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§10.1 Simple Linear Regression

In §2, we looked at the least-squares regression line.

In this chapter,
we’ll investigate how well the least-squares regression line models
the data it is fitted to. We work under the prevailing assumption
that for each value of the explanatory variable x , the response
variable y is normally distributed with a mean that depends
on x . We further assume that the variances of these distributions
are all the same and that the means of these distributions depend
on x in a linear fashion.
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§10.1 Simple Linear Regression

Just as when we were first talking about regression, it’s important
to start with a graphical display of the data to guarantee that there
is basic visual evidence to support a linear relationship between the
data.

If the data exhibits a non-linear relationship, don’t perform
inference for linear regression!
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§10.1 Simple Linear Regression

Definition (simple linear regression model)

Given n observations of the explanatory variable x and response
variable y ,

(x1, y1), . . . (xn, yn),

the statistical model for simple linear regression states that the
responses yi when the explanatory variable takes the value xi is

yi = β0 + β1xi + εi .

Here, β0 + β1xi = µyi . The deviations εi are assumed to be in-
dependent N(0, σ). The parameters of the model are β0, β1, and
σ.



§10.1 Simple Linear Regression

A few warnings and tips:

The regression line and the inferential result is only valid for
the range of the x values, i.e. the explanatory values.

β0 and β1 are the y -intercept and the slope of the population
regression line respectively.

We learned how to compute the statistics corresponding to β0

and β1 in Chapter 2.
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Recall:

r =
1

n − 1

∑(
xi − x̄

sx

)(
yi − ȳ

sy

)
,

b1 = r
sy
sx
,

and
b0 = ȳ − b1x̄ .
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§10.1 Simple Linear Regression

We have not yet discussed the parameter residuals εi . The observed
residuals ei can be calculated using the definition below.

Definition (residual)

ei = observed response−predicted response= yi−ŷi = yi−b0−b1xi .

Example (ŷ = 12.5− 1.5x)

What’s the residual for the point (5,6)? It’s 1.
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For simple linear regression, we can also estimate the standard de-
viation of the residuals σ:

s2 =

∑
e2
i

n − 2
=

∑
(yi − ŷi )

2

n − 2
.

In this calculation of a sample variance, we divide by n− 2 to make
s2 an unbiased estimator or σ2. We usually use technology for most
of these calculations.
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§10.1 Simple Linear Regression

Definition (CI & significance test for regression slope)

The level C CI for β1 is b1 ± t∗SEb1 . Here, t∗ is the value for the
t(n − 2) density curve with area C between −t∗ and t∗.

To test the hypothesis H0 : β1 = 0, compute the test statistic

t =
b1

SEb1

.

The degrees of freedom are n − 2, and the P-value for the test
against

Ha : β1 > 0 is P(T > t)
Ha : β1 < 0 is P(T < t)
Ha : β1 6= 0 is 2P(T > |t|)
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§10.1 Simple Linear Regression

In the previous slide,

SEb1 =
s√∑

(xi − x̄)2
,

and the corresponding test for b0 is exactly the same, using

SEb0 = s

√
1

n
+

x̄2∑
(xi − x̄)2

.
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We may not want a confidence interval for the slope or intercept,
however. In general, we would probably be more concerned with a
confidence interval for the mean response!

Definition (confidence interval for mean response)

The level C CI for the mean response µy when x takes the
particular value x∗ is

µ̂y ± t∗SEµ̂.

Here, t∗ is the value for the t(n − 2) density curve with area C
between −t∗ and t∗.

Here,

SEµ̂ = s

√
1

n
+

(x∗ − x̄)2∑
(xi − x̄)2

.

Note: SEµ̂ only takes into account the variability due to the model
— it does not include the variability due to the deviations.
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§10.1 Simple Linear Regression

If we want a confidence interval which includes the variability due
to deviations for a future observation, then we’re actually creating
a confidence interval for y and not µy .

Definition (prediction interval for future observation)

The level C CI for a future observation y from the subpopulation
corresponding to x∗ is

ŷ ± t∗SEŷ .

Here, t∗ is the value for the t(n − 2) density curve with area C
between −t∗ and t∗.

Here,

SEŷ = s

√
1 +

1

n
+

(x∗ − x̄)2∑
(xi − x̄)2

.

Note: Prediction intervals are wider than confidence intervals for
mean responses. Why?
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We’re going to work with the same basic example:

Example (tree heights & ages)

Below is the height and ages of several trees on a holiday tree farm.
Ages are in years. Heights are in meters.

Age 1.5 2.0 1.7 2.0 1.2 1.0

Height 1.1 1.6 1.5 1.7 0.9 0.8

The regression line (where age is the explanatory variable) is

ŷ = −0.153125 + 0.90625x .

What’s the test statistic to test the claim that the slope is not zero?
To calculate this, we need s and then SEb1 .
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Ages are in years. Heights are in meters.

Age 1.5 2.0 1.7 2.0 1.2 1.0

Height 1.1 1.6 1.5 1.7 0.9 0.8

ŷ 1.2063 1.6594 1.3875 1.6594 0.9344 0.7531

e2
i 0.0113 0.0035 0.0127 0.0017 0.0012 0.0022

x − x̄ -0.0667 0.4333 0.1333 0.4333 -0.3667 -0.5667

Thus, s =
√

0.0113+0.0035+0.0127+0.0017+0.0012+0.0022
6−2 ≈ 0.0901.

And

so SEb1 = s√∑
(x−x̄)2

= 0.0901√
0.8533

= 0.0975.
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SEb1

= 0.90625
0.0975 = 9.29.
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Ages are in years. Heights are in meters.

Age 1.5 2.0 1.7 2.0 1.2 1.0

Height 1.1 1.6 1.5 1.7 0.9 0.8

Now, we have t = 9.29, let’s get the P-value for our test of the claim
that b1 = 0, using α = 0.01.

We calculate 2P(T > 9.29) = 0.0007.
Thus, we reject H0 and do not support our claim.
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Obviously, these hypothesis tests involve a lot do calculations! Minitab,
TI calculators, and technology is your friend for these!

Let’s do a
confidence interval for the mean response.

Example (CI for mean response)

Using the same example, compute a 90% CI for the mean response
when the age of the tree is 1.5 years.

Well,
µ̂y = −0.153125 + 0.90625(1.5) = 1.2063,

and we have SEµ̂ =

s

√
1

n
+

(x∗ − x̄)2∑
(xi − x̄)2

= 0.0901

√
1

6
+

(1.5− 1.5667)2

0.8533
= 0.0374
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Example (CI for mean response)

Using the same example, compute a 90% CI for the mean response
when the age of the tree is 1.5 years.

Further, we have t∗ = 2.131.

Thus, our CI is

µ̂y ± t∗SEµ̂ = 1.2063± 2.132(0.0374) = (1.127, 1.286).
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Example (prediction interval)

Using the same example, compute a 90% prediction interval for ŷ
when the age of the tree is 1.5 years.

The only thing that changes in this problem is that ŷ = µ̂y , and we
use SEy =

s

√
1 +

1

n
+

(x∗ − x̄)2∑
(xi − x̄)2

= 0.0901

√
1 +

1

6
+

(1.5− 1.5667)2

0.8533

= 0.0975.

Thus, our prediction interval is

ŷ ± t∗SEŷ = 1.2063± 2.132(0.0975) = (0.998, 1.414).
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use SEy =

s

√
1 +

1

n
+

(x∗ − x̄)2∑
(xi − x̄)2

= 0.0901

√
1 +

1

6
+

(1.5− 1.5667)2

0.8533

= 0.0975.

Thus, our prediction interval is
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This makes sense: means vary less than individual observations!

I highly recommend using Minitab as much as possible for these
problems!
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