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§10.1 Simple Linear Regression

In §2, we looked at the least-squares regression line. In this chapter,
we'll investigate how well the least-squares regression line models
the data it is fitted to. We work under the prevailing assumption
that for each value of the explanatory variable x, the response
variable y is normally distributed with a mean that depends
on x. We further assume that the variances of these distributions
are all the same and that the means of these distributions depend
on x in a linear fashion.
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§10.1 Simple Linear Regression

Hy = fo+ Bix

Population regression line: p, = By + B1x.
Sample regression line: § = by + b1 x.
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§10.1 Simple Linear Regression

Just as when we were first talking about regression, it's important
to start with a graphical display of the data to guarantee that there
is basic visual evidence to support a linear relationship between the
data. If the data exhibits a non-linear relationship, don't perform
inference for linear regression!



§10.1 Simple Linear Regression

Definition (simple linear regression model)

Given n observations of the explanatory variable x and response
variable y,

(Xl’yl)a 000 (men)a

the statistical model for simple linear regression states that the
responses y; when the explanatory variable takes the value x; is

Yi = Bo + Bixi + €.

Here, 8o + B1x; = py,. The deviations ¢; are assumed to be in-
dependent N(0,0). The parameters of the model are 5y, 1, and
.
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A few warnings and tips:

m The regression line and the inferential result is only valid for
the range of the x values, i.e. the explanatory values.

m 5o and (1 are the y-intercept and the slope of the population
regression line respectively.

m We learned how to compute the statistics corresponding to (g
and 31 in Chapter 2.
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Recall:

and
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We have not yet discussed the parameter residuals €;. The observed
residuals e; can be calculated using the definition below.

Definition (residual)

e; = observed response—predicted response= y;—y; = y;j—bo— b1 X;.

Example (§ = 12.5 — 1.5x)

What's the residual for the point (5,6)7 It's 1.
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For simple linear regression, we can also estimate the standard de-
viation of the residuals o:
2 52
226 _ 2=

° n—2 n—2

In this calculation of a sample variance, we divide by n — 2 to make
s2 an unbiased estimator or 2. We usually use technology for most
of these calculations.
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Definition (Cl & significance test for regression slope)

The level C Cl for 3 is by = t*SE,,. Here, t* is the value for the
t(n — 2) density curve with area C between —t* and t*.
To test the hypothesis Hp : f1 = 0, compute the test statistic

by

t = .
SEp,

The degrees of freedom are n — 2, and the P-value for the test
against

Hy:51>0 is P(T >t)

H,:81<0 is P(T <t)
H,: 081 #0 is 2P(T > |t])
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In the previous slide,

SEp, = >

(xi — %)%

and the corresponding test for by is exactly the same, using

1 x2
SEbO = S\/n + m
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confidence interval for the mean response!

Definition (confidence interval for mean response)

The level C CI for the mean response ;, when x takes the
particular value x* is
,U:}, + t*SEﬁ.

Here, t* is the value for the t(n — 2) density curve with area C

between —t* and t*.
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We may not want a confidence interval for the slope or intercept,
however. In general, we would probably be more concerned with a
confidence interval for the mean response!

Definition (confidence interval for mean response)

The level C CI for the mean response ;, when x takes the
particular value x* is
,U:}, + t*SEﬁ.

Here, t* is the value for the t(n — 2) density curve with area C
between —t* and t*.

Here,

1 x* — X)2
SEﬂ =S4/—+ 7( 2 5
n o S (xi—Xx)
Note: SE; only takes into account the variability due to the model
— it does not include the variability due to the deviations.
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If we want a confidence interval which includes the variability due
to deviations for a future observation, then we're actually creating
a confidence interval for y and not p, .

Definition (prediction interval for future observation)

The level C CI for a future observation y from the subpopulation
corresponding to x* is

v+ t*SEy,.
Here, t* is the value for the t(n — 2) density curve with area C
between —t* and t*.
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Here,
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The level C CI for a future observation y from the subpopulation
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between —t* and t*.

1 x* — X)2
SE}?:S\/1+H+2(:(X;—)2<)2.

Note: Prediction intervals are wider than confidence intervals for
mean responses.

Here,




§10.1 Simple Linear Regression

If we want a confidence interval which includes the variability due
to deviations for a future observation, then we're actually creating
a confidence interval for y and not p, .

Definition (prediction interval for future observation)

The level C CI for a future observation y from the subpopulation
corresponding to x* is

v+ t*SEy,.
Here, t* is the value for the t(n — 2) density curve with area C
between —t* and t*.

1 x* — X)2
SE}?:S\/1+H+2(:(X;—)2<)2.

Note: Prediction intervals are wider than confidence intervals for
mean responses. Why?

Here,
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Ages are in years. Heights are in meters.
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We're going to work with the same basic example:

Example (tree heights & ages)

Below is the height and ages of several trees on a holiday tree farm.
Ages are in years. Heights are in meters.

1210
0908

Age |15[20]17]20|
Height | 1.1 | 1.6 | 1.5 | 1.7 |

The regression line (where age is the explanatory variable) is
y = —0.153125 + 0.90625x.

What's the test statistic to test the claim that the slope is not zero?
To calculate this, we need s and then SE,,.
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We're going to work with the same basic example:

Example (tree heights & ages)

Below is the height and ages of several trees on a holiday tree farm.
Ages are in years. Heights are in meters.

Age 1.5 2.0 1.7 2.0 1.2 1.0
Height 1.1 1.6 1.5 1.7 0.9 0.8
y 1.2063 | 1.6594 | 1.3875 | 1.6594 | 0.9344 | 0.7531

e’ 0.0113 | 0.0035 | 0.0127 | 0.0017 | 0.0012 | 0.0022
x —Xx | -0.0667 | 0.4333 | 0.1333 | 0.4333 | -0.3667 | -0.5667

Thus, s — \/o.o113+o.oo35+o.01zgtg.0017+0.0012+o.0022 ~ 0.0901.
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We're going to work with the same basic example:

Example (tree heights & ages)

Below is the height and ages of several trees on a holiday tree farm.
Ages are in years. Heights are in meters.

Age 1.5 2.0 1.7 2.0 1.2 1.0
Height 1.1 1.6 1.5 1.7 0.9 0.8
y 1.2063 | 1.6594 | 1.3875 | 1.6594 | 0.9344 | 0.7531

e’ 0.0113 | 0.0035 | 0.0127 | 0.0017 | 0.0012 | 0.0022
x —Xx | -0.0667 | 0.4333 | 0.1333 | 0.4333 | -0.3667 | -0.5667

Thus, s — \/o.o113+o.oo35+o.01zgtg.0017+0.0012+o.0022 ~ 0.0901. And

_ 0.0901 __
e = veses = 0.0975.

so SEp, =
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We're going to work with the same basic example:

Example (tree heights & ages)

Below is the height and ages of several trees on a holiday tree farm.
Ages are in years. Heights are in meters.

Age 1.5 2.0 1.7 2.0 1.2 1.0

Height 1.1 1.6 1.5 1.7 0.9 0.8
y 1.2063 | 1.6594 | 1.3875 | 1.6594 | 0.9344 | 0.7531
e? 0.0113 | 0.0035 | 0.0127 | 0.0017 | 0.0012 | 0.0022
x —Xx | -0.0667 | 0.4333 | 0.1333 | 0.4333 | -0.3667 | -0.5667

Thus, our t test statistic is t = Sal = % = 0.29.
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We're going to work with the same basic example:

Example (tree heights & ages)

Below is the height and ages of several trees on a holiday tree farm.
Ages are in years. Heights are in meters.

Age |15|20|17]20|12|1.0
Height | 1.1 | 1.6 | 1.5 | 1.7 | 0.9 | 0.8

Now, we have t = 9.29, let’s get the P-value for our test of the claim
that b; = 0, using o = 0.01.



§10.1 Simple Linear Regression

We're going to work with the same basic example:

Example (tree heights & ages)

Below is the height and ages of several trees on a holiday tree farm.
Ages are in years. Heights are in meters.

Age |15|20|17]20|12|1.0
Height | 1.1 | 1.6 | 1.5 | 1.7 | 0.9 | 0.8

Now, we have t = 9.29, let’s get the P-value for our test of the claim
that by = 0, using & = 0.01. We calculate 2P(T > 9.29) = 0.0007.
Thus, we reject Hy and do not support our claim.
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Obviously, these hypothesis tests involve a lot do calculations! Minitab,
Tl calculators, and technology is your friend for these! Let's do a
confidence interval for the mean response.

Example (Cl for mean response)

Using the same example, compute a 90% Cl for the mean response
when the age of the tree is 1.5 years.

Well,
fi, = —0.153125 + 0.90625(1.5) = 1.2063,
and we have SE,; =

1 (e =x)2 \/1 (1.5 — 1.5667)2
=0.0901/ = + ~———"——7 —0.0374
TS o —xe - 000N gt g3 003
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Example (Cl for mean response)

Using the same example, compute a 90% Cl for the mean response
when the age of the tree is 1.5 years.

Further, we have t* = 2.131. Thus, our Cl is

sy o i ElEg =
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Example (Cl for mean response)

Using the same example, compute a 90% Cl for the mean response
when the age of the tree is 1.5 years.

Further, we have t* = 2.131. Thus, our Cl is

fi, + t*SE;; = 1.2063 + 2.132(0.0374) = (1.127,1.286).
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Using the same example, compute a 90% prediction interval for §
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The only thing that changes in this problem is that § = fi,, and we
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Example (prediction interval)

Using the same example, compute a 90% prediction interval for §
when the age of the tree is 1.5 years.

The only thing that changes in this problem is that § = fi,, and we
use SE, =

(x* — %)2 \/ 1 (1.5 1.5667)2
1 = 0.0901 e )
\/ Th T St —xp = 009011+ 5+ 55533

= 0.0975.

Thus, our prediction interval is

g+ t*SE;, =
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Example (prediction interval)

Using the same example, compute a 90% prediction interval for §
when the age of the tree is 1.5 years.

The only thing that changes in this problem is that § = fi,, and we
use SE, =

(x* — %)? 1 (15— 1.5667)2
\/1+ S0 22 _00901\/ 1+

S (x — %)? 6 0.8533

= 0.0975.

Thus, our prediction interval is

§ + t*SEy = 1.2063 + 2.132(0.0975) = (0.998, 1.414).
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Notice: Predictions intervals are wider than Cl| for mean response.
This makes sense: means vary less than individual observations!

| highly recommend using Minitab as much as possible for these
problems!





