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Abstract. Regression models in which all variables are subject to errors are known
as errors-in-variables (EIV) models. The respective parameter estimates have many
unusual properties: their exact distributions are very hard to determine, and their
absolute moments are often infinite (so that their mean and variance do not exist). In
our paper, Error analysis for circle fitting algorithms, Electr. J. Stat. 3 (2009), 886–
911, we developed an unconventional statistical analysis that allowed us to effectively
assess EIV parameter estimates and design new methods with superior characteris-
tics. In this paper we validate our approach in a series of numerical tests. We also
prove that in the case of fitting circles, the estimates of the parameters are absolutely
continuous (have densities).

1. Introduction

Regression models in which all variables are subject to errors are known as errors-in-
variables (EIV) models [8, 12, 19]. The EIV regression problem is quite different (and far
more difficult) than the classical regression where the independent variable is assumed to
be error-free. The EIV regression, even in the linear case, presents challenging questions
and leads to some counterintuitive results (see below). In EIV regression, many issues
remain largely unresolved.

This work is a part of a bigger project whose purpose is to revisit some difficulties in
the EIV regression studies and develop an unconventional approach to their resolution.
Our approach is tailored for image processing applications, where the number of observed
points (pixels) is limited but the noise is small. Our general goal is to develop a simplified
error analysis that nonetheless allows us to effectively assess the performance of existing
fitting algorithms. In addition, based on our approach one can design algorithms with
increased accuracy. This work is devoted to an experimental validation of our error
analysis scheme. We probe it on several test cases of linear and nonlinear EIV regression
and demonstrate that it remains adequate in most cases and identify situations where
further investigation may be necessary.

For one nonlinear model, circular regression, we prove theoretically that the estimates
of the center and radius have probability densities, provided the observed points have
probability distributions with densities. This is a novel fact.

Our paper is organized as follows. In Section 2 we describe a standard EIV model
and highlight its principal difficulties. In Section 3 we review basic steps of our error
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analysis. In Section 4 we test it on several model cases. In Appendix we derive some
technical formulas.

2. EIV regression model

Functional model. Suppose we are fitting a curve described by an implicit equation
P (x, y;Θ) = 0, where Θ = (θ1, . . . , θk)

T represents a vector of unknown parameters. It
is standard to assume that the observed points (x1, y1), . . . , (xn, yn) are noisy images of
some true points (x̃1, ỹ1), . . . , (x̃n, ỹn) that lie on the true curve, i.e. satisfy

(1) P (x̃i, ỹi, Θ̃) = 0, i = 1, . . . , n,

where Θ̃ denotes the true value of the vector parameter. The coordinates of the true
points (x̃i, ỹi) are not random; they can be treated as extra parameters (in addition
to θ1, . . . , θk) that one may want to estimate. This set of assumptions is known as a
functional model in the EIV regression analysis.

We assume that the noise is Gaussian and isotropic, i.e.

(2) xi = x̃i + δi, yi = ỹi + εi, i = 1, . . . , n,

where δi, εi represent independent normal variables having distributionN(0, σ2) where σ2

is an unknown parameter. In image processing it is natural to assume that the errors δi
and εi are uncorrelated and have a common variance, though in other studies the pair
(δi, εi) is allowed to have a more general covariance matrix (but we will not consider
correlated noise here).

Under the above assumptions, the Maximum Likelihood Estimate (MLE) of Θ is
obtained by minimizing F(Θ) =

∑
d2i , where the di denote the geometric (orthogonal)

distances from the observed points to the fitting curve (see a proof in [9]). This procedure
is called geometric fit or orthogonal distance regression (ODR).

Fitting lines. Suppose we fit a straight line y = α + βx to observed points. Then
Θ = (α, β) and the objective function takes the form

(3) F(α, β) =
∑

d2i =
1

1 + β2

∑
(yi − α− βxi)

2.

Its minimum is attained at

(4) α̂ = ȳ − β̂x̄ and β̂ =
syy − sxx +

√
(syy − sxx)2 + 4s2xy

2sxy
,

where we use standard notation for sample means x̄ = n−1
∑

xi and ȳ = n−1
∑

yi and
for the components of the so-called “scatter matrix”:

(5) sxx =
∑

(xi − x̄)2, syy =
∑

(yi − ȳ)2, sxy =
∑

(xi − x̄)(yi − ȳ).

The formula (4) holds whenever sxy �= 0, which is true almost surely. The geometric
fit (3)–(4) was proposed in the late 1800s [1] and since then has been widely used in
practice.

Only in 1976 explicit formulas were derived for the density functions of the estimates α̂

and β̂; see [4, 5]. It turns out that those densities are not normal and do not belong to any
standard family of probability densities. Those formulas are overly complicated, involve
double-infinite series, and it was promptly noted [4] that they were not very useful for
practical purposes.

It was also pointed out [4] that the estimates α̂ and β̂ do not have finite moments, i.e.

E(|α̂|) = ∞ and E(|β̂|) = ∞. As a result, they have infinite mean squared errors! These
facts pose immediate methodological questions.
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(Q1) How can we characterize, in practical terms, the accuracy of estimates whose
theoretical MSE is infinite (and whose bias is undefined)?

(Q2) Is there any precise meaning to the widely accepted notion that the MLE α̂ and β̂
are best?

The main goal of our unconventional error analysis is to answer these and related ques-
tions; see below.

Fitting circles. Suppose now we fit a circle (x − a)2 + (y − b)2 − R2 = 0 to observed
points. Then Θ = (a, b, R) and the objective function takes the form

(6) F(a, b, R) =
∑

d2i =
∑[√

(xi − a)2 + (yi − b)2 −R
]2
.

It is known [16, 28, 31] that, under certain general conditions, the minimum of (6) exists
and is unique. But the minimization of (6) is a nonlinear problem that has no closed

form solution. Thus there are no explicit formulas for the MLE â, b̂, R̂. There are no
known formulas for their densities either. (Even the existence of densities is a novel fact
that we prove here in this paper.) Hence the situation here is even more difficult than it
is for the linear model.

Furthermore, it was recently discovered [13] that the MLE â, b̂, R̂ have infinite mo-

ments, too, i.e. E(|â|) = ∞, E(|b̂|) = ∞, and E(|R̂|) = ∞. Thus one faces the same
methodological questions as in the linear case.

It appears that the nonexistence of moments is a general phenomenon in the EIV
regression analysis; some other instances of it were recently reported in [10] and [31].
We believe that if one fits an ellipse to observed points, then the MLE of its geometric
parameters (center, focuses, axes) would have infinite moments, too, but this is yet to
be proven mathematically.

In the case of lines, one can easily circumvent the lack of moments by choosing differ-
ent parameters, e.g. by representing a line as Ax+By+C = 0 under a natural constraint
A2 + B2 = 1; then the MLE Â and B̂ of the new parameters A and B would obviously
have finite moments. But when one fits circles or ellipses, it is harder to find convenient
parameters whose estimates would have finite moments; see some attempts in [16]. Be-
sides in many applications the estimates of the center and radius are of natural interest
and then one has to deal with their infinite moments.

Asymptotic models. Satisfactory answers to our questions (Q1) and (Q2) can be given
in the context of various asymptotic models because then the MLE become optimal in
some limit. In traditional statistics, it is common to take the limit n → ∞ (“large sample

model”). Then it can be shown that the MLE α̂ and β̂ given by (4) are asymptotically
efficient in the sense of Hajek bounds [18]. They are also optimal in other ways; see
Gleser [17] and a survey [11]. We note that the so-called adjusted least squares estimators
of α and β also have infinite moments [10], and they are efficient in the sense of Hajek
bounds, too [26].

On the other hand, Anderson and Sawa [4, 5] investigated the asymptotic properties of

the MLE α̂ and β̂ assuming that n was fixed and σ → 0. They called this limiting regime
small-sigma model. It turns out that the small-sigma model is especially suitable for
image processing and computer vision applications. On an image, the number of observed
points (pixels on a computer screen) n is usually strictly limited, but the noise level σ
is small (so that a naked eye can recognize the desired shape; otherwise a prior filtering
should be applied and outliers should be removed). In image processing experiments,
the number of observed points normally varies between 10–20 (on the low end) and a
few hundred (on the high end). The noise σ is usually less than 5% of the size of the
image [6], and in many cases it is below 1%. See also recent Kanatani’s papers [23]



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

4 A. AL-SHARADQAH AND N. CHERNOV

presenting strong arguments in favor of using the “small-sigma” limit in computer vision
applications.

We recall that for the linear regression (3), explicit formulas for the distributions
of the MLE (4) are available. Using them, Anderson and Sawa [4, 5] treated σ as a
small parameter and employed Taylor expansion (up to σ4) to derive approximations for
those distributions. Those approximations had finite moments, which could be regarded
as “virtual” moments of the estimates (4) that characterize their accuracy, in practical
terms. Anderson and Sawa [5] described their approximations as “virtually exact”, for
small σ.

In nonlinear regression models, such as circles or ellipses, no explicit formulas for the
distributions of the MLEs are known. We have developed an alternative approach to
asymptotic approximations, which is described in the next section. Our approach works
for arbitrary nonlinear models and for general estimates (not just MLE).

3. Error analysis

3.1. General scheme. Here we present our error analysis of curve fitting methods fol-
lowing [2]. For convenience we use vector notation

x = (x1, . . . , xn)
T , y = (y1, . . . , yn)

T , δ = (δ1, . . . , δn)
T , ε = (ε1, . . . , εn)

T .

Then (2) can be written as x = x̃+ δ and y = ỹ + ε. We denote the “combined” noise
vector by h = (δ1, . . . , δn, ε1, . . . , εn)

T .

Let Θ̂ = (θ̂1, . . . , θ̂k) be any estimate of the unknown parameters. For each scalar

parameter θ = θj , 1 ≤ j ≤ k and its estimator θ̂ = θ̂j we use the Taylor expansion

(7) θ̂(x,y) = θ̂(x̃, ỹ) +GTh+
1

2
hTHh+OP

(
σ3

)
.

Here G = ∇θ̂ denotes the gradient vector (of the first order partial derivatives) and

H = ∇2θ̂ the Hessian matrix (of the second order partial derivatives), all taken at
the true point (x̃, ỹ). The remainder term OP (σ

3) in (7) is a random variable R such
that σ−3R is bounded in probability (for σ < σ0). The second and third terms in (7)
have typical values of order σ and σ2, respectively, and their moments are always finite
(because h is a Gaussian vector).

The expansion (7) is valid when the function θ̂(x,y) satisfies standard regularity con-
ditions (more precisely, when it has a continuous third derivative). Such conditions can
be verified by the implicit value theorem; see [2] for circle estimators.

If there is no noise, i.e. σ = 0, then the observed points lie right on the true curve, i.e.
(x,y) = (x̃, ỹ). In that case the MLE (obtained by minimizing the geometric distances)

will obviously return the true curve; hence θ̂(x̃, ỹ) = θ̃. In fact, every decent fitting
method should return the true curve in the absence of noise (as Kanatani [24] said, other
methods are not worth considering). Thus the expansion (7) can be rewritten as

(8) Δθ̂(x,y) = GTh+
1

2
hTHh+OP

(
σ3

)
,

where Δθ̂(x,y) = θ̂(x,y)− θ̃ is the error of the parameter estimate.
The first term in (8), i.e.GTh, is a linear combination of i.i.d. normal random variables

(the components of h) that have zero mean. Hence it is itself a normal random variable

with zero mean, we denote it by Δ1θ̂. Since Δ1θ̂ is a linear transformation of h, it is
of order σ. In the same pattern, the second term is a quadratic form of i.i.d. normal

variables, denoted by Δ2θ̂; it is of order σ
2. Accordingly, we define two approximations
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to θ̂: the linear approximation

(9) θ̂L = θ̃ +Δ1θ̂,

and the quadratic approximation

(10) θ̂Q = θ̃ +Δ1θ̂ +Δ2θ̂.

The distribution of θ̂L is normal with mean θ and variance σ2GTG. Thus, to the leading

order, the estimate θ̂ can be characterized as “unbiased” and having “variance” σ2GTG
(at the same time, the theoretical bias and variance of θ may not exist; this leaves us
wondering how good our approximations are – and it is the issue discussed below).

At any rate, our approximation (9) gives us a quantitative measure of the accuracy

of θ̂. If we denote Gi = ∇θ̂i for 1 ≤ i ≤ k, then the entire vector estimate Θ̂ can be
characterized by the covariance matrix σ2V where Vij = GT

i Gj for 1 ≤ i, j ≤ k. This
is our (partial) answer to question (Q1) in Section 2; see more of it below.

KCR lower bound and bias reduction. The matrix V has a natural lower bound,
i.e. V ≥ Vmin (in the sense that V −Vmin is a positive semidefinite matrix), and there
are explicit formulas for Vmin; see [15]. This fact was discovered and proved for unbiased
estimates by Kanatani [21, 22] and for general estimates by Chernov and Lesort [15];
they called it the Kanatani–Cramer–Rao (KCR) lower bound.

The matrix V for the MLE Θ̂MLE (which is obtained by minimizing geometric dis-
tances) always attains the KCR bound; see [15] and an earlier work by Amemiya and
Fuller [3] where an explicit formula for V was derived. In this precise sense the MLE is
optimal, which gives a (partial) answer to question (Q2) in Section 2.

But is it a complete answer? In the nonlinear regression, there are several popular
circle fitting methods (by K̊asa, Pratt, and Taubin; see references in [2, 16]). It turns out
that they all (!) attain the KCR bound; see [15]. Many different ellipse fitting methods
(such as FNS, HEIV, and the renormalization scheme; see references in [25]) attain
the KCR bound, too (though some others, such as various algebraic fits, do not attain
the KCR bound). Thus in order to distinguish between different fits attaining the KCR
bound (and optimize their performances) one has to employ the quadratic approximation

(10). Its last term Δ2θ̂ is a quadratic form of normal random variables; it can be written
as

(11) Δ2θ̂ =
1

2
σ2

2n∑
i=1

diZ
2
i ,

where the Zi are i.i.d. standard normal random variables (Zi ∼ N(0, 1)) and the di are

the eigenvalues of H. Now we can approximate the bias of θ̂, i.e. E(θ̂)− θ̃, by

(12) bias(θ̂) = E(θ̂)− θ̃ ≈ 1

2
σ2

∑
di =

1

2
σ2 trH.

This formula allows us to compare and optimize estimates which already minimize the
covariance matrix V. In particular, it turns out that the geometric circle fit has a very
small bias, while other popular circle fits (by Taubin, Pratt, and K̊asa) have larger biases
(in the order of increasing magnitude); see [2]. So the geometric circle fit is the most
accurate among all popular circle fits (this also answers our question (Q2) in Section 2).

However, there is no natural minimum for the bias (12). In fact a novel circle fit was
recently designed in [30] (based on our error analysis), for which the bias vanishes to
the leading order, i.e. trH = 0. Thus our analysis allows one to design new and better
methods which may outperform the geometric fit (previously regarded as unbeatable).
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See the experimental evidence of the superior performance of the novel circle fits in [2, 30].
For the ellipse fitting problem, such work is currently in progress.

We note that linear approximations (9) and the respective minimization of the covari-
ance matrix V have been a dominant approach in the 1990s and early 2000s. Only very
recent papers [2, 25, 30] are devoted to a consistent use of higher order expansions.

4. Validation of our approximative formulas

The main goal of this paper is to examine the accuracy of the approximations (9)
and (10) numerically. We will see if they are good enough for typical image processing
applications (where σ is small).

General criterion. We use the following criterion. Let f(x) denote the density of an

estimate θ̂ and fA(x) the density of its approximation θ̂L or θ̂Q (accordingly, fA will also
be denoted by fL or fQ). We say that the approximation fA(x) is good enough if it
accounts for “almost all” of f(x) in the sense that

(13) f(x) = (1− p)fA(x) + pfR(x), −∞ < x < ∞,

where fR(x) is some other density function (the “remainder”) and p > 0 is sufficiently

small. In this case we can think of the estimate θ̂ as a weighted combination of two
random variables: a “good” one with density fA and a “bad” one with density fR.

According to (13), the realizations of θ̂ are taken from the “good” distribution fA with
probability 1−p and from the “bad” distribution fR with probability p. If p is small (such

as p = 0.01), then in practical terms the estimate θ̂ behaves almost like the ‘good’ random
variable with density fA. If, however, p is large (say, p > 0.1), then fA does not constitute
a good approximation. So the borderline between good and bad approximations may be
set to 0.05. Thus there is a natural similarity between our p-value and the textbook
P-value in modern statistics, for which 0.05 is a commonly used borderline between the
null and alternative hypotheses.

The form of the remainder density fR is irrelevant for our criterion; thus we only
need to make sure that fR(x) ≥ 0 for all x. This leads us to the following formula for
computing the “minimal” (i.e., “optimal”) p:

(14) pA = min
0≤p≤1

{f(x)− (1− p)fA(x) ≥ 0 for all −∞ < x < ∞}.

In our tests, we will use fA = fL and fA = fQ, so we get two p’s, pL and pQ. They
will characterize the accuracy of the linear and quadratic approximations (9) and (10),
respectively.

We have computed pL and pQ for two regression models: the linear regression (3)–(4)
and nonlinear (circular) regression (6). To compute (14) we need the exact density f(x) of

the estimate θ̂ and its approximative density fA(x). The exact density is only known for
the linear model y = α+βx, but even in that case its formula is impractical (see above),
so we have computed the empirical density f(x) by using Monte-Carlo simulations.

The linear approximation density fL(x) is normal, so we just used an exact formula for
it. The quadratic approximation density fQ(x) depends on the more complicated random
variable (11). There exists an explicit formula for the density of (11), but that formula
is too cumbersome for practical use—it involves doubly infinite series with coefficients
being integrals of confluent hypergeometric functions; see [29]. Various approximations
to that density have been developed, including Taylor expansions [27], numerical Fourier
inversions [20], and saddle point approximations. But all such approximations are too
computationally intense, subject to divergence, and heavily depend on initial guesses.
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Therefore we again resorted to a simple Monte-Carlo simulation and constructed an
empirical density; it turned out to be the cheapest way of achieving the desired accuracy.

For each density function we simulated 108–109 values of the corresponding random
variable and constructed a histogram with 103 bins covering the interval

(μ′ − 3σ′, μ′ + 3σ′),

where μ′ and σ′ were estimated mean value and standard deviation of the corresponding
variable. Then we applied a standard smoothing procedure using Gaussian kernels [7].
After that we computed pA by (14) with the help of an adapted bisection algorithm.

Linear regression. The MLE β̂ of the slope of the regression line is given by (4). Our
error analysis gives the following approximations (see the proofs in Appendix). Let us
denote by x̃∗

j = x̃j− 1
n

∑
x̃i the ‘centered’ x-coordinates of the true points, 1 ≤ j ≤ n, and

use vector notation x̃∗ = (x̃∗
1, . . . , x̃

∗
n). Then the linear approximation is β̂L = β̃ +Δ1β

with

(15) Δ1β = GTh, Gi =

{
−β̃x̃∗

i /‖x̃∗‖2, for 1 ≤ i ≤ n,

x̃∗
i−n/‖x̃∗‖2, for n+ 1 ≤ i ≤ 2n.

The quadratic approximation β̂Q contains an extra term

(16) Δ2β = hTNTQNh.

Here Q is a (2n)× (2n) matrix given by

(17) Q = − 1

2‖x̃∗‖2

(
g−2β̃
‖x̃∗‖2Zn + (gβ̃2 + 2β̃)In

gβ̃+2
‖x̃∗‖2Zn − (gβ̃ + 1)In

gβ̃+2
‖x̃∗‖2Zn − (gβ̃ + 1)In

−g
‖x̃∗‖2Zn + gIn

)
,

where In denotes the n× n identity matrix, Zn = x̃∗(x̃∗)T , g = −2β̃/(1 + β̃2), and N is
a (2n)× (2n) matrix defined by

(18) N =

(
Nn 0n

0n Nn

)
, Nn = In − 1

n
1n

and 0n and 1n denote n × n matrices consisting of zeroes and ones, respectively. All
these formulas are derived in Appendix. Using these formulas we have simulated random

values of β̂L and β̂Q and constructed their empirical densities.
Now we turn to our experimental results, i.e. present the computed values pL and pQ.

They depend, generally, on several factors: (i) the true values of the model parameters
(in this case α and β), (ii) the number and location of the true points, and (iii) the noise
level σ. Since the geometric fit is invariant under translations, the value of α is irrelevant.
For β, we tested four values: β = 0 (horizontal line, the easiest case), and β = 1, 2, 10
(the steepest line, β = 10, was the hardest to fit accurately). For each case we positioned
n = 10 equally spaced true points on the line (spanning an interval of length L = 1;
i.e., the distance between the first and last true point was one). The noise level σ was
varied from 0 up to the point when the values of p became too large. We note that
the geometric fit is invariant under scaling of coordinates x and y; hence the pL and pQ
only depend on the relative noise level σ/L (and in image processing applications, σ/L
is usually below 0.05).

Our results are shown in Figure 1. It presents plots of pL (the dashed line) and pQ
(the solid line) versus the noise parameter σ. The figure shows that for the simplest case
β = 0 both approximations remain adequate up to a substantial noise σ = 0.1. But for
more difficult cases β = 1, 2, 10 the linear approximation is only good for very small σ,
and in the most challenging situation β = 10 it practically breaks down. The quadratic
approximation remains good up to σ = 0.05 in all cases except the last one (β = 10).
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Figure 1. The pL (dashed line) and pQ (solid line) versus σ.

In that case it, too, becomes inaccurate when noise is not very small (roughly, when
σ > 0.01).

Our experiments show that linear approximation is rather crude; it only works when
the noise is very small, even by the image processing standards. The quadratic approx-
imation is acceptable in most realistic cases, but not in all. In difficult situations, such
as β = 10, it becomes less than adequate.

Circular regression. Let Θ̂ = (â, b̂, R̂) denote the MLE of the circle parameters (center
and radius). We denote by ũ and ṽ two vectors whose components are defined by

(19) ũi = (x̃i − ã)/R̃, ṽi = (ỹi − b̃)/R̃, i = 1, . . . , n.

Let Ũ and Ṽ denote n×n diagonal matrices whose main diagonals are ũ and ṽ, respec-
tively. Also let

(20) W =

⎡
⎢⎣
ũ1 ṽ1 1
...

...
...

ũn ṽn 1

⎤
⎥⎦ .

Then our approximations are given by

(21) Δ1Θ̂ =
(
WTW

)−1
WT (Ũδ + Ṽε),

and

(22) Δ2Θ̂ =
(
WTW

)−1
WTF,

where F = (f1, . . . , fn)
T is a vector with components

fi = ũi(δi −Δ1a) + ṽi(εi −Δ1b)−Δ1R+
ṽ2i
2R̃

(δi −Δ1a)
2 +

ũ2
i

2R̃
(εi −Δ1b)

2

− ũiṽi

R̃
(δi −Δ1a)(εi −Δ1b).
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All these formulas are derived in [2]. Using these formulas we have simulated random

values of Θ̂L and Θ̂Q and constructed their empirical densities. We did that separately

for the radius estimate R̂ and for the center estimates â and b̂.

Fact (existence of densities). The existence of the densities of the estimates â, b̂,

and R̂ is a highly nontrivial fact that requires a proof. We provide it in Appendix.
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Figure 2. The pL (dashed line) and pQ (solid line) versus σ; this figure
corresponds to the radius estimate.

Next we turn to our experimental results, i.e. present the computed values pL and pQ.
Again, they depend on (i) the true values of the circle parameters, (ii) the number and
location of the true points, and (iii) the noise level σ. Since the geometric fit is invariant

under translations, rotations, and scaling, it is enough to set ã = b̃ = 0 and R̃ = 1. We
positioned n = 10 equally spaced true points on an arc whose size was set to 360◦ (full
circle), 180◦ (semi-circle), and 90◦ (quarter of a circle). The first case was the easiest for
the fitting purposes, and the last one the hardest. The noise level σ was varied from 0
up to the point when the values of pL and pQ became too large. Due to the scaling

invariance the pL and pQ only depend on the relative noise level σ/R̃ (and in image

processing applications, σ/R̃ is usually below 0.05).
The results for the radius estimate are shown in Figure 2 and those for the center

estimates in Figure 3. First we note that for the radius estimate the linear approxima-

tion R̂L is far worse than it is for the center estimate, i.e. for âL and b̂L. This happens
because the radius estimate is known [2] to have a significant bias O(σ2), which the lin-
ear approximation completely misses. The center estimate is known [2] to have a much

smaller bias, this explains why the linear approximations âL and b̂L are quite close to the

quadratic approximations âQ and b̂Q (at least for the full circle and semi-circle cases).
In other respects, the picture here is similar to the one we have seen for the linear

regression. The linear approximation is only good for very small σ. The quadratic
approximation remains good up to σ = 0.05 in all cases, but for the quarter circle it is
barely adequate when σ = 0.05. Apparently, for smaller arcs its accuracy will further
deteriorate, and quadratic approximation will not stay adequate anymore.
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Figure 3. The pL (dashed line) and pQ (solid line) versus σ; this figure
corresponds to the center estimate.

5. Conclusions

Here we summarize our conclusions.

• The linear approximation is only good for very small σ. For typical noise level
in image processing applications the linear approximation is not quite accurate.
Thus, the optimization of fitting methods to the ‘leading order’, i.e. the mini-
mization of their variance matrix σ2V (as described in Section 3) can only ensure
their optimality for very small noise. For a more realistic noise level, the mini-
mization of V is insufficient, and one needs to use the quadratic approximation
for further improvements.

• In typical image processing applications, the optimization of fitting methods must
consist of two steps: (i) minimizing the variance matrix V and (ii) reducing
the bias (i.e. reducing the terms coming from the quadratic approximation),
according to our description in Section 3. Ideally, at step (ii) one should eliminate
the O(σ2) terms in the bias and leave only O(σ4) terms.

• In the more difficult cases (such as fitting steep lines or small circular arcs), when
estimates of the parameters are quite unstable, even the quadratic model may
not be accurate enough. Then one may have to develop further expansion, up
to σ3 or σ4; we regard such expansions as possible objectives for future studies.

Appendix

First we derive our formulas (15)–(18).

Linear approximation β̂L. It is clear that the factor (1 + β2)−1 in (3) can be re-
placed with its true value in our linear approximation. Eliminating α from the objective
function (3) and keeping only terms of order σ2 yields

(23)

F(β) =
1

1 + β̃2

∑(
ỹ∗i + ε∗i − (β̃ +Δ1β)(x̃

∗
i + δ∗i )

)2
+OP

(
σ3

)
=

1

1 + β̃2

∑
(ε∗i − β̃δ∗i − x̃∗

i Δ1β)
2 +OP

(
σ3

)
,
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where δ∗i = δi− δ̄ and ε∗i = εi− ε̄ denote the ‘centered’ errors. Now the objective function
attains the minimum at

(24) Δ1β = (x̃∗)T
(
ε∗ − β̃δ∗

)
/‖x̃∗‖2,

where δ∗ and ε∗ denote the vectors of δ∗i ’s and ε∗i ’s, respectively. Let h∗ denote the
combined vector of δ∗i ’s and ε∗i ’s. The components of h∗ are not independent random
variables. However, due to a simple relation h∗ = Nh, we can express Δ1β as a linear
function of a random vector h whose components are independent:

(25) Δ1β =
[
−β̃(x̃∗)TNn : (x̃∗)TNn

]
h/‖x̃∗‖2 = (x̃∗)T

[
−β̃In : In

]
h/‖x̃∗‖2,

where we used the relation (x̃∗)TNn = (x̃∗)T . Note that Δ1β has normal distribution

N
(
0, σ2(1 + β̃2)/‖x̃∗‖2

)
.

Quadratic approximation β̂Q. In this case we have to expand (1 + β2)−1:

1

1 + β2
= f0(β̃) + f1(β̃)Δ1β + f1(β̃)Δ2β + f2(β̃)Δ1β

2 +OP

(
σ3

) def
= C +O

(
σ3

)
,

where

f0(β̃) =
1

1 + β̃2
, f1(β̃) = − 2β̃

(1 + β̃2)2
, f2(β̃) = − 1− 3β̃2

(1 + β̃2)3
.

Now, keeping only terms of order σ4 yields

(26) F(β) =
∑(

β̃δ∗i + x̃∗
iΔ1β + x̃∗

iΔ2β + δ∗iΔ1β − ε∗i
)2
C +OP

(
σ5

)
.

We can find Δ2β by setting the derivative ∂F/∂Δ2β = 0. To this end, we use the fact

that
∑

(β̃δ∗i + x̃iΔ1β − ε∗i )x̃
∗
i = 0:

dF(β)

dΔ2β
=

∑(
f1(β̃)d

2
i + 2dix

∗
iC

)
= f1(β̃)

∑(
β̃δ∗i + x̃∗

i Δ1β − ε∗i
)2

+ 2
∑

dix̃
∗
iC + 2

∑
diδ

∗
i C

= f1(β̃)
∑(

β̃δ∗i + x̃∗
i Δ1β − ε∗i

)2
+ 2f0(β̃)‖x̃∗‖2Δ2β

+ 4f0(β̃)
∑

x̃∗
i δ

∗
i Δ1β + 2f0(β̃)

∑
δ∗i
(
β̃δ∗i − ε∗i

)
where we omit the remainder term OP (σ

3) for brevity. Let us denote

g =
f1(β̃)

f0(β̃)
=

−2β̃

1 + β̃2
.

Then we arrive at

−2‖x̃∗‖2Δ2β = g
∑(

β̃δ∗i − ε∗i + x̃∗
iΔ1β

)2
+ 4

∑
x̃∗
i δ

∗
iΔ1β + 2

∑
δ∗i
(
β̃δ∗i − ε∗i

)
= −2g‖x̃∗‖2Δ1β

2 + g‖x̃∗‖2Δ1β
2 + g

∑(
β̃δ∗i − ε∗i

)2
+ 2

∑
δ∗i
(
β̃δ∗i − ε∗i

)
+ 4

∑
δ∗i x̃

∗
iΔ1β

def
= I+ II+ III

(27)

(I, II, and III are defined and simplified below). In matrix notation, each term in the
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previous expression is a quadratic form of h∗:

(28)

I = −g‖x̃∗‖2Δ1β
2 = (h∗)T

( −gβ̃2

‖x̃∗‖2Zn
gβ̃

‖x̃∗‖2Zn

gβ̃
‖x̃∗‖2Zn

−g
‖x̃∗‖2Zn

)
h∗,

II = g
∑(

β̃δ∗i − ε∗i
)2

+ 2
∑

δ∗i (β̃δ
∗
i − ε∗i )

= (h∗)T
(
(gβ̃2 + 2β̃)In −(gβ̃ + 1)In
−(gβ̃ + 1)In gIn

)
h∗

and

(29) III = 4
∑

δ∗i x̃
∗
i Δ1β = (h∗)T

(
− 4β̃

‖x̃∗‖2Zn
2

‖x̃∗‖2Zn
2

‖x̃∗‖2Zn 0n

)
h∗.

Combining equations (27)–(29) gives

Δ2β = h∗TQh∗ = hTNT
nQNnh,

where Q is already defined in (17).

Existence of densities for the circle fit. Here we prove that the circle parameter

estimates â, b̂, and R̂ are absolutely continuous random variables, i.e. they have densities.
We only need to assume that the error vector h = (δ1, . . . , δn, ε1, . . . , εn) has an

absolutely continuous distribution in R
2n (the independence of its components and the

exact type of their distributions are irrelevant). Now the estimates (â, b̂, R̂) constitute
a map from R

2n to R
3, which is defined provided the best fitting circle exists and is

unique. It has been pointed out by several authors [16, 28, 31] that the set of ‘data’
(x1, . . . , xn, y1, . . . , yn) ∈ R

2n for which the best fitting circle fails to exist or is not
unique has Lebesgue measure zero; thus the probability of such an event is zero. A
precise proof can be found, for example, in [14, Section 3.9].

Now we have a map, call it G, from R
2n to R

3 that is defined at every point X ∈ R
2n

where the estimator (â, b̂, R̂) exists and is unique. It induces a probability distribution,
call it μ, in R

3. If the latter is not absolutely continuous, then there is a set A ⊂ R
3

such that Leb(A) = 0 but μ(A) > 0. Our further arguments involve a bit of Lebesgue
measure theory. By the Lebesgue decomposition theorem, μ = μ0 + μ1, where μ0 is
singular and μ1 is absolutely continuous. Let A0 ⊂ R

3 be a carrier of μ0, i.e., a set
satisfying Leb(A0) = 0, μ0(A0) > 0, and μ0(R

3 \ A0) = 0. We note that μ(A0) > 0
implies Leb(G−1(A0)) > 0.

R2n L

M

G G

R2n

R3 R3

Figure 4. This diagram commutes, i.e., G ◦ L = M ◦G.

Next, suppose we shift all the data points (xi, yi) by a vector (α, β) ∈ R
2. Then

the center (â, b̂) is shifted by (α, β) as well (because the best fitting circle is invariant
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under translations). If we expand (or contract) the set of data points (homothetically)

by Λ > 0, i.e., transform xi �→ Λxi and yi �→ Λyi for all i = 1, . . . , n, then â, b̂, R̂ change

to Λâ, Λb̂, ΛR̂. Combining the above two types of transformations in R
2n we get a family

of transformations, Lα,β,Λ, acting by

(xi, yi) �→
(
Λ(xi + α),Λ(yi + β)

)
∀i = 1, . . . , n

where Λ > 0. Let Mα,β,Λ be a transformation in R
3 acting by

Mα,β,Λ(a, b, R) �→
(
Λ(a+ α),Λ(b+ β),ΛR

)
.

It follows that G ◦ Lα,β,Λ = Mα,β,Λ ◦G; hence

G−1(Mα,β,Λ(A0)) = Lα,β,Λ

(
G−1(A0)

)
(see Figure 4). We will only use Lα,β,Λ for α, β ≈ 0 and Λ ≈ 1, so we denote γ =
Λ − 1 and treat (α, β, γ) as a small vector and denote Aα,β,γ = Mα,β,1+γ(A0). Since
Leb(G−1(A0)) > 0, we also have Leb(Lα,β,1+γ(G

−1(A0))) > 0. Thus for all small α, β, γ
we have μ(Mα,β,1+γ(A0)) = μ(Aα,β,γ) > 0. Since Leb(Aα,β,γ) = 0, we have μ0(Aα,β,γ) =
μ(Aα,β,γ) > 0.

It remains to show that the above situation is impossible, i.e., for a finite singular
measure μ0 concentrated on a null set A0 we cannot have μ0(Aα,β,γ) > 0 for all small α,
β, γ. Let us assume that μ0(Aα,β,γ) > 0 for all small α, β, γ. Let χ0 be the indicator
function of A0, i.e., χ0(x) = 1 for x ∈ A0 and χ0(x) = 0 for x ∈ R

3 \ A0. Then for all
small α, β, γ,

(30) μ0(Aα,β,γ) = μ0(A0 ∩Aα,β,γ) =

∫
R2n

χ0(x)χ0

(
M−1

α,β,1+γ(x)
)
dμ0 > 0.

On the other hand, by the Fubini theorem,

(31)

∫
μ0(Aα,β,γ) dα dβ dγ =

∫
R2n

χ0(x)

[∫
χ0

(
M−1

α,β,1+γ(x)
)
dα dβ dγ

]
dμ0 = 0

because the inner integral vanishes (recall that Leb(A0) = 0). Equations (30) and (31)
contradict each other; thus our claim is proved.
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