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§11.1 Analyzing Categorical Data

So far, we have used statistical methods to analyze population pa-
rameters - but we knew what types of random variables we were
dealing with.

Now, we move on to making qualitative inferences,
namely things like whether or not a sample comes from a particular
type of distribution or whether or not two samples are independent.
The first type of test is a goodness-of-fit test, and the second test
is done using a is a contingency test.
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§11.2 Goodness-of-Fit Tests

Definition (Goodness-of-Fit Test)

A goodness-of-fit test tests the hypothesis that an observed
frequency distribution or a single column of data comes from some
claimed distribution.

There are a few requirements to perform a goodness-of-fit test.

The data must be randomly selected.

The data consist of (or can be arranged into) frequency
counts for each of the different categories.

For each category, the expected frequency is at least five.
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§11.2 Goodness-of-Fit Tests

We need these variables.

O, observed frequency (from the table or data)

E , expected frequency (from the assumption)

k, number of different cells or categories

n, number of trails or observations

We then compute the test statistic χ2 =
∑ (O − E )2

E
. And we

perform a right-tailed χ2-test with k − 1 degrees of freedom.
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§11.2 Goodness-of-Fit Tests

How to calculate E?

Well, if the assumed distribution is uniform,
then we get that E = n/k . Otherwise, we get E = np, where p is
the probability of falling into a particular category. You can often
calculate p by using a “between” calculator on StatCrunch for the
appropriate distribution.
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§11.2 Example

A salesman wants to make a pitch on a day a company is most
likely to make major purchases. He obtained data about the com-
pany’s previous purchases and tested (using α = 0.05) to see if the
purchases were uniformly distributed throughout the business week
(Mon-Fri). He obtained the following.

k = 7,

n = 20, E = 2.86, test statistic χ2 = 15.85, critical
value 15.507, P-value 0.045

What’s the null hypothesis in this case? Do we accept or reject it?
What does this mean?
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§11.2 Example (with frequency table)

A casino wants to determine if a 10-sided die is loaded (with signif-
icance α = 0.01). They roll the die 64 times and get the following
data:

Side 1 2 3 4 5 6 7 8 9 10

Rolls 6 6 5 7 7 7 7 7 5 7

We end up getting that the P-value for this test is 0.9994, so we fail
to reject the null hypothesis. This means that the data does not
support the claim that the die is loaded. We can conduct the same
test with a critical value. We’d see that our test statistic was 1 and
our critical value was 21.666, telling us that we should reject our
null hypothesis as well. Use the Goodness-of-Fit tab in StatCrunch.
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§11.3 Contingency (Two-Way Frequency) Tables

Definition (Contingency Table)

A contingency table is a table consisting of frequency counts of
categorical data corresponding to two different variables.

Definition (Test of Independence)

A test of independence tests the claim that the row and column
variables are independent.

A test of independence is a χ2 test, and its degrees of freedom is
computed by finding the product of one fewer than the number of
columns and one fewer than the number of rows in the contingency
table: df = (c − 1)(r − 1).
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§11.3 Contingency (Two-Way Frequency) Tables

The requirements for a test of independence are below.

The sample data must be randomly selected.

The sample data are frequency counts in a two-way table.

Each cell in the expected table has a value at least 5. (The
expected table is the table we’d get if the columns and rows
were independent.)

You can read more details about the test of independence on page
578 of your text.
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§11.3 Example

A hospital wants to verify that a test for diabetes is effective by
seeing if the result of the test and the status of the patient are
dependent with significance α = 0.01. They have the following
data.

Negative Positive

Tested Negative 17 7

Tested Positive 8 15

Use the contingency table with summary tab in StatCrunch to see
that the P-value is 0.0133. So, we fail to reject the null hypothesis!
This means that the data supports the claim that the result of the
test is independent of the status of the patient, meaning that the
diabetes test is not effective.
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Note: We would reach the same conclusion if we used a critical value
test because the test is right-tailed and the critical value would be
6.635 with a test statistic of 6.131.



§12.1 ANOVA (Analysis of Variance) Tests

In Chapter 9, we tested to see if two population means were equal.

In
this chapter, we will test to see if three or more population samples
are the same using a one-way ANOVA test. We call it “one-way”
because we separate our populations into groups based on one char-
acteristic. This is often called an “analysis of variance” but this
refers to the method of testing, not the thing which we are testing
- which is means not variances. We will also compare the popula-
tion means of populations separated into categories based on two
characteristics (such as weight and body temperature).
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§12.2 One-Way ANOVA Test

Definition (One-Way ANOVA Test)

A one-way ANOVA test is a method of testing the equality of three
or more population means by analyzing sample variances. One-way
analysis of variance is used with data categorized with one factor,
so there is one characteristic used to separate the sample data into
the different categories.

Populations must be approximately normally distributed.

They must have the same variance, roughly. (Or at least the
sample sizes must be the same for each category.)

The samples must be simple random and quantitative.

The samples must be independent - not matched or paired.

The different samples are from populations that are
categorized in only one way.
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§12.2 One-Way ANOVA Test

In a one-way ANOVA test, our null hypothesis is always that all the
population means are equal. The alternative hypothesis, then, is
that at least one is different from the others.

H0 : µ1 = µ2 = · · · = µn

H1 : At least one of the population means differs from the others.

You can find “by hand” computations for a one-way ANOVA test,
see page 605. The test is right-tailed.



§12.2 One-Way ANOVA Test

In a one-way ANOVA test, our null hypothesis is always that all the
population means are equal. The alternative hypothesis, then, is
that at least one is different from the others.

H0 : µ1 = µ2 = · · · = µn

H1 : At least one of the population means differs from the others.

You can find “by hand” computations for a one-way ANOVA test,
see page 605. The test is right-tailed.



§12.2 One-Way ANOVA Test

In a one-way ANOVA test, our null hypothesis is always that all the
population means are equal. The alternative hypothesis, then, is
that at least one is different from the others.

H0 : µ1 = µ2 = · · · = µn

H1 : At least one of the population means differs from the others.

You can find “by hand” computations for a one-way ANOVA test,
see page 605. The test is right-tailed.



§12.2 One-Way ANOVA Test

In a one-way ANOVA test, our null hypothesis is always that all the
population means are equal. The alternative hypothesis, then, is
that at least one is different from the others.

H0 : µ1 = µ2 = · · · = µn

H1 : At least one of the population means differs from the others.

You can find “by hand” computations for a one-way ANOVA test,
see page 605. The test is right-tailed.



§12.2 Example

The weights (in kg) of oak trees is given below for trees planted in
the same plot but with different growth-enhancing methods applied.
Use a 0.05 significance level to test the claim that the four treatment
categories yield oak trees with the same mean weight. Does there
appear to be a best method for enhancing growth of trees in this
soil?

Control Fert Irr Fert & Irr

0.24 0.92 0.96 1.07

1.69 0.07 1.43 1.63

1.23 0.56 1.26 1.39

0.99 1.74 1.57 0.49

0.99 1.74 1.57 0.49
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Control Fert Irr Fert & Irr

0.24 0.92 0.96 1.07

1.69 0.07 1.43 1.63

1.23 0.56 1.26 1.39

0.99 1.74 1.57 0.49

1.80 1.13 0.72 0.95
We use StatCrunch to conduct the test.
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What’s our null and alternative hypotheses? Based on the output,
do we reject or accept the null hypothesis? What does this mean?
(Use α = 0.05.)



§12.2 Example

You can also perform the previous test using a critical value test. The
F critical value is computed using the significance, the F calculator,
and the “degrees of freedom of the numerator” and the “degrees
of freedom of the denominator” which are, respectively, one fewer
than the number of columns and the difference between the total
number of data points and the number of columns.

Recall the F
stat from the output was 0.3801.
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§12.3 Two-Way ANOVA Test

Definition (Two-Way ANOVA Test)

A two-way ANOVA test is a method of testing the effect of
interactions of two factors and of testing (if the two factors do not
interact) the effect of the factors separately.

Populations must be approximately normally distributed.

They must have the same variance, roughly.

The samples must be simple random and quantitative.

The samples must be independent - not matched or paired.

The different samples are from populations that are
categorized in two ways.

All cells have the same number of values.
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§12.3 Two-Way ANOVA Test

The null hypothesis is always that there is no effect due to inter-
action between the two factors. The alternative is that there is
an effect from the interaction between the two factors. The test
statistic is always

F =
MS(interaction)

MS(error)
.

Note: If you conclude that the there is an effect due to interaction,
then you would not investigate the rows and columns separately.



§12.3 Example

Below are pulse rates of men and women over and under the age of
30. Conduct a two-way ANOVA and state the results. Use a 0.05
significance level.

< 30 ≥ 30

F 78 104 78 64 60 98 82 98 90 96 76 76 72 66 72 78 62 72 74 56

M 60 80 56 68 68 74 74 68 62 56 46 70 62 66 90 80 60 58 64 60



§12.3 Example

We get the following result from StatCrunch.



§12.3 Example

So there it does not appear that there is an effect due to the inter-
action of age and gender, but there does seem to be an effect due
to age and a separate effect due to gender.




