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§8.1 Inference for a Single Proportion

Often, we collect categorical data, and it might seem difficult to
make inferential claims about non-numeric data. We can, however,
always convert categorical data to proportions and make and test
claims about these proportions!

Inference about population propor-
tions is very similar to inference about population means, so we’re
really just extending the knowledge we have about those types of
inference tests. We use the normal approximation to the sampling
distribution of the proportion that we learned in Chapter 5! Recall:

p̂ ∼ N

(
p,

√
p(1− p)

n

)
= N (µp̂, σp̂) .
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§8.1 Inference for a Single Proportion

With this knowledge of the sampling distribution of p̂, we can com-
pute confidence intervals, P-values, and critical values using the
standard normal tables/Minitab.

Definition (large n confidence interval for a population proportion)

Choose a SRS of size n from a large population with unknown pro-
portion of success p. The sample proportion is p̂ = X

n , where X
is the number of successes. The standard error of p̂ is SEp̂ =√

p̂(1− p̂)/n, and the margin of error for confidence C is m =
z∗SEp̂, where z∗ is the value of the N(0, 1) RV with area C be-
tween −z∗ and z∗. The approximate level C confidence interval for
p is

p̂ ±m.

In order to get this confidence interval, the number of successes and
failures should be at least ten each.
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§8.1 Inference for a Single Proportion

Steps for constructing CI :

1 Compute p̂ = X
n .

2 Compute SEp̂ =
√

p̂(1−p̂)
n .

3 Compute z∗ corresponding to your confidence level C .

4 Create the confidence interval p̂ ± z∗SEp̂.
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§8.1 Inference for a Single Proportion

Example

In a SRS of 400 employees at Fortune 500 companies, 60 had ad-
vanced degrees. Create a 95% confidence interval for the proportion
of employees at Fortune 500 companies who hold advanced degrees.

Answer: (0.115,0.185)

Would this sample support the claim that at least 10% of Fortune
500 employees hold advanced degrees? Yes. Would it support the
claim that 12% of Fortune 500 employees hold advanced degrees?
Yes. More than 12%? No.
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§8.1 Inference for a Single Proportion

When the sample does not contain a least ten failures and successes,
we may use the following rule.

Definition (plus four confidence interval for a single proportion)

When there are not at least four successes and failures in a sample for
a population proportion, we may construct the confidence interval
using p̃ instead of p̂ where

p̃ =
X + 2

n + 4
.

Basically, we assume that the sample contains four more observa-
tions, half of which are successes.

We then repeat the process for creating a confidence interval using
p̃ rather than p̂. See page 494 for an example of this.
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§8.1 Inference for a Single Proportion

Definition (large sample z test for population proportion)

To test the hypothesis H0 : p = p0 based on a SRS of size n from
a population with unknown p, compute the test statistic

z =
p̂ − p0√

(p0(1− p0))/n
.

For a N(0, 1) RV, the P-value for a test of H0 against

Ha : p > p0 is P(Z > z)

Ha : p < p0 is P(Z < z)

Ha : p 6= p0 is 2P(Z > |z |)



§8.1 Inference for a Single Proportion

Notice: The P-value test given in the previous slide follows essen-
tially the same process as our previous P-value tests! The only
difference is the way that we calculated the test statistic and P
value.

We also have the following set of requirements to use the
above test.

The population from which the sample is drawn should be large
or the sample should be done with replacement.

The sample itself should be large, but not more than 5% of the
population.

There should be at least ten failures and ten successes in the
sample.



§8.1 Inference for a Single Proportion

Notice: The P-value test given in the previous slide follows essen-
tially the same process as our previous P-value tests! The only
difference is the way that we calculated the test statistic and P
value. We also have the following set of requirements to use the
above test.

The population from which the sample is drawn should be large
or the sample should be done with replacement.

The sample itself should be large, but not more than 5% of the
population.

There should be at least ten failures and ten successes in the
sample.



§8.1 Inference for a Single Proportion

Notice: The P-value test given in the previous slide follows essen-
tially the same process as our previous P-value tests! The only
difference is the way that we calculated the test statistic and P
value. We also have the following set of requirements to use the
above test.

The population from which the sample is drawn should be large
or the sample should be done with replacement.

The sample itself should be large, but not more than 5% of the
population.

There should be at least ten failures and ten successes in the
sample.



§8.1 Inference for a Single Proportion

Notice: The P-value test given in the previous slide follows essen-
tially the same process as our previous P-value tests! The only
difference is the way that we calculated the test statistic and P
value. We also have the following set of requirements to use the
above test.

The population from which the sample is drawn should be large
or the sample should be done with replacement.

The sample itself should be large, but not more than 5% of the
population.

There should be at least ten failures and ten successes in the
sample.



§8.1 Inference for a Single Proportion

Notice: The P-value test given in the previous slide follows essen-
tially the same process as our previous P-value tests! The only
difference is the way that we calculated the test statistic and P
value. We also have the following set of requirements to use the
above test.

The population from which the sample is drawn should be large
or the sample should be done with replacement.

The sample itself should be large, but not more than 5% of the
population.

There should be at least ten failures and ten successes in the
sample.



§8.1 Inference for a Single Proportion

If the last requirement on the previous slide isn’t met, then we could
again use p̃ rather than p̂ to compute the z test statistic and per-
form the same test.

However, in practice, we really only use p̃ for
confidence intervals and not for P-value tests. Let’s see an example!
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§8.1 Inference for a Single Proportion

Example (pizzas delivered on time)

A pizza delivery chain wants to test the claim that at least 95% of
pizzas ordered for delivery at its restaurants are delivered on time. It
wants to test this claim with 99% confidence. After taking a SRS of
300 deliveries, it determined that 284 were delivered on time. Does
this sample support the claim?

Answer: Well, z = −0.265. And P(Z < −0.265) = 0.3955. So we
fail to reject H0 and support our claim.
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§8.1 Inference for a Single Proportion

Example (voters close to polling stations)

A SRS of 2000 voters in Alabama revealed that 1729 lived within 15
minutes of their polling stations. Does this sample support the claim
that the proportion of voters in Alabama who live within 15 minutes
of their polling stations is 84%? Use α = 0.02 and a P-value test.

Answer: Well, z = 2.989. And 2(P(Z > |2.989|) = 2(1−0.9986) =
0.0028. Thus we reject H0 and fail to support our claim.
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§8.1 Inference for a Single Proportion

Example (loaded coin)

A coin is tossed 200 times, and it lands on heads 115 times. Test
the claim that the coin is loaded so that it comes up heads more
than 50% of the time. Use a P-value test and a 10% significance.

Answer: Well, z = 2.121. And P(Z > 2.989) = 0.0169. Thus we
reject H0 and support our claim.
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§8.1 Inference for a Single Proportion

You might consider conducting critical value tests for the three pre-
vious examples.

In order, the three critical values are

z∗ = −2.33 for the pizza problem,

z∗ = 2.33 for the voters problem, and

z∗ = 1.28 for the loaded coin problem.

Make sure you reach the same conclusion using these critical value
tests — and remember to compare z and z∗ in the appropriate way.
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§8.1 Inference for a Single Proportion

Finally, we’ll determine how large we need to make our samples in
order to get a confidence interval for a proportion with a particular
level of confidence and a particular margin of error!



§8.1 Inference for a Single Proportion

Definition (sample size n for a desired margin of error)

The level C confidence interval for a proportion p will have a
margin of error approximately equal to a specified value m when
the sample size satisfies

n =

(
z∗

m

)2

p∗(1− p∗),

where p∗ is some guessed proportion of successes for the future
sample.

If you have no good guess, let p∗ be 50%. This maximizes
the above function over all p∗, so you can’t go wrong with that
guess. The formula then becomes

n =

(
z∗

m

)2 1

4
.
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§8.1 Inference for a Single Proportion

Example (loaded coin)

We think a coin has been loaded so that it will turn up heads 75%
of the time. How large should our sample be in order to create a
95% CI for the proportion of times a coin lands on heads if we want
the margin of error to be less than 0.05?

n =

(
z∗

m

)2

p∗(1− p∗) =

(
1.96

0.05

)2

(0.75)(0.25) = 288.12.

Thus, we should flip the coin 289 times. But if we didn’t expect it
to land on heads 75% of the time, we would have flipped it more!

n =

(
z∗

m

)2

p∗(1− p∗) =

(
1.96

0.05

)2

(0.5)(0.5) = 384.16.

We would have needed to flip it 385 times.
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m

)2

p∗(1− p∗) =

(
1.96

0.05

)2

(0.75)(0.25) = 288.12.

Thus, we should flip the coin 289 times.

But if we didn’t expect it
to land on heads 75% of the time, we would have flipped it more!

n =

(
z∗

m

)2

p∗(1− p∗) =

(
1.96

0.05

)2

(0.5)(0.5) = 384.16.

We would have needed to flip it 385 times.
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