Lecture 8: Chapter 8

C C Moxley

UAB Mathematics

1 March 16

(ロ)、(型)、(E)、(E)、 E) の(の)

・ロト・日本・モト・モート ヨー うへで

A state election board is not using a random process for selecting the ordering of candidates on a ballot because the Republican nominee has been listed second for 15 of the last 16 election cycles.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- A state election board is not using a random process for selecting the ordering of candidates on a ballot because the Republican nominee has been listed second for 15 of the last 16 election cycles.
- The average weight of tennis balls manufactured by Wilson is less than 100 grams.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- A state election board is not using a random process for selecting the ordering of candidates on a ballot because the Republican nominee has been listed second for 15 of the last 16 election cycles.
- The average weight of tennis balls manufactured by Wilson is less than 100 grams.
- A paper claims that most American consumers know that the Kindle is a e-book reader.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- A state election board is not using a random process for selecting the ordering of candidates on a ballot because the Republican nominee has been listed second for 15 of the last 16 election cycles.
- The average weight of tennis balls manufactured by Wilson is less than 100 grams.
- A paper claims that most American consumers know that the Kindle is a e-book reader.
- A sample of 103 human body temperatures can be used to test whether or not the mean body temperature for humans is 98.6°F.

$\S8.2$ Basic Hypothesis Testing

Definition (Hypothesis)

A statistical **hypothesis** is a claim or statement about a property of a population.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition (Hypothesis)

A statistical **hypothesis** is a claim or statement about a property of a population. And a **hypothesis test** is a procedure for testing a claim about a property of a population.

Definition (Hypothesis)

A statistical **hypothesis** is a claim or statement about a property of a population. And a **hypothesis test** is a procedure for testing a claim about a property of a population.

Example

From the previous, testing that the average weight of tennis balls manufactured by Wilson is less that 100 grams would be equivalent to testing the statement

 $\mu < 100,$

where μ is the average weight of Wilson tennis balls.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

If under the given assumption, the probability of a particular observed event is extremely small, we reject the assumption.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If under the given assumption, the probability of a particular observed event is extremely small, we reject the assumption.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

First we must form a hypothesis. Use these general rules:

If under the given assumption, the probability of a particular observed event is extremely small, we reject the assumption.

First we must form a hypothesis. Use these general rules:

- The **null** hypothesis *H*⁰ should always be that a population parameter is equal to some value.
- The **alternative** hypothesis H_1 should either be that the same parameter is not equal to, less than, or greater than the value above.

The proportion of students at UAB who have taken a math class is at least 65%.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The proportion of students at UAB who have taken a math class is at least 65%.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

 H_0 is easy.

The proportion of students at UAB who have taken a math class is at least 65%.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

 H_0 is easy. H_0 : p = 0.65.

The proportion of students at UAB who have taken a math class is at least 65%.

 H_0 is easy. H_0 : p = 0.65. What should the other hypothesis be?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The proportion of students at UAB who have taken a math class is at least 65%.

 H_0 is easy. H_0 : p = 0.65. What should the other hypothesis be? Well, it can't be that $p \ge 0.65$ because that **includes** the null hypothesis.

The proportion of students at UAB who have taken a math class is at least 65%.

 H_0 is easy. H_0 : p = 0.65. What should the other hypothesis be? Well, it can't be that $p \ge 0.65$ because that **includes** the null hypothesis. The alternative hypothesis, then, is H_1 : p < 0.65,

The proportion of students at UAB who have taken a math class is at least 65%.

 H_0 is easy. $H_0: p = 0.65$. What should the other hypothesis be? Well, it can't be that $p \ge 0.65$ because that **includes** the null hypothesis. The alternative hypothesis, then, is $H_1: p < 0.65$, so failing to reject the null hypothesis is equivalent to supporting the claim whereas rejecting the null hypothesis is equivalent to not supporting the claim.

Two types of hypothesis tests will be used in this chapter.

Two types of hypothesis tests will be used in this chapter. Testing using a critical value.

Two types of hypothesis tests will be used in this chapter.

 Testing using a critical value. This method is similar to constructing a confidence interval, except we may have one sided intervals now.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Two types of hypothesis tests will be used in this chapter.

- Testing using a critical value. This method is similar to constructing a confidence interval, except we may have one sided intervals now.
- Testing using a *P*-value, which describes the area lying beyond a test statistic in a one- or two-sided manner.

Definition (Test Statistic)

A **test statistic** is the result of converting a sample statistic into a value used to test the null hypothesis. They are the "standardized" statistic because they generally take the form

estimate - hypothesized value

standard error

Definition (Test Statistic)

A **test statistic** is the result of converting a sample statistic into a value used to test the null hypothesis. They are the "standardized" statistic because they generally take the form

estimate - hypothesized value

standard error

Proportion <i>p</i>	Mean μ with σ	Mean μ w/o σ	Std. Dev. σ
$z = rac{\hat{p} - p}{\sqrt{rac{pq}{n}}}$	$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$	$t=rac{ar{x}-\mu}{rac{s}{\sqrt{n}}}$	$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$

Definition (Test Statistic)

A **test statistic** is the result of converting a sample statistic into a value used to test the null hypothesis. They are the "standardized" statistic because they generally take the form

estimate - hypothesized value

standard error

The significance of a *P*-test is called α . We reject the null hypothesis if $p \leq \alpha$ and fail to reject it if $p > \alpha$.

Let ω be a test statistic. We calculate the P-value using the following rules:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let ω be a test statistic. We calculate the P-value using the following rules:

If the alternative hypothesis is a left-tailed ("less than") statement, then the *P*-value is the area to the left of the statistic ω using the appropriate distribution.

Let ω be a test statistic. We calculate the P-value using the following rules:

- If the alternative hypothesis is a left-tailed ("less than") statement, then the *P*-value is the area to the left of the statistic ω using the appropriate distribution.
- If the alternative hypothesis is a right-tailed ("greater than") statement, then the *P*-value is the area to the right of the statistic ω using the appropriate distribution.

Let ω be a test statistic. We calculate the *P*-value using the following rules:

- If the alternative hypothesis is a left-tailed ("less than") statement, then the *P*-value is the area to the left of the statistic ω using the appropriate distribution.
- If the alternative hypothesis is a right-tailed ("greater than") statement, then the *P*-value is the area to the right of the statistic ω using the appropriate distribution.
- If the alternative hypothesis is a two-tailed ("not equal to") statement, then the *P*-value is the area outside of the interval $(-\omega, \omega)$ (if ω is positive) or $(\omega, -\omega)$ (if ω is negative). In the case of a χ^2 test, we look at the small tail and double the area in that tail for the *P*-value.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition (Type I Error)

This is the error of rejecting a true null hypothesis.

Definition (Type I Error)

This is the error of rejecting a true null hypothesis.

This would be like concluding that the proportion was not equal to 50% but was more than 50% when in reality the proportion was exactly 50%.

Definition (Type I Error)

This is the error of rejecting a true null hypothesis.

This would be like concluding that the proportion was not equal to 50% but was more than 50% when in reality the proportion was exactly 50%.

Definition (Type II Error)

This is the error of failing to reject a false null hypothesis.

Definition (Type I Error)

This is the error of rejecting a true null hypothesis.

This would be like concluding that the proportion was not equal to 50% but was more than 50% when in reality the proportion was exactly 50%.

Definition (Type II Error)

This is the error of failing to reject a false null hypothesis.

This would be like concluding that a population proportion was 50% when it actually was not.
We use α to denote the probability of making a Type I Error, i.e. it is the probability of rejecting a true null hypothesis.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We use α to denote the probability of making a Type I Error, i.e. it is the probability of rejecting a true null hypothesis.

We use β to denote the probability of making a Type II Error, i.e. it is the probability of failing to reject a false null hypothesis.

We use α to denote the probability of making a Type I Error, i.e. it is the probability of rejecting a true null hypothesis.

We use β to denote the probability of making a Type II Error, i.e. it is the probability of failing to reject a false null hypothesis.

The confidence of a test is $1-\alpha$ (the probability of failing to reject a true null hypothesis), and the power of a test is $1-\beta$ (the probability of rejecting a false null hypothesis).

(日) (同) (三) (三) (三) (○) (○)

 $H_0: p = 0.95$ and

 $H_0: p = 0.95$ and $H_1: p < 0.95$.

$$H_0: p = 0.95$$
 and $H_1: p < 0.95$.

The test statistic is
$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} = \frac{0.92996 - 0.95}{\sqrt{\frac{(0.95)(0.05)}{514}}} \approx -2.085.$$

$$H_0: p = 0.95$$
 and $H_1: p < 0.95$.
The test statistic is $z = \frac{\hat{p}-p}{\sqrt{\frac{pq}{n}}} = \frac{0.92996 - 0.95}{\sqrt{\frac{(0.95)(0.05)}{514}}} \approx -2.085$. So we test to see if
 $P(Z < -2.085)) \le 0.1$.

$$H_0: p = 0.95$$
 and $H_1: p < 0.95$.

The test statistic is $z = \frac{\hat{p}-p}{\sqrt{\frac{pq}{n}}} = \frac{0.92996-0.95}{\sqrt{\frac{(0.95)(0.05)}{514}}} \approx -2.085$. So we test to see if

$$P(Z < -2.085)) \le 0.1.$$

And because P(Z < -2.085) = 0.0186, we get that we must reject the null hypothesis.

$$H_0: p = 0.95$$
 and $H_1: p < 0.95$.

The test statistic is
$$z = \frac{\hat{p}-p}{\sqrt{\frac{pq}{n}}} = \frac{0.92996-0.95}{\sqrt{\frac{(0.95)(0.05)}{514}}} \approx -2.085$$
. So we test to see if

$$P(Z < -2.085)) \le 0.1.$$

And because P(Z < -2.085) = 0.0186, we get that we must reject the null hypothesis. In this case, this means that the data does **not** support our original claim!

You can use StatCrunch to construct a hypothesis test for proportions! You **must** calculate the number of successes, though!

You can use StatCrunch to construct a hypothesis test for proportions! You **must** calculate the number of successes, though!

						L L	Intitled	1		
StatCru	inch App	elets Edit	Data	Stat Graph	Help]				
Row 1	var1	var2	var3	Calculators Summary Stats	>	var6	var7	var8	var9	var10
2 3 4				Z Stats T Stats	>					
5				Proportion Stats	;	One San	nple >	With Data		
6 7 8 9 10 11 12 13				Variance Stats Regression ANOVA Nonparametrics Goodness-of-fit Control Charts Resample	> > > > >	Two San	nple >	With Summar Power/Sample	y e Size	
14 15 16										
17 18										
19										

You can use StatCrunch to construct a hypothesis test for proportions! You **must** calculate the number of successes, though!

Untitled Edit Data Stat Graph Help												
var2	var3	var4	var5	var6	var7	var8	var9	var10	var11	var12	var13	
			One Sample	Prop. Sum	nary				×			
			# of s	uccesses:								
			478									
			# of o	bservations								
			Perfor	m:								
			● Hyp Ho:	n = 0.9	for p							
			H _A :	p < - 0.9	5							
			O Cor	fidence inter	val for p							
			Lev	el: 0.95								
			Mel	thod: Standa	rd-Wald							
			Outpu	rt: re in data tab	le							
							Convert.		-			
						?	Cancel	Compute	<u> </u>			
										Learn how	to annotat	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

You can use StatCrunch to construct a hypothesis test for proportions! You **must** calculate the number of successes, though!

it Data	Stat Gr	aph Help]		Un	titled					
var3	var4	var5	var6	var7	var	в	var9	var10	var10 var11		
		Options Hypothesis p : Proportio	test res	sults:						8 8	
	H ₀ : p = 0.9 H _A : p < 0.9 Proportion p			a : p < 0.95 A : p < 0.95 proportion Count Total Sample Prop. Std. Err. Z-Stat P-value 0 478 514 0.92996109 0.0096131395 -2.0845334 0.0166							

$\S8.3$ Using StatCrunch for Hypothesis Testing

You can also use a confidence interval or critical value to test a hypothesis.

itat 🛛 🕻	Graph Hel	р	U	τιτιεα				
var4	var5	var6	var7	var8	var9	var10	var11	var
	One Sample	Prop. Sumn	nary				×	
	# of si 478 # of ol 514 Perfor 0 Hyp H ₀ : H _x : © Con Levy Met	m: othesis test fi p = 0.95 p < - 0.95 fidence intervel: 0.90 hod: Standa	or p ; ; val for p rd-Wald •					
				?	Cancel	Compute	1	
					1			
								Learn

$\S8.3$ Using StatCrunch for Hypothesis Testing

You can also use a confidence interval or critical value to test a hypothesis.

Untitled													
Stat Gra	iph Help												
var4	var5	var6		/ar7	var8	3	var9	var10	var11	var12			
										_			
Options X X													
	90% confi	dence in	terval	results									
	Method: Sta	indard-W	ald										
	Proportio	o Count	Total	Sampl	e Prop.	Std.	Err.	L. Limit	U. Limit				
	р	478	514	0.92	996109	0.0112	56944	0.91144506	0.94847712				
	Stat Gra	Stat Graph Help var4 var5 Options 90% conft P Proportion p	Stat Graph Help var4 var5 var6 Options 90% confidence in Proportion Count Proportion Count p 478	Stat Graph Help var4 var5 var6 v Options POptions Poportion discusses Method: Standard-Wald Proportion count Total p 478 514	Un Stat Graph Help Var4 Var5 Var6 Var7 Poptions P0% confidence interval results P0% confidence interval results P0% confidence interval results P0% confidence interval results P0% confidence interval results P1% confidence	Untitled Stat Graph Help var4 var5 var6 var7 var6 Options 90% confidence interval results: Proportion Count Total Sample Prop. p 478 514 0.92996109	Varial Varb Varb Var7 Varb var4 Var5 Varb Var7 Varb Options P90% confidence interval results: P1 Proportion discussess Method: Standard-Wald Proportion Count Total Sample Prop. Std. P 478 514 0.92996109 0.0112	Vurtitled Stat Graph Help var4 var5 var6 var7 var8 var9 Poptions Poptions Poption Court Total Sample Prop. Std. Err. Proportion Court Total Sample Prop. Std. Err.	Varticled Stat Graph Help Var4 Var5 Var6 Var7 Var8 Var9 Var10 Poptions Poptions results: Poption Court Total Sample Prop. Std. Err. L. Limit Proportion Court Total Sample Prop. Std. Err. L. Limit Poption Court Total Sample Prop. Std. Err. L. Limit Poption Court Total Sample Prop. Std. Err. L. Limit	Untitled Sat Graph Heip var4 var5 var6 var7 var8 var9 var10 var11 Options 22 × 22 × 22 × 22 × 22 × 22 × 22 × 22			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Notice the Confidence Interval Method resulting in failing to reject the null hypothesis because it is inherently **two-tailed**. You must change the significance/confidence level when testing and one-tailed claim using a confidence interval!

Notice the Confidence Interval Method resulting in failing to reject the null hypothesis because it is inherently **two-tailed**. You must change the significance/confidence level when testing and one-tailed claim using a confidence interval! We should have doubled our significance and created an 80% CI!

You can also use a confidence interval or critical value to test a hypothesis.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

0.38, 0.55, 1.54, 1.55, 0.50, 0.60, 0.92, 0.96, 1.00, 0.86, 1.46.

 $0.38,\ 0.55,\ 1.54,\ 1.55,\ 0.50,\ 0.60,\ 0.92,\ 0.96,\ 1.00,\ 0.86,\ 1.46.$

							Untitled	
StatCru	nch App	lets Edit	Data	Stat Graph	Help			
Row 1 2 3 4 5 6 7 7	var1 0.38 0.55 1.54 1.55 0.5 0.6 0.92	var2	var3	Calculators Summary Stats Tables Z Stats T Stats Proportion Stats Variance Stats Regression	> > > > > >	var6 One Sar Two Sar Paired	var7 nple > nple >	var8
9 10 11 12 13 14 15 16	1 0.86 1.46			ANOVA Nonparametrics Goodness-of-fit Control Charts Resample	>			

0.38, 0.55, 1.54, 1.55, 0.50, 0.60, 0.92, 0.96, 1.00, 0.86, 1.46.

		Untitled
StatCrunch	Apple	One Sample T x
Row	var1	Select column(s):
ROW	0.20	var1 var1
2	0.56	
3	1.54	
4	1.54	
5	0.5	
6	0.5	Where:
7	0.92	optional Build
8	0.96	
9	1	Group by:
10	0.86	optional
11	1.46	Desferme
12		Perform:
13		The second
14		$n_0: \mu = \mu$
15		$H_{A}: \mu < -1$
16		O Confidence interval for µ
17		Level: 0.95
18		
19		Output:
20		Store in data table
21		
22		
23		? Cancel Compute!
24		
25	1.	

0.38, 0.55, 1.54, 1.55, 0.50, 0.60, 0.92, 0.96, 1.00, 0.86, 1.46.

StatCru	nch Appl	ets Edit	Data Sta	at Graph	Hel	p	Untitled					
Row	var1	var2	var3	var4 v	ar5	var6	var7					
1	0.38	Outlong										
2	0.55	Options					~ ~					
3	1.54											
4	1.55	Hypotnes	is test results									
5	0.5	μ. mean c	: Mean or variable									
6	0.6	H										
7	0.92	ΠΑ: μ < 1										
8	0.96	Variable	Sample Mean	Std. Err.	DF	T-Stat	P-value					
9	1	var1	0.93818182	0.12749915	10 -0	.48485172	0.3191					
10	0.86											
11	1.46											
12												
13												

0.38, 0.55, 1.54, 1.55, 0.50, 0.60, 0.92, 0.96, 1.00, 0.86, 1.46.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $0.38,\ 0.55,\ 1.54,\ 1.55,\ 0.50,\ 0.60,\ 0.92,\ 0.96,\ 1.00,\ 0.86,\ 1.46.$

						L	Intitle	d	
StatCru	nch Appl	ets Edit	Data	Stat Graph	Help				
Row 1	var1 0.38	var2	var3	Calculators Summary Stats	> >	var6	var7	var8	var9
2	0.55			Z Stats	>	One Sam	ple >	With Data	
4	1.55			T Stats Proportion Stats	> >	Two Sam	iple >	With Summa Power/Samp	ry e Size
6 7	0.6			Variance Stats Regression	> >				
8	0.96			ANOVA	>				
10	0.86			Goodness-of-fit	,				
12				Control Charts Resample	> >				
14 15									
16									

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

0.38, 0.55, 1.54, 1.55, 0.50, 0.60, 0.92, 0.96, 1.00, 0.86, 1.46.

			Untitled	
StatCrunc	h Apple	One Sample Z		ж
Row	var1	Select column(s):		
1	0.38	var1	var1	
2	0.55			
3	1.54			
4	1.55			
5	0.5			
6	0.6	Standard doviation:		
7	0.92	0.03		
8	0.96	0.00		
9	1	Where:		
10	0.86	optional	Build	
11	1.46			
12		Group by:		
13		optional		
14		Deufermu		
15		Hypothesis test for u		
16		H		
17		H0: H = I		
18		H _A : μ < 🕶 1		
19		Confidence interval for µ		
20		Level: 0.95		<u> </u>
21				÷.
22				TLL.
23			2 Cancel Compute	1
24			- Cuncer Comput	
25				

0.38, 0.55, 1.54, 1.55, 0.50, 0.60, 0.92, 0.96, 1.00, 0.86, 1.46.

StatCru	nch Appl	ets Edit		Data	Stat	Graph	Не	lp I	Untitled	
Row	var1	var2	1	/ar3	var4		var5	var6	var7	
1	0.38	(1
2	0.55	Options	J						20 36	
3	1.54									
4	1.55	Hypothes	sis t	est res	ults:					
5	0.5	μ : Mean o	of va	ariable						
6	0.6	$H_0: \mu = 1$	i ₀ : μ = 1							
7	0.92	H _A : μ < 1								
8	0.96	Standard	devi	ation =	0.03					
9	1	Variable	n	Samp	le Mean	Std	Err.	Z-Stat	P-value	
10	0.86	var1	11	0.9	3818182	0.0090	453403	-6.8342571	< 0.0001	
11	1.46			015						
12										
13										
14										
15										
10										

70, 71, 69.25, 68.5, 69, 70, 71, 70, 70, 69.5

							Jntitled	1	
StatCru	nch Appl	ets Edit	Data	Stat Graph	Help				
Row 1 2 3 4 5 6	var1 70 71 69.25 68.5 69 70	var2	var3	Calculators Summary Stats Tables Z Stats T Stats Proportion Stats Variance Stats	> > > > >	var6 One San	var7	var8 With Data	var9
7 8 9 10 11 12 13 14 15 16	71 70 69.5			Regression ANOVA Nonparametrics Goodness-of-fit Control Charts Resample	> > > > > > >	Two San Homoge	neity	With Summar Power/Sample	y a Size

70, 71, 69.25, 68.5, 69, 70, 71, 70, 70, 69.5

70, 71, 69.25, 68.5, 69, 70, 71, 70, 70, 69.5

		Untitled					
uncl	1 Appl	One Sample Variance	×				
	var1	Select column(s):					
	70	var1	ar1				
	71						
	69.25						
	68.5						
	69						
	70	Where:					
	71	optional	Build				
	70	operation	Dunu				
	70	Group by:					
	69.5	optional					
		Perform:					
		Hypothesis test for d-					
		$H_0: \sigma^2 = 6.76$					
		H _A : σ ² ≠ • 6.76					
		Confidence interval for g ²					
		Level: 0.95					
			ų.				
		Output:					
			? Cancel Compute!				

70, 71, 69.25, 68.5, 69, 70, 71, 70, 70, 69.5

Un StatCrunch Applets Edit Data Stat Graph Help									
Row	var1	var2	var3	var4	var5	var6	var7		
1	70						ก		
2	71	Options				30 DC			
3	69.25						1		
4	68.5	Hypothesis test results: σ ² : Variance of variable							
5	69								
6	70	$H_0: \sigma^2 = 6$							
7	71	$H_A : \sigma^2 \neq 0$	H _A : σ ² ≠ 6.76						
8	70	Variable	Sample Var.	DF C	hi-Square Stat	P-value			
9	70	Variable	oumpie vun			······			
10	69.5	varl	0.63958333	9	0.85151627	0.0006			
11							1		
12									
12									

What would be a Type I error if the claim was that the proportion of people who write with their left hand is equal to 0.1? What would be a Type 2 error?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The claim is that women have heights with $\sigma = 5$ cm. After the test is conducted, it's found that the *P*-value was 0.0055. If we're conducting a test with 99% confidence, do we support this claim or not?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We want to test the claim that at least 98% of Cheez-Its have at least 1.5mg of salt on them. In a sample of 120 Cheez-It crackers, we find that 118 have at least 1.5mg of salt on them. Do we support our claim or not?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The brain volumes of cows are given below. We want to test the claim that the population of cow brain volumes has mean equal to 1100 square centimeters. Assume brain volumes of cows are normally distributed.

963, 1027, 1272, 1079, 1070, 1173, 1067, 1347, 1100, 1204

The claim is that for nicotine amounts in a certain brand of cigarettes, $\mu > 20.0$ mg. A test of 200 cigarettes showed the mean to be 20.1mg. The standard deviation for nicotine in this brand of cigarettes is 0.9mg. Can we support our claim with a 10% significance?
A simple random sample of 40 men results in a standard deviation of 10.3 heartbeats per minute. Men's heartbeats are normally distributed. We wish to test the claim that men's heartbeats have a standard deviation of 10 heartbeats per minute with a significance of 0.05.

・ロト・日本・モン・モン・ ヨー うへぐ