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§11.1 Analyzing Categorical Data

So far, we have used statistical methods to analyze population pa-
rameters - but we knew what types of random variables we were
dealing with.

Now, we move on to making qualitative inferences,
namely things like whether or not a sample comes from a particular
type of distribution or whether or not two samples are independent.
The first type of test is a goodness-of-fit test, and the second test
is done using a is a contingency test.
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§11.2 Goodness-of-Fit Tests

Definition (Goodness-of-Fit Test)

A goodness-of-fit test tests the hypothesis that an observed
frequency distribution or a single column of data comes from some
claimed distribution.

There are a few requirements to perform a goodness-of-fit test.

The data must be randomly selected.

The data consist of (or can be arranged into) frequency
counts for each of the different categories.

For each category, the expected frequency is at least five.



§11.2 Goodness-of-Fit Tests

Definition (Goodness-of-Fit Test)

A goodness-of-fit test tests the hypothesis that an observed
frequency distribution or a single column of data comes from some
claimed distribution.

There are a few requirements to perform a goodness-of-fit test.

The data must be randomly selected.

The data consist of (or can be arranged into) frequency
counts for each of the different categories.

For each category, the expected frequency is at least five.



§11.2 Goodness-of-Fit Tests

Definition (Goodness-of-Fit Test)

A goodness-of-fit test tests the hypothesis that an observed
frequency distribution or a single column of data comes from some
claimed distribution.

There are a few requirements to perform a goodness-of-fit test.

The data must be randomly selected.

The data consist of (or can be arranged into) frequency
counts for each of the different categories.

For each category, the expected frequency is at least five.



§11.2 Goodness-of-Fit Tests

Definition (Goodness-of-Fit Test)

A goodness-of-fit test tests the hypothesis that an observed
frequency distribution or a single column of data comes from some
claimed distribution.

There are a few requirements to perform a goodness-of-fit test.

The data must be randomly selected.

The data consist of (or can be arranged into) frequency
counts for each of the different categories.

For each category, the expected frequency is at least five.



§11.2 Goodness-of-Fit Tests

Definition (Goodness-of-Fit Test)

A goodness-of-fit test tests the hypothesis that an observed
frequency distribution or a single column of data comes from some
claimed distribution.

There are a few requirements to perform a goodness-of-fit test.

The data must be randomly selected.

The data consist of (or can be arranged into) frequency
counts for each of the different categories.

For each category, the expected frequency is at least five.



§11.2 Goodness-of-Fit Tests

We need these variables.

O, observed frequency (from the table or data)

E , expected frequency (from the assumption)

k, number of different cells or categories

n, number of trails or observations

We then compute the test statistic χ2 =
∑ (O − E )2

E
. And we

perform a right-tailed χ2-test with k − 1 degrees of freedom.
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§11.2 Goodness-of-Fit Tests

How to calculate E?

Well, if the assumed distribution is uniform,
then we get that E = n/k . Otherwise, we get E = np, where p is
the probability of falling into a particular category. You can often
calculate p by using a “between” calculator on StatCrunch for the
appropriate distribution.
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§11.2 Example

Example (uniform random variable goodness of fit)

Is the following sample of weights from a population with a contin-
uous uniform distribution where the upper and lower limits are 10
and 60? Use α = 0.1.

Data Set 1

To check this, let’s compute the expected and observed counts in
each of the categories below. (Note: We’ll use five equal categories
to keep the expected counts 5 or more.)

Category 10-20 20-30 30-40 40-50 50-60

Expected Count 5 5 5 5 5

Observed Count 4 4 3 4 10

http://people.cas.uab.edu/~ccmoxley/MA207_Files/Uniform.csv
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§11.2 Example

Example (uniform random variable goodness of fit, con’t.)

Category 10-20 20-30 30-40 40-50 50-60

Expected Count 5 5 5 5 5

Observed Count 4 4 3 4 10

Thus, the test statistic is

X 2 =
1

5
+

1

5
+

1

5
+

4

5
+

25

5
= 6.4.

And so the P-value is P(χ2 > 6.4) = 0.1712. And we fail to reject
our null hypothesis. Our data is not significant enough to reject
the claim that the data came from a population with a continuous
uniform distribution with bound 10 and 60.
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§11.2 Example

A salesman wants to make a pitch on a day a company is most likely
to make major purchases. He obtained data about the company’s
previous purchases and tested (using α = 0.05) to see if the pur-
chases were uniformly distributed throughout the week (Mon-Sun).
He obtained the following.

k = 7,

n = 20, E = 2.86, test statistic χ2 = 15.85, critical
value 15.507, P-value 0.045

What’s the null hypothesis in this case? Do we accept or reject it?
What does this mean?
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§11.2 Example (with frequency table)

A casino wants to determine if a 10-sided die is loaded (with signif-
icance α = 0.01). They roll the die 64 times and get the following
data:

Side 1 2 3 4 5 6 7 8 9 10

Rolls 6 6 5 7 7 7 7 7 5 7

We end up getting that the P-value for this test is 0.9994, so we fail
to reject the null hypothesis. This means that the data does not
support the claim that the die is loaded. We can conduct the same
test with a critical value. We’d see that our test statistic was 1 and
our critical value was 21.666, telling us that we should reject our
null hypothesis as well. Use the Goodness-of-Fit tab in StatCrunch.
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§11.3 Contingency (Two-Way Frequency) Tables

Definition (Contingency Table)

A contingency table is a table consisting of frequency counts of
categorical data corresponding to two different variables.

Definition (Test of Independence)

A test of independence tests the claim that the row and column
variables are independent.

A test of independence is a χ2 test, and its degrees of freedom is
computed by finding the product of one fewer than the number of
columns and one fewer than the number of rows in the contingency
table: df = (c − 1)(r − 1).
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§11.3 Contingency (Two-Way Frequency) Tables

The requirements for a test of independence are below.

The sample data must be randomly selected.

The sample data are frequency counts in a two-way table.

Each cell in the expected table has a value at least 5. (The
expected table is the table we’d get if the columns and rows
were independent.)

You can read more details about the test of independence on page
578 of your text.
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§11.3 Example

A hospital wants to verify that a test for diabetes is effective by
seeing if the result of the test and the status of the patient are
dependent with significance α = 0.01. They have the following
data.

Negative Positive

Tested Negative 17 7

Tested Positive 8 15

Use the contingency table with summary tab in StatCrunch to see
that the P-value is 0.0133. So, we fail to reject the null hypothesis!
This means that the data supports the claim that the result of the
test is independent of the status of the patient, meaning that the
diabetes test is not effective.
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Note: We would reach the same conclusion if we used a critical value
test because the test is right-tailed and the critical value would be
6.635 with a test statistic of 6.131.


