77, 59, 80, 90, 67, 66, 59, 69, 93, 94, 70, 71, 60, 95, 58, 61. Construct a frequency distribution.

First, we want to decide how many classes we will have. How many should we have? 5 looks like a good number.

A sample of 25 students in MA180 gave the following heart rates in beats per minute: 60, 52, 77, 88, 87, 90, 58, 65, 67, 77, 59, 80, 90, 67, 66, 59, 69, 93, 94, 70, 71, 60, 95, 58, 61. Construct a frequency distribution.

First, we want to decide how many classes we will have. How many should we have? 5 looks like a good number. Thus, the class width should be

A sample of 25 students in MA180 gave the following heart rates in beats per minute: 60, 52, 77, 88, 87, 90, 58, 65, 67, 77, 59, 80, 90, 67, 66, 59, 69, 93, 94, 70, 71, 60, 95, 58, 61. Construct a frequency distribution.

First, we want to decide how many classes we will have. How many should we have? 5 looks like a good number. Thus, the class width should be 10.

A sample of 25 students in MA180 gave the following heart rates in beats per minute: 60, 52, 77, 88, 87, 90, 58, 65, 67, 77, 59, 80, 90, 67, 66, 59, 69, 93, 94, 70, 71, 60, 95, 58, 61. Construct a frequency distribution.

First, we want to decide how many classes we will have. How many should we have? 5 looks like a good number. Thus, the class width should be 10. Thus we have classes 50-59, 60-69, 70-79, 80-89, 90-99.

Our resulting frequency distribution would look like this.

Class	Frequency
90-99	5
80-89	3
70-79	4
60-69	8
50-59	5

Relative and Cumulative Frequency Distributions

Our resulting relative frequency distribution would look like this.

Class	Frequency	Class	Relative Frequency
90-99	5	90-99	20%
80-89	3	80-89	12%
70-79	4	70-79	16%
60-69	8	60-69	32%
50-59	5	50-59	20%

Relative and Cumulative Frequency Distributions

Our resulting cumulative frequency distribution would look like this.

Class	Frequency	Class	Cumulative Frequency
90-99	5	≤99	25
80-89	3	≤89	20
70-79	4	≤79	17
60-69	8	≤69	13
50-59	5	≤59	5

Relative and Cumulative Frequency Distributions

Our resulting cumulative frequency distribution would look like this.

Class	Frequency	Class	Cumulative Frequency
90-99	5	< 100	25
80-89	3	< 90	20
70-79	4	< 80	17
60-69	8	< 70	13
50-59	5	< 60	5

A normal distribution is characterized by frequencies which start out low, increase to one or two high frequencies, and finally decrease to low frequencies.

A normal distribution is characterized by frequencies which start out low, increase to one or two high frequencies, and finally decrease to low frequencies. The frequencies are roughly symmetric.

A normal distribution is characterized by frequencies which start out low, increase to one or two high frequencies, and finally decrease to low frequencies. The frequencies are roughly symmetric. A perfectly **symmetric** list of frequencies would look like 1, 2, 3, 4, 5, 5, 4, 3, 2, 1 or 1, 2, 3, 4, 5, 4, 3, 2, 1.

Was our previous frequency distribution normal?

Class	Frequency
90-99	5
80-89	3
70-79	4
60-69	8
50-59	5

Simple Distribution Analysis

What might you be able to infer about this sample of student heart rates?

Class	Frequency
140-149	6
130-139	2
120-129	0
110-119	0
100-109	0
90-99	1
80-89	3
70-79	2
60-69	6
50-59	5

A Formula for Number of Classes

When constructing classes for a frequency distribution, you might use the Sturges Formula, which says the number of classes can be approximated by the formula

A Formula for Number of Classes

When constructing classes for a frequency distribution, you might use the Sturges Formula, which says the number of classes can be approximated by the formula

$$1 + \frac{\log n}{\log 2}.$$

In the above formula, n is the number of data points, i.e. records.

Concept Mastery

How many classes should have been used when making our frequency distribution of heart rates for 25 students?

Concept Mastery

How many classes should have been used when making our frequency distribution of heart rates for 25 students?

Well,
$$1 + \frac{\log 25}{\log 2} \approx 6$$
.

Concept Mastery

How many classes should have been used when making our frequency distribution of heart rates for 25 students?

Well,
$$1 + \frac{\log 25}{\log 2} \approx 6$$
. So, we would like there to be about six classes.

§2.3 Histograms

Definition (Histogram)

A **histogram** is a graph of a frequency distribution with classes running along the horizontal axis and frequences running along the vertical axis. The bars touch one another in a histogram (unless a class happens to have a frequency of 0).

§2.3 Histograms

Definition (Histogram)

A **histogram** is a graph of a frequency distribution with classes running along the horizontal axis and frequences running along the vertical axis. The bars touch one another in a histogram (unless a class happens to have a frequency of 0).

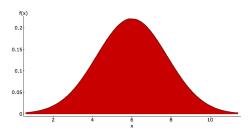
Example (Heart Rates)

Convert the frequency distribution to a histogram!

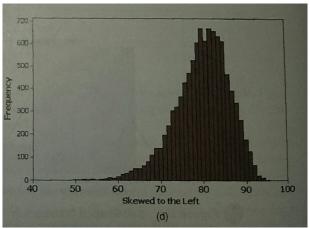
Class	Frequency
90-99	5
80-89	3
70-79	4
60-69	8
50-59	5

Bell-Curve, Histograms, and Normal Distributions

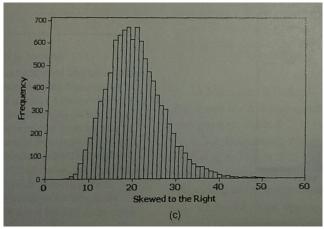
A normal distribution results in a histogram with a bell shape!

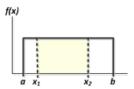

Bell-Curve, Histograms, and Normal Distributions

A normal distribution results in a histogram with a bell shape!


Is the histogram from the frequency distribution below bell shaped?

Class	Frequency
90-99	4
80-89	5
70-79	9
60-69	4
50-59	3


A normal distribution has a bell shape and should not be skewed left or right.


A normal distribution has a bell shape and should not can be skewed left or right.

A normal distribution has a bell shape and should not can be skewed left or right.

A uniform distribution is (relatively) flat.

Other Topics

What would a relative frequency histogram look like?

Other Topics

What would a relative frequency histogram look like?

What would a cumulative frequency histogram look like?

Other Topics

What would a relative frequency histogram look like?

What would a cumulative frequency histogram look like?

Discuss normal quantile plots and how they can be used to identify normal distributions.

§2.4 Deceiving and Englightening Graphs

We will discuss correlation coefficients, cluster/gap phenomena, timeseries, dotplots and stemplots, bar graphs, Pareto charts, pie charts, frequency polygons, and ogives.

§2.4 Deceiving and Englightening Graphs

We will discuss correlation coefficients, cluster/gap phenomena, timeseries, dotplots and stemplots, bar graphs, Pareto charts, pie charts, frequency polygons, and ogives. We'll also discuss problems with pictographs and graphs which have non-zero axes.