Lecture 4: Chapter 4

C C Moxley

UAB Mathematics

19 September 16

(ロ)、(型)、(E)、(E)、 E) の(の)

$\S4.2$ Basic Concepts of Probability

Procedure | Event | Simple Event | Sample Space

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Procedure	Event	Simple Event	Sample Space
rolling a die	6 or 2	6	$\{1, 2, 3, 4, 5, 6\}$

・ロト・日本・モト・モート ヨー うへで

Procedure	Event	Simple Event	Sample Space
rolling a die	6 or 2	6	$\{1, 2, 3, 4, 5, 6\}$
three tests	PPP or FFF	PFP	$\{PPP, PPF, \dots, FFF\}$

(ロ)、(型)、(E)、(E)、 E) の(の)

Relative frequency of probability:

・ロト・日本・モト・モート ヨー うへで

 Relative frequency of probability: This involves experimenting. (Law of Large Numbers)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Relative frequency of probability: This involves experimenting. (Law of Large Numbers)

 $P(A) \approx \frac{\text{how many times event } A \text{ occurred}}{\text{number of times procedure repeated}}$

 Relative frequency of probability: This involves experimenting. (Law of Large Numbers)

 $P(A) \approx \frac{\text{how many times event } A \text{ occurred}}{\text{number of times procedure repeated}}$

Classical approach with equally likely outcomes:

 Relative frequency of probability: This involves experimenting. (Law of Large Numbers)

 $P(A) \approx \frac{\text{how many times event } A \text{ occurred}}{\text{number of times procedure repeated}}$

Classical approach with equally likely outcomes:

$$P(A) = \frac{\text{number of simple events in } A}{\text{number of possible outcomes}} = \frac{s}{n}$$

 Relative frequency of probability: This involves experimenting. (Law of Large Numbers)

 $P(A) \approx \frac{\text{how many times event } A \text{ occurred}}{\text{number of times procedure repeated}}$

Classical approach with equally likely outcomes:

$$P(A) = \frac{\text{number of simple events in } A}{\text{number of possible outcomes}} = \frac{s}{n}$$

Subjective probabilities:

 Relative frequency of probability: This involves experimenting. (Law of Large Numbers)

 $P(A) \approx \frac{\text{how many times event } A \text{ occurred}}{\text{number of times procedure repeated}}$

Classical approach with equally likely outcomes:

$$P(A) = \frac{\text{number of simple events in } A}{\text{number of possible outcomes}} = \frac{s}{n}$$

 Subjective probabilities: Estimate P(A) by using knowledge of relevant circumstances.

A survey showed that out of 1010 US adults, 205 smoked. Find the probability that a randomly selected adult smokes in the US.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A survey showed that out of 1010 US adults, 205 smoked. Find the probability that a randomly selected adult smokes in the US.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Use the relative frequency method:

A survey showed that out of 1010 US adults, 205 smoked. Find the probability that a randomly selected adult smokes in the US.

Use the relative frequency method:

$$\frac{205}{1010}\approx 20.3\%$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Use the subjective probability method:

Use the subjective probability method: Only 1 in 100000 people in the US own both a cane and tophat.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Use the subjective probability method: Only 1 in 100000 people in the US own both a cane and tophat. The probability is very small, maybe 0.00001.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Use the classical approach.

Use the classical approach. There are 52^2 possible outcomes, of which 4^2 are drawing a king from the first deck and a king from the second deck.

Use the classical approach. There are 52^2 possible outcomes, of which 4^2 are drawing a king from the first deck and a king from the second deck. So, the probability is $\frac{16}{2704} \approx 0.59\%$.

§4.2 Definitions

Definition (Complement of an Event)

The complement of an event A, written \overline{A} is all the outcomes in which A does not occur.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

§4.2 Definitions

Definition (Complement of an Event)

The complement of an event A, written \overline{A} is all the outcomes in which A does not occur.

Definition (Unusual/Unlikely)

We label an event "unlikely" if the probability of it happening is less than 5%. An event is unusual if it has an unusually high or low number of outcomes of a particular type, i.e. the number of outcomes of a particular type is far from what we might expect.

§4.2 Definitions

Definition (Complement of an Event)

The complement of an event A, written \overline{A} is all the outcomes in which A does not occur.

Definition (Unusual/Unlikely)

We label an event "unlikely" if the probability of it happening is less than 5%. An event is unusual if it has an unusually high or low number of outcomes of a particular type, i.e. the number of outcomes of a particular type is far from what we might expect.

Discuss the rare event rule and how it is used to investigate hypotheses.

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Definition (Mutually Exclusive)

Two events A and B are mutually exclusive if they cannot occur at the same time.

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Definition (Mutually Exclusive)

Two events A and B are mutually exclusive if they cannot occur at the same time.

Thus, if A and B are mutually exclusive, then P(A and B) =

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Definition (Mutually Exclusive)

Two events A and B are mutually exclusive if they cannot occur at the same time.

Thus, if A and B are mutually exclusive, then P(A and B) = 0.

Example (In a sample of 50 people, 30 had glasses, 35 had contacts, and 23 had both contacts and glasses.)

What is the chance that a randomly selected member of this sample had either contacts or glasses?

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Definition (Mutually Exclusive)

Two events A and B are mutually exclusive if they cannot occur at the same time.

Thus, if A and B are mutually exclusive, then P(A and B) = 0.

Example (In a sample of 50 people, 30 had glasses, 35 had contacts, and 23 had both contacts and glasses.)

What is the chance that a randomly selected member of this sample had either contacts or glasses? P(contacts or glasses) =

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Definition (Mutually Exclusive)

Two events A and B are mutually exclusive if they cannot occur at the same time.

Thus, if A and B are mutually exclusive, then P(A and B) = 0.

Example (In a sample of 50 people, 30 had glasses, 35 had contacts, and 23 had both contacts and glasses.)

What is the chance that a randomly selected member of this sample had either contacts or glasses?

 $P(\text{contacts or glasses}) = \frac{30}{50} + \frac{35}{50} - \frac{23}{50} = \frac{42}{50}.$

Because A and \overline{A} are mutually exclusive and because together they make up the whole set of outcomes, we have that

Because A and \overline{A} are mutually exclusive and because together they make up the whole set of outcomes, we have that

$$P(A ext{ or } ar{A}) = P(A) + P(ar{A}) - P(A ext{ and } ar{A}) = P(A) + P(ar{A}) = 1.$$

Example (Find $P(\overline{A \text{ or } B})$.)

Because A and \bar{A} are mutually exclusive and because together they make up the whole set of outcomes, we have that

$$P(A ext{ or } ar{A}) = P(A) + P(ar{A}) - P(A ext{ and } ar{A}) = P(A) + P(ar{A}) = 1.$$

Example (Find $P(\overline{A \text{ or } B})$.)

 $P(\overline{A \text{ or } B}) = 1 - P(A) - P(B) + P(A \text{ and } B).$

Definition (Independent Events)

Two events A and B are said to be **independent** if the occurrence of one event does not affect the probability of the occurrence of the other. Otherwise, we call events dependent.

Definition (Independent Events)

Two events A and B are said to be **independent** if the occurrence of one event does not affect the probability of the occurrence of the other. Otherwise, we call events dependent.

Discuss P(A and B) and P(B|A).
Definition (Independent Events)

Two events A and B are said to be **independent** if the occurrence of one event does not affect the probability of the occurrence of the other. Otherwise, we call events dependent.

Discuss P(A and B) and P(B|A).

The probability that two events occur is equal to the probability that the first occurs times the probability that the second occurs **if these events are independent**!

(日) (同) (三) (三) (三) (○) (○)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Example (50 Tests: 10 As, 30 Bs, 5 Cs, 5 Ds)

What is the probability that two randomly selected grades are both $\mathsf{Bs?}$

Example (50 Tests: 10 As, 30 Bs, 5 Cs, 5 Ds)

What is the probability that two randomly selected grades are both Bs? With replacement: $\frac{9}{25}$.

Example (50 Tests: 10 As, 30 Bs, 5 Cs, 5 Ds)

What is the probability that two randomly selected grades are both Bs? With replacement: $\frac{9}{25}$. Without replacement: $\frac{87}{245}$

Example (50 Tests: 10 As, 30 Bs, 5 Cs, 5 Ds)

What is the probability that two randomly selected grades are both Bs? With replacement: $\frac{9}{25}$. Without replacement: $\frac{87}{245}$

Example (What are the chances that 26 randomly chosen people have all different birthdays?) $\frac{(365)(364)(363)...(341)(340)}{(365)(365)(365)(365)} = \frac{(365)(364)(363)...(341)(340)}{365^{26}} \approx 40.18\%$

The multiplication rule for independent events helps illustrate why some important industrial components have redundancy: If an oil pipeline has five different oil pressure measuring tools to ensure that the pipeline is not leaking oil and if each of these tools has a fail rate of 5%, then what is the probability that oil is leaking without being detected?

The multiplication rule for independent events helps illustrate why some important industrial components have redundancy: If an oil pipeline has five different oil pressure measuring tools to ensure that the pipeline is not leaking oil and if each of these tools has a fail rate of 5%, then what is the probability that oil is leaking without being detected?

 $0.05^5 = 0.000003125.$

It is sometimes useful to use complements when computing a probability involving the phrase "at least one".

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

It is sometimes useful to use complements when computing a probability involving the phrase "at least one". Whenever an event Ainvolves observing "at least one" of some event, it's often easier to compute the complement \overline{A} , which is when

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

It is sometimes useful to use complements when computing a probability involving the phrase "at least one". Whenever an event Ainvolves observing "at least one" of some event, it's often easier to compute the complement \overline{A} , which is when **none** of that some event happens!

It is sometimes useful to use complements when computing a probability involving the phrase "at least one". Whenever an event Ainvolves observing "at least one" of some event, it's often easier to compute the complement \overline{A} , which is when **none** of that some event happens!

First, compute $P(\overline{A})$.

It is sometimes useful to use complements when computing a probability involving the phrase "at least one". Whenever an event Ainvolves observing "at least one" of some event, it's often easier to compute the complement \overline{A} , which is when **none** of that some event happens!

- First, compute $P(\overline{A})$.
- Then subtract it from 1 because

It is sometimes useful to use complements when computing a probability involving the phrase "at least one". Whenever an event Ainvolves observing "at least one" of some event, it's often easier to compute the complement \overline{A} , which is when **none** of that some event happens!

- First, compute $P(\overline{A})$.
- Then subtract it from 1 because $P(A) = 1 P(\overline{A})$.

Now, if we wanted to compute the probability that at least one birthday is shared amongst 26 people (which we will call event A), we can calculate

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Now, if we wanted to compute the probability that at least one birthday is shared amongst 26 people (which we will call event A), we can calculate

1 - 0.4018 = 0.5982.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

§4.5 Conditional Probability

Definition (Conditional Probability)

A conditional probability of an event is the probability obtained when some additional information is given - particularly that some other event has occurred.

§4.5 Conditional Probability

Definition (Conditional Probability)

A conditional probability of an event is the probability obtained when some additional information is given - particularly that some other event has occurred.

$$P(A|B) = rac{P(A ext{ and } B)}{P(B)}$$

	Positive Test	Negative Test
TB+	15	3
TB-	55	450

	Positive Test	Negative Test
TB+	15	3
TB-	55	450

What is the probability that a randomly selected patient had a positive test result (A), given that he is negative for TB (B)?

	Positive Test	Negative Test
TB+	15	3
TB-	55	450

What is the probability that a randomly selected patient had a positive test result (A), given that he is negative for TB (B)?

$$P(A|B) = \frac{55}{505} = 0.1089.$$

	Positive Test	Negative Test
TB+	15	3
TB-	55	450

What is the probability that a randomly selected patient had a positive test result (A), given that he is negative for TB (B)?

$$P(A|B) = \frac{55}{505} = 0.1089.$$

What is the probability that a randomly selected patient was TB negative (A), given that she had a negative test result?

	Positive Test	Negative Test
TB+	15	3
TB-	55	450

What is the probability that a randomly selected patient had a positive test result (A), given that he is negative for TB (B)?

$$P(A|B) = \frac{55}{505} = 0.1089.$$

What is the probability that a randomly selected patient was TB negative (A), given that she had a negative test result?

$$P(A|B) = \frac{450}{453} = 0.9934.$$

	Positive Test	Negative Test
TB+	15	3
TB-	55	450

What is the probability that a randomly selected patient had a positive test result (A), given that he is negative for TB (B)?

$$P(A|B) = \frac{55}{505} = 0.1089.$$

What is the probability that a randomly selected patient was TB negative (A), given that she had a negative test result?

$$P(A|B) = \frac{450}{453} = 0.9934.$$

Warning: $P(A|B) \neq P(B|A)!$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 圖 めへで

§4.6 Counting Rules

1 $m \cdot n =$ the number of ways two events could occur.

- **1** $m \cdot n =$ the number of ways two events could occur.
- **2** n! = number of unique permutations of *n* different items.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- **1** $m \cdot n =$ the number of ways two events could occur.
- 2 n! = number of unique permutations of *n* different items.
- 3 $\frac{n!}{(n-r)!}$ = number of unique permutations of *r* items chosen from *n* items without replacement.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- **1** $m \cdot n =$ the number of ways two events could occur.
- **2** n! = number of unique permutations of *n* different items.
- 3 $\frac{n!}{(n-r)!}$ = number of unique permutations of *r* items chosen from *n* items without replacement.
- 4 $\frac{n!}{n_1!n_2!...n_k!}$ = number of unique permutations of *n* items when n_1 are alike, n_2 are alike, ..., and n_k are alike.

- **1** $m \cdot n =$ the number of ways two events could occur.
- n! = number of unique permutations of *n* different items.
- $\frac{n!}{(n-r)!}$ = number of unique permutations of *r* items chosen from *n* items without replacement.
- $\frac{n!}{n_1!n_2!\dots n_k!}$ = number of unique permutations of *n* items when n_1 are alike, n_2 are alike, ..., and n_k are alike.
- $\frac{n!}{(n-r)!r!}$ = number of different combinations of r items chosen without replacement from n different items.

How many different ways are there of choosing a card from a deck and rolling a die?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

How many different ways are there of choosing a card from a deck and rolling a die? (52)(6) = 312.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How many different ways are there of choosing a card from a deck and rolling a die? (52)(6) = 312.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2 How many different ways can you arrange a deck of cards?

- How many different ways are there of choosing a card from a deck and rolling a die? (52)(6) = 312.
- 2 How many different ways can you arrange a deck of cards? 52!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- How many different ways are there of choosing a card from a deck and rolling a die? (52)(6) = 312.
- 2 How many different ways can you arrange a deck of cards? 52!
- **3** How many different ways are there of selecting three letters from the alphabet in order?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- How many different ways are there of choosing a card from a deck and rolling a die? (52)(6) = 312.
- 2 How many different ways can you arrange a deck of cards? 52!
- 3 How many different ways are there of selecting three letters from the alphabet in order? $\frac{26!}{23!} = 15600$.

- How many different ways are there of choosing a card from a deck and rolling a die? (52)(6) = 312.
- 2 How many different ways can you arrange a deck of cards? 52!
- 3 How many different ways are there of selecting three letters from the alphabet in order? $\frac{26!}{23!} = 15600$.

4 How many different ordering are there for a, a, b, b, c?
- How many different ways are there of choosing a card from a deck and rolling a die? (52)(6) = 312.
- 2 How many different ways can you arrange a deck of cards? 52!
- 3 How many different ways are there of selecting three letters from the alphabet in order? $\frac{26!}{23!} = 15600$.
- 4 How many different ordering are there for a, a, b, b, c? $\frac{5!}{2!2!1!} = 30.$

- How many different ways are there of choosing a card from a deck and rolling a die? (52)(6) = 312.
- 2 How many different ways can you arrange a deck of cards? 52!
- 3 How many different ways are there of selecting three letters from the alphabet in order? $\frac{26!}{23!} = 15600$.
- 4 How many different ordering are there for a, a, b, b, c? $\frac{5!}{2!2!1!} = 30.$
- 5 How many different ways are there of chosing four letters from the first six letters of the alphabet if order doesn't matter?

- How many different ways are there of choosing a card from a deck and rolling a die? (52)(6) = 312.
- 2 How many different ways can you arrange a deck of cards? 52!
- 3 How many different ways are there of selecting three letters from the alphabet in order? $\frac{26!}{23!} = 15600$.
- 4 How many different ordering are there for a, a, b, b, c? $\frac{5!}{2!2!1!} = 30.$
- 5 How many different ways are there of chosing four letters from the first six letters of the alphabet if order doesn't matter? $\frac{6!}{4!2!} = 15.$

Why might we not want to conduct a census? What can we do instead of a census? What are the pros and cons of a census versus our other option?

What is the difference between a simple random sample and a random sample?

A magazine asked its readers to fill out and mail in a survey on the last page of its latest issue. What are the pitfalls of this survey?

Are pictographs useful? Why might you try to use one?

Are pictographs useful? Why might you try to use one? Why might you break an axis in a bar graph?

What are the original values of the data resulting in the *z*-scores 0.5, 0.25, and -0.75 if the data came from a population with mean 0 and standard deviation 4?

Define statistical significance. Can something be statistically significant without being practically significant?

What are the units of standard deviation if the original data has units square inches? What are the units of variance in this case?

Pair together the similar measurements: third quartile, first quartile, second quartile, median, fiftieth percentile, twenty-fifth percentile, seventy-fifth percentile.

Can you discard outliers to clean up data sets?

What's the major difference between the assumptions in Chebyshev's theorem and the empirical rule?

