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§10.1 More Detail about Simple Linear Regression

In this section, we’ll cover two more tests which deal will linear
regression — the F test for β1, i.e. for the slope, and the ρ test.

The F test involves an analysis of variance — a type of test which
is used in Chapters 12 & 13. Let’s look at the framework for this
test first!
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§10.1 More Detail about Simple Linear Regression

Every data point in the response variable column can be obtained
in the basic fashion:

DATA = FIT + RESIDUAL.

That is,
y = (ŷ) + (y − ŷ).

If we subtract ȳ from both sides, we get

y − ȳ = (ŷ − ȳ) + (y − ŷ)

This means that the deviations also follow the pattern

DATA = FIT + RESIDUAL.
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§10.1 More Detail about Simple Linear Regression

If we square each of these deviations and add over all observations,
it can be shown that the equation below is also true.∑

(y − ȳ)2 =
∑

(ŷ − ȳ)2 +
∑

(y − ŷ)2

We call these the total sum of squares (SST), the sum of squares
due to the model (SSM), and the sum of squares due to deviations
from the model, i.e. due to errors, (SSE), respectively. They have
degrees of freedom n−1, 1, and n−2 respectively. We denote them
DFT, DFM, and DFE.
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§10.1 More Detail about Simple Linear Regression

The mean square error (MSE) is SSE
DFE , and the mean square for the

total and the mean square for the model are refined analogously.
We have the following:

Definition (sum of squares, degrees of freedom, and mean squares)

Sum of squares represent variation present in the responses. They
are calculated by summing square deviations. Analysis of
variance partitions the total variation between two sources.

SST = SSM + SSE

The degrees of freedom are associated with each sum of squares.

DFT = DFM + DFE

The mean squares are sum of squares
degrees of freedom .
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§10.1 More Detail about Simple Linear Regression

It was mentioned before that r2 — the square of linear correlation
coefficient, sometimes called the coefficient of determination — is
the ratio of the explained variation to the total variation. This is
because:

r2 =
SSM

SST
.



§10.1 More Detail about Simple Linear Regression

Definition (Analysis of Variance F test)

In the simple linear regression model, the hypotheses

H0 : β1 = 0

H1 : β1 6= 0

are tested by the F statistic

F =
MSM

MSE
.

The P-value is the probability that a random variable having the
F (1, n − 2) distribution is greater than or equal to the calculated
value of the F statistic.

Typically, all these calculations are done with the help of technology.
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§10.1 More Detail about Simple Linear Regression

We have one final test: the test for zero population linear correlation.

Definition (test for a zero population correlation)

To test the hypothesis H0 : ρ = 0, compute the t test statistic

t =
r
√
n − 2√

1− r2
,

where n is the sample size and r is the sample correlation. In terms
of the t(n − 2) random variable, the P-value for the test of H0

against

Ha : ρ > 0 is P(T > t)
Ha : ρ < 0 is P(T < t)
Ha : ρ 6= 0 is 2P(T > |t|)



§10.1 More Detail about Simple Linear Regression

We have one final test: the test for zero population linear correlation.

Definition (test for a zero population correlation)

To test the hypothesis H0 : ρ = 0, compute the t test statistic

t =
r
√
n − 2√

1− r2
,

where n is the sample size and r is the sample correlation. In terms
of the t(n − 2) random variable, the P-value for the test of H0

against

Ha : ρ > 0 is P(T > t)
Ha : ρ < 0 is P(T < t)
Ha : ρ 6= 0 is 2P(T > |t|)



§10.1 More Detail about Simple Linear Regression

Note: The test for ρ is equivalent to the test for β1 from the
previous section!

In order to use the test for ρ, the distribution of
x (the explanatory variable) must be normal, and the distribution of
y for a fixed x must be normal as well.
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§10.1 More Detail about Simple Linear Regression

Example (mice’s weights)

Use technology to test the claim that the data below is from a
population which is not linearly correlated and that β1 is non-zero.

Rice (g) 10 12 14 16 18

Weight gain (g) 2.1 3.2 3.3 4.5 5.0

Well, the MSE and MSM are 0.227 and 5.041 respectively. Thus,
the F (1, 3) stat is 66.62. Thus, the P-value for the β1 test is 0.004.
We reject H0 and support our claim that β1 is non-zero. Now,
r = 0.9782, thus our t(3) test statistic is 8.162 and the P-value is
also 0.004. And we reject our null hypothesis and fail to support the
claim that our claim that the population is not linearly correlated.
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