Lecture 11: Chapter 8

C C Moxley

**UAB** Mathematics

6 July 15

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 A state election board is not using a random process for selecting the ordering of candidates on a ballot because the Republican nominee has been listed second for 15 of the last 16 election cycles.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- A state election board is not using a random process for selecting the ordering of candidates on a ballot because the Republican nominee has been listed second for 15 of the last 16 election cycles.
- The average weight of tennis balls manufactured by Wilson is less than 100 grams.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- A state election board is not using a random process for selecting the ordering of candidates on a ballot because the Republican nominee has been listed second for 15 of the last 16 election cycles.
- The average weight of tennis balls manufactured by Wilson is less than 100 grams.
- A paper claims that most American consumers know that the Kindle is a e-book reader.

- A state election board is not using a random process for selecting the ordering of candidates on a ballot because the Republican nominee has been listed second for 15 of the last 16 election cycles.
- The average weight of tennis balls manufactured by Wilson is less than 100 grams.
- A paper claims that most American consumers know that the Kindle is a e-book reader.
- A sample of 103 human body temperatures can be used to test whether or not the mean body temperature for humans is 98.6°F.

## $\S8.2$ Basic Hypothesis Testing

### Definition (Hypothesis)

A statistical **hypothesis** is a claim or statement about a property of a population.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

#### Definition (Hypothesis)

A statistical **hypothesis** is a claim or statement about a property of a population. And a **hypothesis test** is a procedure for testing a claim about a property of a population.

#### Definition (Hypothesis)

A statistical **hypothesis** is a claim or statement about a property of a population. And a **hypothesis test** is a procedure for testing a claim about a property of a population.

#### Example

From the previous, testing that the average weight of tennis balls manufactured by Wilson is less that 100 grams would be equivalent to testing the statement

 $\mu < 100,$ 

where  $\mu$  is the average weight of Wilson tennis balls.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

If under the given assumption, the probability of a particular observed event is extremely small, we reject the assumption.

# If under the given assumption, the probability of a particular observed event is extremely small, we reject the assumption.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

First we must form a hypothesis. Use these general rules:

# If under the given assumption, the probability of a particular observed event is extremely small, we reject the assumption.

First we must form a hypothesis. Use these general rules:

- The **null** hypothesis  $H_0$  should always be that a population parameter is equal to some value.
- The **alternative** hypothesis *H*<sub>1</sub> should either be that the same parameter is not equal to, less than, or greater than the value above.



The proportion of students at UAB who have taken a math class is at least 65%.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



The proportion of students at UAB who have taken a math class is at least 65%.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $H_0$  is easy.

The proportion of students at UAB who have taken a math class is at least 65%.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $H_0$  is easy.  $H_0: p = 0.65$ .

The proportion of students at UAB who have taken a math class is at least 65%.

 $H_0$  is easy.  $H_0: p = 0.65$ . What should the other hypothesis be?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The proportion of students at UAB who have taken a math class is at least 65%.

 $H_0$  is easy.  $H_0: p = 0.65$ . What should the other hypothesis be? Well, it can't be that  $p \ge 0.65$  because that **includes** the null hypothesis.

The proportion of students at UAB who have taken a math class is at least 65%.

 $H_0$  is easy.  $H_0: p = 0.65$ . What should the other hypothesis be? Well, it can't be that  $p \ge 0.65$  because that **includes** the null hypothesis. The alternative hypothesis, then, is  $H_1: p < 0.65$ ,

The proportion of students at UAB who have taken a math class is at least 65%.

 $H_0$  is easy.  $H_0: p = 0.65$ . What should the other hypothesis be? Well, it can't be that  $p \ge 0.65$  because that **includes** the null hypothesis. The alternative hypothesis, then, is  $H_1: p < 0.65$ , so rejecting the null hypothesis is equivalent to supporting the claim whereas failing to reject the null hypothesis is equivalent to not supporting the claim.



◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Testing using a critical value.

Testing using a critical value. This method is essentially the same as constructing a confidence interval, except we may have one sided intervals now.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Testing using a critical value. This method is essentially the same as constructing a confidence interval, except we may have one sided intervals now.

Testing using a *P*-value, which describes the area lying beyond a test statistic in a one- or two-sided manner.

## Definition (Test Statistic)

A **test statistic** is the result of converting a sample statistic into a value used to test the null hypothesis.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## Definition (Test Statistic)

A **test statistic** is the result of converting a sample statistic into a value used to test the null hypothesis.

| Proportion <i>p</i>                           | Mean $\mu$ with $\sigma$                        | Mean $\mu$ w/o $\sigma$                    | Std. Dev. $\sigma$                   |
|-----------------------------------------------|-------------------------------------------------|--------------------------------------------|--------------------------------------|
| $z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$ | $z = rac{ar{x} - \mu}{rac{\sigma}{\sqrt{n}}}$ | $t = rac{ar{x} - \mu}{rac{s}{\sqrt{n}}}$ | $\chi^2 = \frac{(n-1)s^2}{\sigma^2}$ |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

### Definition (Test Statistic)

A **test statistic** is the result of converting a sample statistic into a value used to test the null hypothesis.

The significance of a *P*-test is called  $\alpha$ . We reject the null hypothesis if  $p \leq \alpha$  and fail to reject it if  $p > \alpha$ .

Let  $\omega$  be a test statistic. We calculate the  $P\mbox{-value}$  using the following rules:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let  $\omega$  be a test statistic. We calculate the  $P\mbox{-value}$  using the following rules:

If the alternative hypothesis is a left-tailed ("less than") statement, then the *P*-value is the area to the left of the statistic ω using the appropriate distribution.

Let  $\omega$  be a test statistic. We calculate the *P*-value using the following rules:

- If the alternative hypothesis is a left-tailed ("less than") statement, then the *P*-value is the area to the left of the statistic ω using the appropriate distribution.
- If the alternative hypothesis is a right-tailed ("greater than") statement, then the *P*-value is the area to the right of the statistic ω using the appropriate distribution.

Let  $\omega$  be a test statistic. We calculate the *P*-value using the following rules:

- If the alternative hypothesis is a left-tailed ("less than") statement, then the *P*-value is the area to the left of the statistic ω using the appropriate distribution.
- If the alternative hypothesis is a right-tailed ("greater than") statement, then the *P*-value is the area to the right of the statistic ω using the appropriate distribution.
- If the alternative hypothesis is a two-tailed ("not equal to") statement, then the *P*-value is the area outside of the interval  $(-\omega, \omega)$  (if  $\omega$  is positive) or  $(\omega, -\omega)$  (if  $\omega$  is negative). In the case of a  $\chi^2$  test, we will have an interval  $(\omega_1, \omega_2)$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition (Type I Error)

This is the error of rejecting a true null hypothesis.

## Definition (Type I Error)

This is the error of rejecting a true null hypothesis.

This would be like concluding that the proportion was not equal to 50% but was more than 50% when in reality the proportion was exactly 50%.

## Definition (Type I Error)

This is the error of rejecting a true null hypothesis.

This would be like concluding that the proportion was not equal to 50% but was more than 50% when in reality the proportion was exactly 50%.

#### Definition (Type II Error)

This is the error of failing to reject a false null hypothesis.

## Definition (Type I Error)

This is the error of rejecting a true null hypothesis.

This would be like concluding that the proportion was not equal to 50% but was more than 50% when in reality the proportion was exactly 50%.

#### Definition (Type II Error)

This is the error of failing to reject a false null hypothesis.

This would be like concluding that the proportion was not greater than 50% when that was actually the case.

We use  $\alpha$  to denote the the probability of making a Type I Error, i.e. it is the probability of rejecting a true null hypothesis.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We use  $\alpha$  to denote the the probability of making a Type I Error, i.e. it is the probability of rejecting a true null hypothesis.

We use  $\beta$  to denote the probability of making a Type II Error, i.e. it is the probability of failing to reject a false null hypothesis.

We use  $\alpha$  to denote the the probability of making a Type I Error, i.e. it is the probability of rejecting a true null hypothesis.

We use  $\beta$  to denote the probability of making a Type II Error, i.e. it is the probability of failing to reject a false null hypothesis.

The confidence of a test is  $1 - \alpha$  (the probability of failing to reject a true null hypothesis), and the power of a test is  $1 - \beta$  (the probability of rejecting a false null hypothesis).

 $H_0: p = 0.95$  and

 $H_0: p = 0.95$  and  $H_1: p < 0.95$ .

 $H_0: p = 0.95$  and  $H_1: p < 0.95$ .

The test statistic is 
$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} = \frac{0.9319 - 0.95}{\sqrt{\frac{(0.95)(0.05)}{514}}} \approx -1.882.$$

$$H_0: p = 0.95$$
 and  $H_1: p < 0.95$ .

The test statistic is 
$$z = \frac{\hat{p}-p}{\sqrt{\frac{pq}{n}}} = \frac{0.9319-0.95}{\sqrt{\frac{(0.95)(0.05)}{514}}} \approx -1.882$$
. So we test to see if

$$P(x < -1.882) \le 0.1.$$

$$H_0: p = 0.95$$
 and  $H_1: p < 0.95$ .

The test statistic is 
$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} = \frac{0.9319 - 0.95}{\sqrt{\frac{(0.95)(0.05)}{514}}} \approx -1.882$$
. So we test to see if

$$P(x < -1.882) \leq 0.1.$$

And because P(x < -1.882) = 0.0299, we get that we must reject the null hypothesis.

$$H_0: p = 0.95$$
 and  $H_1: p < 0.95$ .

The test statistic is 
$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} = \frac{0.9319 - 0.95}{\sqrt{\frac{(0.95)(0.05)}{514}}} \approx -1.882$$
. So we test to see if

$$P(x < -1.882) \le 0.1.$$

And because P(x < -1.882) = 0.0299, we get that we must reject the null hypothesis. In this case, this means that the data does **not** support our original claim!

|                                               |         |           |      |                                                                                                                              |                                         | ι                  | Jntitled | 1                                        |      |       |
|-----------------------------------------------|---------|-----------|------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------|----------|------------------------------------------|------|-------|
| StatCru                                       | nch App | lets Edit | Data | Stat Graph                                                                                                                   | Help                                    | ]                  |          |                                          |      |       |
| Row<br>1<br>2<br>3<br>4                       | var1    | var2      | var3 | Calculators<br>Summary Stats<br>Tables<br>Z Stats<br>T Stats                                                                 | ><br>><br>><br>>                        | var6               | var7     | var8                                     | var9 | var10 |
| 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13 |         |           |      | Proportion Stats<br>Variance Stats<br>Regression<br>ANOVA<br>Nonparametrics<br>Goodness-of-fit<br>Control Charts<br>Resample | > > > > > > > > > > > > > > > > > > > > | One San<br>Two San |          | With Data<br>With Summar<br>Power/Sample |      |       |
| 14<br>15<br>16<br>17<br>18<br>19<br>20        |         |           |      |                                                                                                                              |                                         |                    |          |                                          |      |       |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

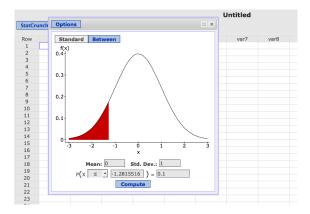
| StatCru | nch / | Untitled<br>Applets Edit Data Stat Graph Help |   |      |
|---------|-------|-----------------------------------------------|---|------|
| Row     | var1  | One Sample Prop. Summary                      | a | var8 |
| 1       |       | one sumple Prop. summary                      |   |      |
| 2       |       | # of successes:                               |   |      |
| 3       |       | 479                                           |   |      |
| 4       |       | 177                                           |   |      |
| 5       |       | # of observations:                            |   |      |
| 6       |       | 514                                           |   |      |
| 7       |       |                                               |   |      |
| 8       |       | Perform:                                      |   |      |
| 9       |       | Hypothesis test for p                         |   |      |
| 10      |       | $H_0: p = 0.95$                               |   |      |
| 11      |       | H <sub>A</sub> : p < ▼ 0.95                   |   |      |
| 12      |       | O Confidence interval for p                   |   |      |
| 13      |       | Level: 0.95                                   |   |      |
| 14      |       |                                               |   |      |
| 15      |       | Method: Standard-Wald 💌                       |   |      |
| 16      |       |                                               |   |      |
| 17      |       | Output:                                       |   |      |
| 18      |       | Store in data table                           |   |      |
| 19      |       |                                               |   |      |
| 20      |       |                                               |   |      |
| 21      |       | ? Cancel Compute!                             |   |      |
| 22      |       | ? Cancel Compute:                             |   |      |
| 23      |       |                                               |   |      |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

| StatCru | nch  | Applets                   | dit [ | Data  | Stat Gra    | ph Hel     | p     | Untit      | led     |      |
|---------|------|---------------------------|-------|-------|-------------|------------|-------|------------|---------|------|
| Row     | var1 | var2                      | v     | ar3   | var4        | var5       | v     | ar6 v      | ar7     | var8 |
| 1       |      |                           |       |       |             |            |       |            |         |      |
| 2       |      |                           |       |       |             |            |       |            |         |      |
| 3       |      | Options                   |       |       |             |            |       |            |         | 36   |
| 4       |      |                           |       |       |             |            |       |            |         |      |
| 5       |      | Hypothesis                |       |       |             |            |       |            |         |      |
| 7       |      | p : Proportion            |       | esses |             |            |       |            |         |      |
| 8       | _    | $H_0: p = 0.95$           |       |       |             |            |       |            |         |      |
| 9       |      | H <sub>A</sub> : p < 0.95 |       |       |             |            |       |            |         |      |
| 10      |      | Proportion                | Count | Total | Sample Prop | . Std. E   | rr.   | Z-Stat     | P-value |      |
| 11      |      | p                         | 479   | 514   | 0.9319066   | 1 0.009613 | 31395 | -1.8821515 | 0.0299  | •    |
| 12      | - l  |                           |       |       |             |            |       |            |         |      |
| 13      |      |                           |       |       |             |            |       |            |         |      |
| 14      |      |                           |       |       |             |            |       |            |         |      |
| 15      |      |                           |       |       |             |            |       |            |         |      |
| 16      |      |                           |       |       |             |            |       |            |         |      |
| 17      |      |                           |       |       |             |            |       |            |         |      |
| 18      |      |                           |       |       |             |            |       |            |         |      |
| 19      |      |                           |       |       |             |            |       |            |         |      |

You can also use a confidence interval or critical value to test a hypothesis.

You can also use a confidence interval or critical value to test a hypothesis.


You can also use a confidence interval or critical value to test a hypothesis.

| StatCri | Untitled<br>unch Applets Edit Data Stat Graph Help |   |      |  |
|---------|----------------------------------------------------|---|------|--|
| Row     | var1 One Sample Prop. Summary                      | ж | var8 |  |
| 1       |                                                    |   |      |  |
| 2       | # of successes:                                    |   |      |  |
| 3       | 479                                                |   |      |  |
| 4       | # of observations:                                 |   |      |  |
| 5       | 514                                                |   |      |  |
| 6       | 514                                                |   |      |  |
| 7       | Perform:                                           |   |      |  |
| 8       | O Hypothesis test for p                            |   |      |  |
| 9       | $H_0: p = 0.5$                                     |   |      |  |
| 10      |                                                    |   |      |  |
| 11      | $H_A: p \neq 0.5$                                  |   |      |  |
| 12      | Confidence interval for p                          |   |      |  |
| 13      | Level: 0.90                                        |   |      |  |
| 14      | Method: Standard-Wald -                            |   |      |  |
| 15      | Method: Standard-Wald                              |   |      |  |
| 16      | Out-out-                                           |   |      |  |
| 17      | Output:                                            |   |      |  |
| 18      |                                                    |   |      |  |
| 19      |                                                    |   |      |  |
| 20      |                                                    | _ |      |  |
| 21      | ? Cancel Compute!                                  |   |      |  |
| 22      |                                                    |   |      |  |
| 23      |                                                    | T |      |  |
| 24      |                                                    |   |      |  |

| StatCrun | nch Applets                           | Edit  | Da    | ata   | Stat      | Graph Hel   | _          | Intitled   |          |
|----------|---------------------------------------|-------|-------|-------|-----------|-------------|------------|------------|----------|
| Row      | var1 v                                | /ar2  | va    | r3    | var4      | var5        | var6       | var7       | var8     |
| 1        |                                       |       |       |       |           |             |            |            | <b>a</b> |
| 2        | Options                               |       |       |       |           |             |            | 8 8        |          |
| 3        |                                       |       |       |       |           |             |            |            | 1        |
| 4        | 90% confid                            |       |       | resul | ts:       |             |            |            |          |
| 5        | p : Proportion<br>Method: Star        |       |       |       |           |             |            |            | -        |
| 6        |                                       |       |       |       |           |             |            |            | -        |
| 7        | Proportion                            | Count | Total | Sam   | ple Prop. | Std. Err.   | L. Limit   | U. Limit   | -        |
| 8        | р                                     | 479   | 514   | 0.    | 93190661  | 0.011111101 | 0.91363048 | 0.95018275 |          |
| 9        | · · · · · · · · · · · · · · · · · · · |       |       |       |           |             |            |            |          |
| 10       |                                       |       |       |       |           |             |            |            |          |
| 11       |                                       |       |       |       |           |             |            |            |          |
| 12       |                                       |       |       |       |           |             |            |            |          |
| 13       |                                       |       |       |       |           |             |            |            |          |
|          |                                       |       |       |       |           |             |            |            |          |

You can also use a confidence interval or critical value to test a hypothesis.

You can also use a confidence interval or critical value to test a hypothesis.



Notice the Confidence Interval Method resulting in failing to reject the null hypothesis because it is inherently **two-tailed**. You must change the significance/confidence level when testing and one-tailed claim!

Notice the Confidence Interval Method resulting in failing to reject the null hypothesis because it is inherently **two-tailed**. You must change the significance/confidence level when testing and one-tailed claim! We needed a one-tailed test because our alternative hypothesis was one-tailed.

0.38, 0.55, 1.54, 1.55, 0.50, 0.60, 0.92, 0.96, 1.00, 0.86, 1.46.

 $0.38,\ 0.55,\ 1.54,\ 1.55,\ 0.50,\ 0.60,\ 0.92,\ 0.96,\ 1.00,\ 0.86,\ 1.46.$ 

|                    |                              |          |      |                                                   |             | L                 | Intitled |      |
|--------------------|------------------------------|----------|------|---------------------------------------------------|-------------|-------------------|----------|------|
| StatCru            | nch Appl                     | ets Edit | Data | Stat Graph                                        | Help        |                   |          |      |
| Row<br>1<br>2<br>3 | var1<br>0.38<br>0.55<br>1.54 | var2     | var3 | Calculators<br>Summary Stats<br>Tables<br>Z Stats | ><br>><br>> | var6              | var7     | var8 |
| 4                  | 1.55                         |          |      | T Stats                                           | >           | One San           | nple >   |      |
| 5                  | 0.5                          |          |      | Proportion Stats<br>Variance Stats                | >           | Two Sam<br>Paired | nple >   |      |
| 7<br>8             | 0.92                         |          |      | Regression<br>ANOVA                               | ><br>>      |                   |          |      |
| 9<br>10            | 1<br>0.86                    |          |      | Nonparametrics<br>Goodness-of-fit                 | ><br>>      |                   |          |      |
| 11<br>12           | 1.46                         |          |      | Control Charts<br>Resample                        | ,<br>,      |                   |          |      |
| 13<br>14           |                              |          |      | Resumple                                          |             |                   |          |      |
| 15<br>16           |                              |          |      |                                                   |             |                   |          |      |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

0.38, 0.55, 1.54, 1.55, 0.50, 0.60, 0.92, 0.96, 1.00, 0.86, 1.46.

|            |       | Untitled                              |
|------------|-------|---------------------------------------|
| StatCruncl | Apple | One Sample T ×                        |
| Row        | var1  | Select column(s):                     |
| 1          | 0.38  | var1 var1                             |
| 2          | 0.55  |                                       |
| 3          | 1.54  |                                       |
| 4          | 1.54  |                                       |
| 5          | 0.5   |                                       |
| 6          | 0.6   | Where:                                |
| 7          | 0.92  | optional Build                        |
| 8          | 0.96  |                                       |
| 9          | 1     | Group by:                             |
| 10         | 0.86  | optional                              |
| 11         | 1.46  |                                       |
| 12         | 21.10 | Perform:<br>(e) Hypothesis test for μ |
| 13         |       |                                       |
| 14         |       | $H_0: \mu = 1$                        |
| 15         |       | $H_{A}: \mu < -1$                     |
| 16         |       | O Confidence interval for µ           |
| 17         |       | Level: 0.95                           |
| 18         |       |                                       |
| 19         |       | Output:                               |
| 20         |       | Store in data table                   |
| 21         |       |                                       |
| 22         |       |                                       |
| 23         |       | ? Cancel Compute!                     |
| 24         |       |                                       |
| 25         |       |                                       |

0.38, 0.55, 1.54, 1.55, 0.50, 0.60, 0.92, 0.96, 1.00, 0.86, 1.46.

| StatCru | nch Appl | ets Edit                                | Data Sta         | t Graph    | Н   | elp         | Untitled |
|---------|----------|-----------------------------------------|------------------|------------|-----|-------------|----------|
| Row     | var1     | var2                                    | var3             | var4 v     | ar5 | var6        | var7     |
| 1       | 0.38     | Options                                 |                  |            |     |             | 22 18    |
| 2       | 0.55     | Options                                 |                  |            |     |             | ~ ~      |
| 3       | 1.54     |                                         |                  |            |     |             |          |
| 4       | 1.55     | u : Mean c                              | is test results: |            |     |             |          |
| 5       | 0.5      | $\mu$ : Mean C<br>$H_0$ : $\mu = 1$     | or variable      |            |     |             |          |
| 6       | 0.6      | $H_0: \mu = 1$<br>$H_{\Delta}: \mu < 1$ |                  |            |     |             |          |
| 7       | 0.92     |                                         |                  |            |     |             |          |
| 8       | 0.96     | Variable                                | Sample Mean      | Std. Err.  | DF  | T-Stat      | P-value  |
| 9       | 1        | var1                                    | 0.93818182       | 0.12749915 | 10  | -0.48485172 | 0.3191   |
| 10      | 0.86     |                                         |                  |            |     |             |          |
| 11      | 1.46     |                                         |                  |            | -   |             |          |
| 12      |          |                                         |                  |            |     |             |          |
| 13      |          |                                         |                  |            |     |             |          |

0.38, 0.55, 1.54, 1.55, 0.50, 0.60, 0.92, 0.96, 1.00, 0.86, 1.46.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $0.38,\ 0.55,\ 1.54,\ 1.55,\ 0.50,\ 0.60,\ 0.92,\ 0.96,\ 1.00,\ 0.86,\ 1.46.$ 

|               |                      |          |      |                                        |             | L       | Intitle | 4          |        |
|---------------|----------------------|----------|------|----------------------------------------|-------------|---------|---------|------------|--------|
| StatCrur      | nch Appl             | ets Edit | Data | Stat Graph                             | Help        |         |         |            |        |
| Row<br>1<br>2 | var1<br>0.38<br>0.55 | var2     | var3 | Calculators<br>Summary Stats<br>Tables | ><br>><br>> | var6    | var7    | var8       | var    |
| 3             | 1.54                 |          |      | Z Stats                                | >           | One San | nple >  | With Data  |        |
| 4             | 1.55                 |          |      | T Stats                                | >           | Two Sam | ple >   | With Summa | ry     |
| 5             | 0.5                  |          |      | Proportion Stats                       | >           |         |         | Power/Samp | e Size |
| 6             | 0.6                  |          |      | Variance Stats                         | >           |         |         |            |        |
| 7             | 0.92                 |          |      | Regression                             | >           |         |         |            |        |
| 8             | 0.96                 |          |      | ANOVA                                  | >           |         |         |            |        |
| 9             | 1                    |          |      | Nonparametrics                         | >           |         |         |            |        |
| 10            | 0.86                 |          |      | Goodness-of-fit                        | ,           |         |         |            |        |
| 11            | 1.46                 |          |      | Control Charts                         | ,           |         |         |            |        |
| 12            |                      |          |      |                                        | ,           |         |         |            |        |
| 13            |                      |          |      | Resample                               |             |         |         |            |        |
| 14            |                      |          |      |                                        |             |         |         |            |        |
| 15            |                      |          |      |                                        |             |         |         |            |        |
| 16            |                      |          |      |                                        |             |         |         |            |        |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

0.38, 0.55, 1.54, 1.55, 0.50, 0.60, 0.92, 0.96, 1.00, 0.86, 1.46.

0.38, 0.55, 1.54, 1.55, 0.50, 0.60, 0.92, 0.96, 1.00, 0.86, 1.46.

|           |         |                                           | Untitled      |      |
|-----------|---------|-------------------------------------------|---------------|------|
| StatCrunc | h Apple | One Sample Z                              |               | ж    |
| Row       | var1    | Select column(s):                         |               |      |
| 1         | 0.38    | var1                                      | var1          |      |
| 2         | 0.55    |                                           |               |      |
| 3         | 1.54    |                                           |               |      |
| 4         | 1.55    |                                           |               |      |
| 5         | 0.5     |                                           |               |      |
| 6         | 0.6     | Standard deviation:                       |               |      |
| 7         | 0.92    | 0.03                                      |               |      |
| 8         | 0.96    | 0.00                                      |               |      |
| 9         | 1       | Where:                                    |               |      |
| 10        | 0.86    | optional                                  | Build         |      |
| 11        | 1.46    |                                           |               | -    |
| 12        |         | Group by:                                 |               |      |
| 13        |         | optional                                  |               |      |
| 14        |         | Perform:                                  |               |      |
| 15        |         | <ul> <li>Hypothesis test for μ</li> </ul> |               |      |
| 16        |         | $H_0: \mu = 1$                            |               |      |
| 17        |         |                                           |               | •    |
| 18        |         | H <sub>A</sub> :μ < • 1                   |               |      |
| 19        |         | Confidence interval for µ                 |               |      |
| 20        |         | Level: 0.95                               |               | ¥    |
| 21        |         |                                           |               | ×    |
| 22<br>23  |         |                                           |               |      |
| 23        |         |                                           | ? Cancel Comp | ite! |
| 24        |         |                                           |               |      |
| 25        |         |                                           |               |      |

0.38, 0.55, 1.54, 1.55, 0.50, 0.60, 0.92, 0.96, 1.00, 0.86, 1.46.

0.38, 0.55, 1.54, 1.55, 0.50, 0.60, 0.92, 0.96, 1.00, 0.86, 1.46.

| StatCru | nch Appl | ets Edit            |      | Data    | Stat   | Graph He     | _          | Untitled |   |
|---------|----------|---------------------|------|---------|--------|--------------|------------|----------|---|
| Row     | var1     | var2                | v    | /ar3    | var4   | var5         | var6       | var7     |   |
| 1       | 0.38     | (                   | 1    |         |        |              |            |          | 1 |
| 2       | 0.55     | Options             | J    |         |        |              |            | 36 30    |   |
| 3       | 1.54     |                     |      |         |        |              |            |          | 1 |
| 4       | 1.55     | Hypothes            |      |         | ults:  |              |            |          |   |
| 5       | 0.5      | µ : Mean o          |      | riable  |        |              |            |          |   |
| 6       | 0.6      | $H_0: \mu = 1$      |      |         |        |              |            |          |   |
| 7       | 0.92     | H <sub>A</sub> :μ<1 |      |         |        |              |            |          |   |
| 8       | 0.96     | Standard of         | devi | ation = | 0.03   |              |            |          |   |
| 9       | 1        | Variable            | n    | Samp    | e Mean | Std. Err.    | Z-Stat     | P-value  |   |
| 10      | 0.86     | var1                | 11   | 0.9     | 818182 | 0.0090453403 | -6.8342571 | < 0.0001 |   |
| 11      | 1.46     |                     |      | 0151    |        |              |            |          | 1 |
| 12      |          |                     |      |         |        |              |            |          |   |
| 13      |          |                     |      |         |        |              |            |          |   |
| 14      |          |                     |      |         |        |              |            |          |   |
| 15      |          |                     |      |         |        |              |            |          |   |
| 10      |          |                     |      |         |        |              |            |          |   |

70, 71, 69.25, 68.5, 69, 70, 71, 70, 70, 69.5

|                           |                                   |          |      |                                                                 |                  | L L               | Jntitled | 1                           |     |
|---------------------------|-----------------------------------|----------|------|-----------------------------------------------------------------|------------------|-------------------|----------|-----------------------------|-----|
| StatCru                   | nch Apple                         | ets Edit | Data | Stat Graph                                                      | Help             | ]                 |          |                             |     |
| Row<br>1<br>2<br>3<br>4   | var1<br>70<br>71<br>69.25<br>68.5 | var2     | var3 | Calculators<br>Summary Stats<br>Tables<br>Z Stats<br>T Stats    | ><br>><br>><br>> | var6              | var7     | var8                        | var |
| 5                         | 69<br>70                          |          |      | Proportion Stats<br>Variance Stats                              | >                | One San           | nple >   | With Data                   |     |
| 7 8                       | 71 70                             |          |      | Regression<br>ANOVA                                             | ><br>>           | Two San<br>Homoge |          | With Summar<br>Power/Sample |     |
| 9<br>10<br>11<br>12<br>13 | 70<br>69.5                        |          |      | Nonparametrics<br>Goodness-of-fit<br>Control Charts<br>Resample | ><br>><br>>      |                   |          |                             |     |
| 13<br>14<br>15<br>16      |                                   |          |      |                                                                 |                  |                   |          |                             |     |

#### 70, 71, 69.25, 68.5, 69, 70, 71, 70, 70, 69.5

70, 71, 69.25, 68.5, 69, 70, 71, 70, 70, 69.5

70, 71, 69.25, 68.5, 69, 70, 71, 70, 70, 69.5

|          |        | Untitled                                              |               |      |  |  |  |  |
|----------|--------|-------------------------------------------------------|---------------|------|--|--|--|--|
| atCrunc  | h Appl | One Sample Variance                                   |               | ж    |  |  |  |  |
| ,        | var1   | Select column(s):                                     |               |      |  |  |  |  |
|          | 70     | var1                                                  | var1          | 1 📗  |  |  |  |  |
| 2        | 71     |                                                       |               |      |  |  |  |  |
| 3        | 69.25  |                                                       |               |      |  |  |  |  |
| 4        | 68.5   |                                                       |               |      |  |  |  |  |
|          | 69     |                                                       |               | J 📗  |  |  |  |  |
| 5        | 70     | Where:                                                |               |      |  |  |  |  |
| 7        | 71     | optional                                              | Build         | 1 1  |  |  |  |  |
|          | 70     | operation                                             | Dunu          | - 1  |  |  |  |  |
| 1        | 70     | Group by:                                             |               |      |  |  |  |  |
| 0        | 69.5   | optional                                              |               |      |  |  |  |  |
| 1        |        |                                                       |               |      |  |  |  |  |
| 2        |        | Perform:                                              |               |      |  |  |  |  |
| 13       |        | <ul> <li>Hypothesis test for σ<sup>2</sup></li> </ul> |               |      |  |  |  |  |
| 14       |        | $H_0: \sigma^2 = 6.76$                                |               |      |  |  |  |  |
| .5       |        | H <sub>A</sub> : σ <sup>2</sup> ≠ • 6.76              |               |      |  |  |  |  |
|          |        | $\bigcirc$ Confidence interval for $\sigma^2$         |               |      |  |  |  |  |
| 17<br>18 |        | Level: 0.95                                           |               |      |  |  |  |  |
| 18       |        | Level: 0.95                                           |               |      |  |  |  |  |
| .9<br>!0 |        | 0.1.1                                                 |               | L    |  |  |  |  |
| 1        |        | Output:<br>Store in data table                        |               | 4    |  |  |  |  |
| 22       |        |                                                       |               | Ŧ    |  |  |  |  |
| 22       |        |                                                       |               |      |  |  |  |  |
| 23       |        |                                                       | ? Cancel Comp | ute! |  |  |  |  |
| 25       |        |                                                       |               |      |  |  |  |  |
|          |        |                                                       |               |      |  |  |  |  |

70, 71, 69.25, 68.5, 69, 70, 71, 70, 70, 69.5

70, 71, 69.25, 68.5, 69, 70, 71, 70, 70, 69.5

| Ur<br>StatCrunch Applets Edit Data Stat Graph Help |       |                                     |                           |      |               |            |      |  |  |  |  |
|----------------------------------------------------|-------|-------------------------------------|---------------------------|------|---------------|------------|------|--|--|--|--|
| Row                                                | var1  | var2                                | var3                      | var4 | var5          | var6       | var7 |  |  |  |  |
| 1                                                  | 70    |                                     |                           |      |               |            |      |  |  |  |  |
| 2                                                  | 71    | Options 00 ×                        |                           |      |               |            |      |  |  |  |  |
| 3                                                  | 69.25 |                                     |                           |      |               |            | 1    |  |  |  |  |
| 4                                                  | 68.5  | Hypothesis test results:            |                           |      |               |            |      |  |  |  |  |
| 5                                                  | 69    | σ <sup>2</sup> : Variar             |                           |      |               |            |      |  |  |  |  |
| 6                                                  | 70    | $H_0: \sigma^2 = 0$                 | $H_0: \sigma^2 = 6.76$    |      |               |            |      |  |  |  |  |
| 7                                                  | 71    | H <sub>A</sub> : σ <sup>2</sup> ≠ 1 | $H_A: \sigma^2 \neq 6.76$ |      |               |            |      |  |  |  |  |
| 8                                                  | 70    | Variable                            | Sample Var.               | DE   | Chi-Square St | at P-value |      |  |  |  |  |
| 9                                                  | 70    |                                     |                           |      |               |            |      |  |  |  |  |
| 10                                                 | 69.5  | var1                                | 0.63958333                | 9    | 0.8515162     | 0.0006     |      |  |  |  |  |
| 11                                                 |       | L                                   |                           |      |               |            | 1    |  |  |  |  |
| 12                                                 |       |                                     |                           |      |               |            |      |  |  |  |  |
| 13                                                 |       |                                     |                           |      |               |            |      |  |  |  |  |