Lesson 18: Chapter 10 Section 1

Caleb Moxley

BSC Mathematics

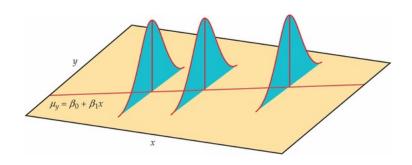
9 November 15

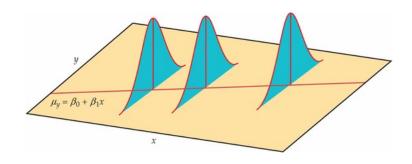
In $\S 2,$ we looked at the least-squares regression line.

In $\S 2$, we looked at the least-squares regression line. In this chapter, we'll investigate how well the least-squares regression line models the data it is fitted to.

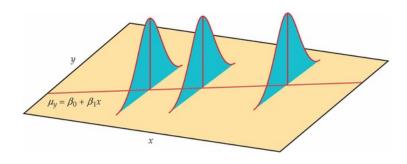
In $\S 2$, we looked at the least-squares regression line. In this chapter, we'll investigate how well the least-squares regression line models the data it is fitted to. We work under the prevailing assumption that for each value of the explanatory variable x, the response variable y is normally distributed with a mean that depends on x.

In $\S 2$, we looked at the least-squares regression line. In this chapter, we'll investigate how well the least-squares regression line models the data it is fitted to. We work under the prevailing assumption that for each value of the explanatory variable x, the response variable y is normally distributed with a mean that depends on x. We further assume that the variances of these distributions are all the same and that the means of these distributions depend on x in a linear fashion.





Population regression line: $\mu_y = \beta_0 + \beta_1 x$.



Population regression line: $\mu_y = \beta_0 + \beta_1 x$. Sample regression line: $\hat{y} = b_0 + b_1 x$.

Just as when we were first talking about regression, it's important to start with a graphical display of the data to guarantee that there is basic visual evidence to support a linear relationship between the data.

Just as when we were first talking about regression, it's important to start with a graphical display of the data to guarantee that there is basic visual evidence to support a linear relationship between the data. If the data exhibits a non-linear relationship, don't perform inference for linear regression!

Definition (simple linear regression model)

Given n observations of the explanatory variable x and response variable y,

$$(x_1,y_1),\ldots(x_n,y_n),$$

the **statistical model for simple linear regression** states that the responses y_i when the explanatory variable takes the value x_i is

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i.$$

Here, $\beta_0 + \beta_1 x_i = \mu_{y_i}$. The deviations ϵ_i are assumed to be independent $N(0, \sigma)$. The parameters of the model are β_0 , β_1 , and σ .

A few warnings and tips:

■ The regression line and the inferential result is only valid for the range of the *x* values, i.e. the explanatory values.

A few warnings and tips:

- The regression line and the inferential result is only valid for the range of the *x* values, i.e. the explanatory values.
- β_0 and β_1 are the *y*-intercept and the slope of the population regression line respectively.

A few warnings and tips:

- The regression line and the inferential result is only valid for the range of the *x* values, i.e. the explanatory values.
- β_0 and β_1 are the *y*-intercept and the slope of the population regression line respectively.
- We learned how to compute the statistics corresponding to β_0 and β_1 in Chapter 2.

Recall:

$$r = \frac{1}{n-1} \sum \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right),$$

Recall:

$$r = \frac{1}{n-1} \sum \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right),$$
$$b_1 = r \frac{s_y}{s_x},$$

Recall:

$$r = \frac{1}{n-1} \sum \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right),$$

$$b_1 = r \frac{s_y}{s_x},$$

and

$$b_0=\bar{y}-b_1\bar{x}.$$

We have not yet discussed the parameter residuals ϵ_i . The observed residuals e_i can be calculated using the definition below.

We have not yet discussed the parameter residuals ϵ_i . The observed residuals e_i can be calculated using the definition below.

Definition (residual)

 $e_i = \text{observed response} - \text{predicted response} = y_i - \hat{y}_i = y_i - b_0 - b_1 x_i$.

We have not yet discussed the parameter residuals ϵ_i . The observed residuals e_i can be calculated using the definition below.

Definition (residual)

 e_i = observed response-predicted response= $y_i - \hat{y}_i = y_i - b_0 - b_1 x_i$.

Example ($\hat{y} = 12.5 - 1.5x$)

What's the residual for the point (5,6)?

We have not yet discussed the parameter residuals ϵ_i . The observed residuals e_i can be calculated using the definition below.

Definition (residual)

 e_i = observed response-predicted response= $y_i - \hat{y}_i = y_i - b_0 - b_1 x_i$.

Example ($\hat{y} = 12.5 - 1.5x$)

What's the residual for the point (5,6)? It's 1.

For simple linear regression, we can also estimate the standard deviation of the residuals σ :

For simple linear regression, we can also estimate the standard deviation of the residuals σ :

$$s^2 = \frac{\sum e_i^2}{n-2} = \frac{\sum (y_i - \hat{y}_i)^2}{n-2}.$$

For simple linear regression, we can also estimate the standard deviation of the residuals σ :

$$s^2 = \frac{\sum e_i^2}{n-2} = \frac{\sum (y_i - \hat{y}_i)^2}{n-2}.$$

In this calculation of a sample variance, we divide by n-2 to make s^2 an unbiased estimator or σ^2 .

For simple linear regression, we can also estimate the standard deviation of the residuals σ :

$$s^2 = \frac{\sum e_i^2}{n-2} = \frac{\sum (y_i - \hat{y}_i)^2}{n-2}.$$

In this calculation of a sample variance, we divide by n-2 to make s^2 an unbiased estimator or σ^2 . We usually use technology for most of these calculations.

Definition (CI & significance test for regression slope)

The **level C CI for** β_1 is $b_1 \pm t^* SE_{b_1}$. Here, t^* is the value for the t(n-2) density curve with area C between $-t^*$ and t^* .

Definition (CI & significance test for regression slope)

The **level C CI for** β_1 is $b_1 \pm t^* SE_{b_1}$. Here, t^* is the value for the t(n-2) density curve with area C between $-t^*$ and t^* .

To test the hypothesis H_0 : $\beta_1 = 0$, compute the test statistic

$$t=\frac{b_1}{\mathsf{SE}_{b_1}}.$$

The degrees of freedom are n-2, and the P-value for the test against

$$H_a: \beta_1 > 0$$
 is $P(T > t)$
 $H_a: \beta_1 < 0$ is $P(T < t)$
 $H_a: \beta_1 \neq 0$ is $2P(T > |t|)$

In the previous slide,

$$\mathsf{SE}_{b_1} = \frac{\mathsf{s}}{\sqrt{\sum (x_i - \bar{x})^2}},$$

In the previous slide,

$$\mathsf{SE}_{b_1} = \frac{\mathsf{s}}{\sqrt{\sum (x_i - \bar{x})^2}},$$

and the corresponding test for b_0 is exactly the same, using

$$SE_{b_0} = s\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{\sum (x_i - \bar{x})^2}}.$$

We may not want a confidence interval for the slope or intercept, however. In general, we would probably be more concerned with a confidence interval for the mean response!

We may not want a confidence interval for the slope or intercept, however. In general, we would probably be more concerned with a confidence interval for the mean response!

Definition (confidence interval for mean response)

The **level C CI for the mean response** μ_y when x takes the particular value x^* is

$$\hat{\mu_y} \pm t^* SE_{\hat{\mu}}$$
.

Here, t^* is the value for the t(n-2) density curve with area C between $-t^*$ and t^* .

We may not want a confidence interval for the slope or intercept, however. In general, we would probably be more concerned with a confidence interval for the mean response!

Definition (confidence interval for mean response)

The **level C CI for the mean response** μ_y when x takes the particular value x^* is

$$\hat{\mu_y} \pm t^* SE_{\hat{\mu}}$$
.

Here, t^* is the value for the t(n-2) density curve with area C between $-t^*$ and t^* .

Here,

$$SE_{\hat{\mu}} = s\sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum (x_i - \bar{x})^2}}.$$

We may not want a confidence interval for the slope or intercept, however. In general, we would probably be more concerned with a confidence interval for the mean response!

Definition (confidence interval for mean response)

The **level C CI for the mean response** μ_y when x takes the particular value x^* is

$$\hat{\mu_y} \pm t^* SE_{\hat{\mu}}$$
.

Here, t^* is the value for the t(n-2) density curve with area C between $-t^*$ and t^* .

Here,

$$SE_{\hat{\mu}} = s\sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum (x_i - \bar{x})^2}}.$$

Note: $SE_{\hat{\mu}}$ only takes into account the variability due to the model — it does not include the variability due to the deviations.

If we want a confidence interval which includes the variability due to deviations for a future observation, then we're actually creating a confidence interval for y and not μ_y .

If we want a confidence interval which includes the variability due to deviations for a future observation, then we're actually creating a confidence interval for y and not μ_y .

Definition (prediction interval for future observation)

The **level C CI for a future observation** y from the subpopulation corresponding to x^* is

$$\hat{y} \pm t^* SE_{\hat{y}}$$
.

Here, t^* is the value for the t(n-2) density curve with area C between $-t^*$ and t^* .

If we want a confidence interval which includes the variability due to deviations for a future observation, then we're actually creating a confidence interval for y and not μ_y .

Definition (prediction interval for future observation)

The **level C CI for a future observation** y from the subpopulation corresponding to x^* is

$$\hat{y} \pm t^* SE_{\hat{y}}$$
.

Here, t^* is the value for the t(n-2) density curve with area C between $-t^*$ and t^* .

Here,

$$SE_{\hat{y}} = s\sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum (x_i - \bar{x})^2}}.$$

If we want a confidence interval which includes the variability due to deviations for a future observation, then we're actually creating a confidence interval for y and not μ_v .

Definition (prediction interval for future observation)

The **level C CI for a future observation** y from the subpopulation corresponding to x^* is

$$\hat{y} \pm t^* SE_{\hat{y}}$$
.

Here, t^* is the value for the t(n-2) density curve with area C between $-t^*$ and t^* .

Here,

$$SE_{\hat{y}} = s\sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum (x_i - \bar{x})^2}}.$$

Note: Prediction intervals are wider than confidence intervals for mean responses.

If we want a confidence interval which includes the variability due to deviations for a future observation, then we're actually creating a confidence interval for y and not μ_v .

Definition (prediction interval for future observation)

The **level C CI for a future observation** y from the subpopulation corresponding to x^* is

$$\hat{y} \pm t^* SE_{\hat{y}}$$
.

Here, t^* is the value for the t(n-2) density curve with area C between $-t^*$ and t^* .

Here,

$$SE_{\hat{y}} = s\sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum (x_i - \bar{x})^2}}.$$

Note: Prediction intervals are wider than confidence intervals for mean responses. Why?

We're going to work with the same basic example:

Example (tree heights & ages)

Below is the height and ages of several trees on a holiday tree farm. Ages are in years. Heights are in meters.

The regression line (where age is the explanatory variable) is

$$\hat{y} = -0.153125 + 0.90625x.$$

We're going to work with the same basic example:

Example (tree heights & ages)

Below is the height and ages of several trees on a holiday tree farm. Ages are in years. Heights are in meters.

The regression line (where age is the explanatory variable) is

$$\hat{y} = -0.153125 + 0.90625x.$$

What's the test statistic to test the claim that the slope is not zero?

We're going to work with the same basic example:

Example (tree heights & ages)

Below is the height and ages of several trees on a holiday tree farm. Ages are in years. Heights are in meters.

The regression line (where age is the explanatory variable) is

$$\hat{y} = -0.153125 + 0.90625x.$$

What's the test statistic to test the claim that the slope is not zero? To calculate this, we need s and then SE_{b_1} .

We're going to work with the same basic example:

Example (tree heights & ages)

Below is the height and ages of several trees on a holiday tree farm. Ages are in years. Heights are in meters.

Age	1.5	2.0	1.7	2.0	1.2	1.0
Height	1.1	1.6	1.5	1.7	0.9	0.8
ŷ	1.2063	1.6594	1.3875	1.6594	0.9344	0.7531
e_i^2	0.0113	0.0035	0.0127	0.0017	0.0012	0.0022
$\overline{x-\bar{x}}$	-0.0667	0.4333	0.1333	0.4333	-0.3667	-0.5667

Thus,
$$s = \sqrt{\frac{0.0113 + 0.0035 + 0.0127 + 0.0017 + 0.0012 + 0.0022}{6-2}} \approx 0.0901$$
.

We're going to work with the same basic example:

Example (tree heights & ages)

Below is the height and ages of several trees on a holiday tree farm. Ages are in years. Heights are in meters.

Age	1.5	2.0	1.7	2.0	1.2	1.0
Height	1.1	1.6	1.5	1.7	0.9	0.8
ŷ	1.2063	1.6594	1.3875	1.6594	0.9344	0.7531
e_i^2	0.0113	0.0035	0.0127	0.0017	0.0012	0.0022
$x - \bar{x}$	-0.0667	0.4333	0.1333	0.4333	-0.3667	-0.5667

Thus,
$$s=\sqrt{\frac{0.0113+0.0035+0.0127+0.0017+0.0012+0.0022}{6-2}}\approx 0.0901.$$
 And so ${\sf SE}_{b_1}=\frac{s}{\sqrt{\sum (x-\bar{x})^2}}=\frac{0.0901}{\sqrt{0.8533}}=0.0975.$

We're going to work with the same basic example:

Example (tree heights & ages)

Below is the height and ages of several trees on a holiday tree farm. Ages are in years. Heights are in meters.

Age	1.5	2.0	1.7	2.0	1.2	1.0
Height	1.1	1.6	1.5	1.7	0.9	0.8
ŷ	1.2063	1.6594	1.3875	1.6594	0.9344	0.7531
e_i^2	0.0113	0.0035	0.0127	0.0017	0.0012	0.0022
$x-\bar{x}$	-0.0667	0.4333	0.1333	0.4333	-0.3667	-0.5667

Thus, our t test statistic is $t = \frac{b_1}{SE_{b_1}} = \frac{0.90625}{0.0975} = 9.29$.

We're going to work with the same basic example:

Example (tree heights & ages)

Below is the height and ages of several trees on a holiday tree farm. Ages are in years. Heights are in meters.

Now, we have t=9.29, let's get the P-value for our test of the claim that $b_1=0$, using $\alpha=0.01$.

We're going to work with the same basic example:

Example (tree heights & ages)

Below is the height and ages of several trees on a holiday tree farm. Ages are in years. Heights are in meters.

Now, we have t=9.29, let's get the P-value for our test of the claim that $b_1=0$, using $\alpha=0.01$. We calculate 2P(T>9.29)=0.0007. Thus, we reject H_0 and do not support our claim.

Obviously, these hypothesis tests involve a lot do calculations! Minitab, TI calculators, and technology **is your friend** for these!

Obviously, these hypothesis tests involve a lot do calculations! Minitab, TI calculators, and technology **is your friend** for these! Let's do a confidence interval for the mean response.

Obviously, these hypothesis tests involve a lot do calculations! Minitab, TI calculators, and technology **is your friend** for these! Let's do a confidence interval for the mean response.

Example (CI for mean response)

Using the same example, compute a 90% CI for the mean response when the age of the tree is 1.5 years.

Obviously, these hypothesis tests involve a lot do calculations! Minitab, TI calculators, and technology **is your friend** for these! Let's do a confidence interval for the mean response.

Example (CI for mean response)

Using the same example, compute a 90% CI for the mean response when the age of the tree is 1.5 years.

Well,

$$\hat{\mu}_y = -0.153125 + 0.90625(1.5) = 1.2063,$$

Obviously, these hypothesis tests involve a lot do calculations! Minitab, TI calculators, and technology **is your friend** for these! Let's do a confidence interval for the mean response.

Example (CI for mean response)

Using the same example, compute a 90% CI for the mean response when the age of the tree is 1.5 years.

Well,

$$\hat{\mu}_y = -0.153125 + 0.90625(1.5) = 1.2063,$$

and we have $\mathsf{SE}_{\hat{\mu}} =$

$$s\sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum (x_i - \bar{x})^2}} = 0.0901\sqrt{\frac{1}{6} + \frac{(1.5 - 1.5667)^2}{0.8533}} = 0.0374$$

U > 4 D P > 4 E > 4 E > E 9 Q (~

Example (CI for mean response)

Using the same example, compute a 90% CI for the mean response when the age of the tree is 1.5 years.

Further, we have $t^* = 2.131$.

Example (CI for mean response)

Using the same example, compute a 90% CI for the mean response when the age of the tree is 1.5 years.

Further, we have $t^* = 2.131$. Thus, our CI is

Example (CI for mean response)

Using the same example, compute a 90% CI for the mean response when the age of the tree is 1.5 years.

Further, we have $t^* = 2.131$. Thus, our CI is

$$\hat{\mu}_{\mathsf{y}} \pm t^* \mathsf{SE}_{\hat{\mu}} =$$

Example (CI for mean response)

Using the same example, compute a 90% CI for the mean response when the age of the tree is 1.5 years.

Further, we have $t^* = 2.131$. Thus, our CI is

$$\hat{\mu}_y \pm t^* SE_{\hat{\mu}} = 1.2063 \pm 2.132(0.0374) = (1.127, 1.286).$$

Example (prediction interval)

Using the same example, compute a 90% prediction interval for \hat{y} when the age of the tree is 1.5 years.

Example (prediction interval)

Using the same example, compute a 90% prediction interval for \hat{y} when the age of the tree is 1.5 years.

The only thing that changes in this problem is that $\hat{y}=\hat{\mu}_y$, and we use ${\sf SE}_y=$

Example (prediction interval)

Using the same example, compute a 90% prediction interval for \hat{y} when the age of the tree is 1.5 years.

The only thing that changes in this problem is that $\hat{y}=\hat{\mu}_y$, and we use $\mathsf{SE}_y=$

$$s\sqrt{1+\frac{1}{n}+\frac{(x^*-\bar{x})^2}{\sum(x_i-\bar{x})^2}}=0.0901\sqrt{1+\frac{1}{6}+\frac{(1.5-1.5667)^2}{0.8533}}$$
$$=0.0975.$$

Example (prediction interval)

Using the same example, compute a 90% prediction interval for \hat{y} when the age of the tree is 1.5 years.

The only thing that changes in this problem is that $\hat{y}=\hat{\mu}_y$, and we use $\mathsf{SE}_y=$

$$s\sqrt{1+\frac{1}{n}+\frac{(x^*-\bar{x})^2}{\sum(x_i-\bar{x})^2}}=0.0901\sqrt{1+\frac{1}{6}+\frac{(1.5-1.5667)^2}{0.8533}}$$
$$=0.0975.$$

Thus, our prediction interval is

Example (prediction interval)

Using the same example, compute a 90% prediction interval for \hat{y} when the age of the tree is 1.5 years.

The only thing that changes in this problem is that $\hat{y} = \hat{\mu}_y$, and we use $\mathsf{SE}_y =$

$$s\sqrt{1+\frac{1}{n}+\frac{(x^*-\bar{x})^2}{\sum(x_i-\bar{x})^2}}=0.0901\sqrt{1+\frac{1}{6}+\frac{(1.5-1.5667)^2}{0.8533}}$$
$$=0.0975.$$

Thus, our prediction interval is

$$\hat{y} \pm t^* \mathsf{SE}_{\hat{y}} =$$

Example (prediction interval)

Using the same example, compute a 90% prediction interval for \hat{y} when the age of the tree is 1.5 years.

The only thing that changes in this problem is that $\hat{y}=\hat{\mu}_y$, and we use $\mathsf{SE}_y=$

$$s\sqrt{1+\frac{1}{n}+\frac{(x^*-\bar{x})^2}{\sum(x_i-\bar{x})^2}}=0.0901\sqrt{1+\frac{1}{6}+\frac{(1.5-1.5667)^2}{0.8533}}$$
$$=0.0975.$$

Thus, our prediction interval is

$$\hat{y} \pm t^* SE_{\hat{y}} = 1.2063 \pm 2.132(0.0975) = (0.998, 1.414).$$

Notice: Predictions intervals are wider than CI for mean response.

Notice: Predictions intervals are wider than CI for mean response. This makes sense: means vary less than individual observations!

Notice: Predictions intervals are wider than CI for mean response. This makes sense: means vary less than individual observations!

I highly recommend using Minitab as much as possible for these problems!