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Size- and time-resolved particulate matter samples collected using eight-stage Davis Rotating-drum Universal-
size-cut Monitoring (DRUM) impactors at the Washington-Dulles International Airport were analyzed for the
elemental composition using synchrotron X-ray fluorescence. A physically realistic three-way factor analysis
model consisting of the outer products of matrices (profiles) times a vector of mass contributions was applied
to these data. The problem was solved using a weighted alternating least squares method. Five major emission
sources: soil, road salt, aircraft landings, transported secondary sulfate, and local sulfate/construction were iden-
tified. The study shows that time- and size-resolved RDI data can assist in the identification of the airport emis-
sion sources and atmospheric processes leading to the observed ambient concentrations.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Airport emissions are studied with regard to the local air quality in
nearby area of an airport for years (see [1–3]). In order to reduce the
exposure of pollutants which emitted from airport operations, different
airport emission sources need to be controlled. It is also necessary to
quantify the various airport sources (ground vehicles, landings, etc.)
in order to develop a reliable emissions inventory.

Receptor modeling is the application of data analysis methods to
elicit information on the sources of air pollutants. It employs methods
of solving the mixture resolution problem using chemical composition
data for airborne particulate matter samples to identify the pollution
source types and estimate the contribution of each source type to the
mass of each sample. The fundamental principle of receptor modeling
is that mass conservation can be assumed and a mass balance analysis
can be used to identify and apportion sources of airborne particulate
matter (PM) in the atmosphere.

Time integrated measurements and instruments [4] have been
applied to the study of airport-related PM. However, time resolved
measurements are really needed to detect PMmass associatedwith air-
port operations [3]. Very little data are currently available to address the
characteristics of particles emitted from airport operations and the po-
tential impact on exposure and health in adjacent communities. PM
compositional data from airport emissions can provide useful informa-
tion for source apportionment.
rights reserved.
Another significant factor in the study of airport emissions is par-
ticle size since there are different sizes of particle in the atmosphere.
They originate from different sources, and they are continually dis-
tributed by atmospheric transport processes. According to an earlier
study [5], source compositions are dependent on the particle size.
Therefore, analyses of particle size distribution data have also been
performed to identify air pollution sources. Such data that contain
both size and compositional information require advanced data analysis
tools. The bilinearmultivariate receptormodels that are used extensively
for source apportionment of airborne particles are not applicable to
size-resolved data since they do not ensure appropriate continuity of
the values as a function of particle size [6,7].

Therefore, in this study, size- and time-resolved PM samples were
collected using several eight-stage rotating DRUM impactor sam-
plers at Washington-Dulles International Airport. These data were
analyzed by using a DRUM receptor model [12], which can take the
size-composition variation into account to properly resolve the ambient
data for the apportionment of potential airport emission sources. A
weighted alternating least squares method is introduced to solve this
model and five emission sources are identified successfully.

2. Data description

The original size- and time-resolved aerosol samples were collected
using eight-stage rotating DRUM impactor samplers at Washington-
Dulles International Airport. Three measurement campaigns were
conducted during 3 different seasons (i) April 17–28, 2009; (ii) January
16–24, 2010; and (iii) July 9–23, 2010. DuringApril, 2009, sampleswere
collected by deploying one Rotating Drum Impactors (RDI) at the Base
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Station. In the winter and summer seasonal campaigns, two RDIs were
deployed; one at the Fire Station and the other at the Stone House
(New Base Station) sites [8].

Particulate matter samples were analyzed by synchrotron X-ray
Fluorescence (s-XRF) [9] using a broad-spectrum X-ray beam gener-
ated on beamline 10.3.1 at the Advanced Light Source Lawrence
Berkeley National Laboratory. The s-XRF analysis provides quantita-
tive elemental data for 27 elements (Mg, Al, Si, P, S, Cl, K, Ca, Ti, V,
Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Br, Rb, Sr, Y, Zr, Mo, and Pb) in 8
size modes (0.1–0.26 μm, 0.26–0.34 μm, 0.34–0.56 μm, 0.56–0.75 μm,
0.75–1.15 μm, 1.15–2.5 μm, 2.5–5 μm, and 5–10 μm) with 3-hour time
resolution for the samples collected in this campaign. A total of 357
sampleswere collected over three seasons: spring, summer, andwinter.
In addition, mass concentrationsweremeasured using soft beta attenu-
ation. The summary statistics for the measured variables are presented
in Table 1.

The data were considered as a function of size, time, and chemical
composition (i.e. elemental species), which can be organized a third-
order tensorχorig ∈RI�J�K. If i denotes the chemical species, j to express
particle size, and k to be the time sample, then a datumpoint, xijk, can be
expressed as the concentration value of the ith chemical species of the
jth particle size of the kth time sample.

There are two problems that need to be addressed. First, the syn-
chrotron XRF does not provide carbon and nitrate values, so the mea-
sured mass minus the reconstructed mass, termed the “unmeasured
mass”, is introduced in the analysis. This approach has been used pre-
viously in the analysis of data from Denver [10] that provided reason-
able estimates of carbonaceous sources. Another issue is the influence
of high-noise variables (chemical species). For some variables, the
data may consist almost entirely of noise which would increase the
errors in computed factors. The question of accepting or rejecting indi-
vidual chemical constituents has been studied by Paatero and Hopke
[11]. The signal-to-noise ratio (S/N) and below detection level (BDL)
were introduced to determine the noisy variables (containing much
more noise than signal). For uncensored data, a variable is defined to
be bad if S/N b 0.2. For censored data, a sufficiently large number of
Table 1
The summary statistics for the original data set.

Element Mean
(ng/m3)

Standard deviation
(ng/m3)

Median
(ng/m3)

S/Na Number of
BDL valuesb

Mg 61.10 270.69 32.14 2.6503 53
Al 37.02 85.52 12.82 1.7189 6
Si 54.44 113.84 10.00 3.2904 5
P 7.65 29.77 4.75 0.7456 6
S 113.26 721.72 31.21 5.0237 2
Cl 5.46 22.14 0 0.9685 30
K 7.47 11.49 3.29 0.9954 9
Ca 30.64 61.97 3.30 1.0085 0
Ti 2.99 5.37 0.90 0.9978 0
V 0.11 0.22 0.05 0.9960 247
Cr 0.05 0.10 0.02 1.0000 402
Mn 0.46 0.87 0.17 0.9998 85
Fe 23.48 41.48 5.84 1.0004 0
Co 0.07 0.10 0.04 0.9981 497
Ni 0.12 0.33 0.06 1.0000 84
Cu 0.99 1.59 0.36 0.9996 0
Zn 1.69 1.80 1.14 0.9979 0
Ga 0.03 0.04 0.02 0.9994 572
As 0.12 0.26 0.03 0.9998 237
Se 0.22 0.35 0.14 0.9995 299
Br 2.00 0.83 1.81 0.9987 0
Rb 0.21 0.22 0.17 0.9999 482
Sr 0.48 0.24 0.43 0.9999 448
Y 0.49 0.43 0.38 0.9999 603
Zr 0.99 0.66 0.78 0.9997 537
Mo 2.32 1.10 2.07 0.9995 489
Pb 1.06 3.10 0.43 0.9995 331

a Signal to noise ratio as defined by Paatero and Hopke [11].
b Number of values below the method detection limit.
BDL values (>80%) may also indicate a noisy variable. Therefore, four
chemical species (P, Ga, Y, Zr) were eliminated on the basis of S/N and
large number of BDL values, so that the value of I index of the tensor
data we are using in the analysis is 24. It includes 23 chemical elements
and the unmeasuredmass. Consequently, the dimension of the tensorχ
is 24 × 8 × 357.

3. DRUM model description

In order to take full advantage of the size dependent composition
behavior that exists in source emissions, a model had been previously
developed for DRUM data [12]. In this model, the profile for a given
source is a matrix of dimensions defined by the number of measured
variables and the number of measured size fractions. For each source
(factor), there is a vector of mass contributions in terms of time, so
the outer product of the source profile matrix times the mass contri-
bution vector produces a tensor whose dimensions are defined by the
number of measured chemical species, the number of size, and the
number of time samples. Then, tensor χ can be factored into a summa-
tion of R outer products of the source profile matrix and the vector of
mass contribution, where R denotes the number of independent sources
(factors).

Therefore, the main equation of the model is as below:

χ ¼
XR
r¼1

A rð Þ∘ b rð Þ þ ε ð1Þ

whereχ is the third-order tensor of observed data, Α(r) is the rth source
profile array and b(r) is the corresponding rth contribution vector. The
tensor ε having the same size as χ contains the residuals. Fig. 1 sche-
matically shows the model used in this study.

In its component form, the model equation becomes:

xijk ¼
XR
r¼1

A rð Þ
ij b

rð Þ
k þ eijk ð2Þ

where Aij
(r) is the ith species mass fraction of the jth particle size range

from the rth source, bk(r) is the rth source mass contribution during the
time units for the kth sample, and eijk is the residual associated with
the ith species concentration measured in the kth sample of the jth
size range, and R is the total number of independent sources.

In this receptor model, the problem is to find matrices A(r) and
vectors b(r), for r = 1, …, R, to minimize the objective function:

Q ¼ ∑
I

i¼1
∑
J

j¼1
∑
K

k¼1

xijk−∑
R

r¼1
A rð Þ
ij b

rð Þ
k

 !2

u2
ijk

ð3Þ

where uijk is the uncertainty value associated with data value xijk.
Tensor block term decomposition in rank (L;L;1), BTD-(L;L;1), is

the another way to solve the receptor model in Eq. (1).

Definition (BTD-(L;L;1)). Given a third order tensor χ∈RI�J�K, a
rank-(L;L;1) block term decomposition of χ is described by:

χ ¼ ∑
R

r¼1
Αr⋅Β

T
r

� �
∘cr ð4Þ

in which the matrices Ar ∈RI�L
;Βr ∈RI�L, and vector cr ∈RK.

Fig. 2 shows the decomposition structure of BTD-(L;L;1). There-
fore, comparing Eqs. (4) and (1), the product of matrices Αr⋅Βr

T
� �

ac-
tually is the matrix A(r). Thus, for a given tensor χ, the BTD-(L;L;1)
solution set {Ar, Br, cr, r = 1, 2,…, R}, provides the solution of Eq. (1) as

Α rð Þ ¼ Αr⋅Β
T
r ;b

rð Þ ¼ cr:



Fig. 1. Receptor model for the observed tensor. A(r) is the source profile matrix and b(r) is the mass contribution.
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To decrease the rotational freedom in the solution, non-negativity
constraints were applied to the factors. The uncertainty estimation in
Eq. (3) also provides a useful tool to decrease the weight of missing
and below detection limit data in the solution. The procedures of
Polissar et al. [13] will be used to assign measured data and the asso-
ciated uncertainties as the input data.

For convenience, the uncertainties uijk are organized into a third-order
tensor U. The objective function in Eq. (3) can then be written as:

Q ¼ jj χ−∑
R

r¼1
Α rð Þ∘ b rð Þ

 !

U2
F

jj2 ð5Þ

where the division between the two tensors is element-wise division.
The problemwas solved based on the objective function (Eq. (5)). A

weighted alternating least-squares (WALS) algorithm similar to that
described by Wentzell et al. [14] is used. Variants like the BTD-ALS
[15,16] can be used to produce the decomposition in Eq. (1). However,
these three-way tensor block model solvers incur higher operational
costs and memory for this specific model (Eq. (1)). The WALS frame-
work is based on ALSwith only two subproblems that are appropriately
chosen matricizations of Eq. (1). In addition, the WALS formulation of-
fersmore flexibility than BTD-ALSwith respect to constraint integration
and column-wise reformulation to further reduce operational costs. A
detailed discussion onWALS is presented in the supplemental informa-
tion of this paper.

To reduce rotations, uncertainty estimates and non-negativity
constraints were used. The standard MATLAB least squares function,
‘lsqnonneg’, was used to impose the non-negativity constraints. How-
ever, according to Paatero et al. [17], those are generally insufficient to
wholly eliminate the rotational problem. Several methods are proposed
by Paatero et al. [17] to control the rotations. One way is constraining
individual factor elements, either scores and/or loadings, toward zero
values based on some external information about acceptable or desir-
able shapes of the factors. Therefore, constraints based on the priori
information were imposed. Based on an initial analysis [8], one factor
Fig. 2. The BTD-(L;L;1) structure for
is dominated by large particles with high concentrations of chlorine.
This factor should only be contributing during the January sampling
campaign and can be associated with the use of salt and sand on snow
and ice. Therefore, the mass contribution vector b(r) was constrained
to zeros for the summer and spring samples.

For each chemical element, the mass fraction values across the
eight particle size ranges should be relatively smooth, which means
that there should not be very low or zero concentrations in an interme-
diate particle sizewhile both its adjacent particle sizes (smaller one and
larger one) have high concentrations. Thus, another constraint was im-
posed on the size mode to make sure that the change across the size
mode is smooth.

The resulting apportionments are only good to a scale constant so
the results were normalized by regressing the apportionedmasses for
each source for each sampling period to the total measured mass as
per Hopke et al. [18].

4. Numerical results and interpretation

We apply the weighted alternating least squares to the sample
tensor χ∈R24�8�357 to calculate the source profile matrices A(r) and
the corresponding contribution vectors b(r). Two criteria were used to
assess the number of factors. The fits to the data are examined by
reviewing the distributions of scaled residuals. These distributions
should be symmetric and the values should generally range from −3
to+3. In addition, the profiles have to be physically realistic. The inter-
pretability of the factors includes appropriate behavior across the parti-
cle size dimension since there should be a degree of smoothness in that
direction. The pattern of elements and their appearance in physically
meaningful size ranges were used to assess the appropriateness of the
various solutions. In our experiment, five factors were ultimately cho-
sen to adequately reproduce the data and provide interpretable factors.

Fig. 3 shows the profiles for each factor (source) for all three sam-
pling campaigns. They are shown as grouped bar plots so that the size
variation of the chemical species in each source profile can be observed.
The time series of the source contributions are shown in Fig. 4. The
averagemass contributions of each source for each season to particulate
a third-order tensor χ∈RI�J�K.

image of Fig.�2


Fig. 3. Source profiles for the resolved factors.
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matter less than 10 μm in aerodynamic diameter (PM10) are presented
in Table 2.

The first factor shows high concentrations of crustal elements (Al,
Si, Fe, Ca, Ti) peaking in the two largest size ranges. This factor can
therefore be attributed to “soil”. There can be somewind-driven aerosol-
ization of surface soils, but more of the soil is probably re-suspended by
various forms of traffic including the cars bringing passengers to the
airport, ground activities at the airport, along with the taxiing, take-off,
and landings of the aircraft.

The second factor is dominated by large particles with high concen-
trations of chlorine, calcium, and magnesium with some iron and other
crustal species. This factor only had contributions only during the January
sampling campaign and can be associated with the use of salt and sand
on snow and ice. This factor was only seen during the January campaign
and we constrained the other values to be zero in the final model.
Factor 3 shows a very different pattern with small particles of sulfur,
zinc, bromine, zirconium and molybdenum. This factor is assigned to
particles that are emitted during landings. The sulfur and zinc come
from tire wear. These elements are key constituents in tires. Often a
visible puff of smoke is observed at touchdown. There is considerable
frictional heat produced at this instant and particles are generated across
the particle size range. Both zirconiumandmolybdenumare used in high
temperature greases as might be used to lubricate bearings that would
undergo significant heat stress. The energy deposited in the bearings
can be expected to liberate particles from the lubricants.

Factors 4 and 5 have the highest values of S, but in different size
fractions. S in factor 4 peaks in themiddle size ranges. Such sizes are in-
dicative of cloud processed sulfur and a similar factor was observed by
Peré-Trepat et al. [12]. There is some intermixing of the sulfate with
coarse particle soil. This sulfate is transported to the site given the

image of Fig.�3


Fig. 4. The time series of source contributions.

Table 2
Apportionment of PM10 for each site during each sampling campaign.

PM10

(ng/m3)
Base
Station
April

Fire
Station
January

Stone
House
January

Fire
Station
July

Stone
House
July

Soil Mean 10,000 1708 2422 3622 3758
Std dev 6044 1145 2488 2929 3173
Median 10,995 1495 1664 2733 2412

Salt Mean 0 7240 8338 0 0
Std dev 0 3883 3782 0 0
Median 0 7703 9040 0 0

Landings Mean 4277 9870 7225 6920 6238
Std dev 4254 4147 4717 2995 3398
Median 2619 10,277 7084 7362 6662

Homogeneous
sulfate

Mean 350 1210 1322 5695 5565
Std dev 403 1072 958 2543 2611
Median 190 1063 1392 5628 5603

Local sulfate Mean 4498 431 3175 759 606
Std dev 3814 498 3545 619 681
Median 4153 259 2379 623 481
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uniformity of contributions atmultiple sites. This factorwas an important
contributor of particle mass during the summer sampling campaign.

Factor 5 has high sulfur concentrations in the smallest size bins
and shows contributions from crustal species in intermediate sized
particles. Small size sulfate is usually attributed to homogeneous sulfate
formation. Given that off-road diesel fuel has a significantly higher sul-
fur content than on-road fuel, there may be some contribution from
local diesel vehicles such as aircraft tugs and other ground vehicles. It
is not clear what the source of the soil particlesmight be in sizes around
1.0 to 2.5 μm. This factor was primarily observed in the April 2009 sam-
pling period with a peak at the Stone House site during the winter. It is
likely that there is some admixture of sand or construction material.
Diesel construction equipment could also provide small particle sulfate.

5. Conclusions

From the analysis of size- and time-resolved particle sample compo-
sitional data, five emission sources were identified using a weighted

image of Fig.�4
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alternating least squaresmethod: soil, deicing road salt, aircraft landings,
transported secondary sulfate, and local sulfate/construction. The largest
source associated with the airport operations was aircraft landing that
had not been previously considered as a significant source of particles.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.chemolab.2013.04.010.
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