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Abstract
We study the problem of fitting ellipses to observed points in the

context of Errors-In-Variables regression analysis. The accuracy of
fitting methods is characterized by their variances and biases. The
variance has a theoretical lower bound (the KCR bound), and many
practical fits attend it, so they are optimal in this sense. There is no
lower bound on the bias, though, and in fact our higher order error
analysis (developed just recently) shows that it can be eliminated,
to the leading order. Kanatani and Rangarajan recently constructed
an algebraic ellipse fit that has no bias, but its variance exceeds the
KCR bound; so their method is optimal only relative to the bias.
We present here a novel ellipse fit that enjoys both optimal features:
the theoretically minimal variance and zero bias (both to the leading
order). Our numerical tests confirm the superiority of the proposed
fit over the existing fits.

Keywords: Errors-In-Variables regression, ellipse fitting, conic fitting,
Cramer-Rao bound, bias reduction.

1 Introduction

Fitting geometric contours such as ellipses to observed points is a major task
in computer vision, pattern recognition, and image processing applications
[1, 3, 5, 8, 10, 12, 17, 22]. We denote the observed points by (x1, y1), . . . ,
(xn, yn) and describe ellipses (conics) by quadratic equation

(1) P (x, y;A) = Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,
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where A = (A,B, C,D, E, F )T is the vector of parameters to be estimated.
One can find the best fitting ellipse by minimizing geometric distances

(2) Fg(A) =
1

n

n∑
i=1

d2
i −→ min

where di is the orthogonal distance from the data point (xi, yi) to the ellipse
P (x, y;A) = 0. This method is called geometric fit or orthogonal distance
regression (ODR). While highly praised in the literature for its accuracy
[1, 17], it is often computationally burdensome – many practical minimization
algorithms converge slowly or tend to diverge.

A popular alternative is to minimize simple algebraic distances

(3) Fa(A) = 1
n

n∑
i=1

[P (xi, yi;A)]2,

this method is called algebraic fit. We have P (xi, yi;A) = ATZi, where

(4) Zi = (x2
i , xiyi, y

2
i , xi, yi, 1)T

is the “data” vector. Therefore

(5) Fa(A) = ATMA, where M = 1
n

n∑
i=1

Mi = 1
n

n∑
i=1

ZiZ
T
i .

To avoid the unwanted solution A = 0 one usually imposes a constraint
ATNA = 1, where N is a certain symmetric matrix (which may or may not
depend on the data points). The corresponding constrained minimization
problem reduces to solving equation MA = λNA, i.e., A is a generalized
eigenvector for the matrix pencil (M,N); see [2, 12, 20]. Thus algebraic fit
admits a fast non-iterative solution. It is, however, statistically inaccurate
and often heavily biased, because algebraic distances |P (xi, yi;A)| may be
very different from geometric distances di. At best, the algebraic fit gives us
a good initial guess for a subsequent iterative fitting procedure.

A popular improvement of the simple algebraic fit is to minimize “gradient
weighted” algebraic distances:

Fw(A) =
n∑

i=1

[P (xi, yi;A)]2

‖∇P (xi, yi;A)‖2
,
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where ∇P = (∂P/∂x, ∂P/∂y) denotes the gradient vector. The rational here
is that |P (xi, yi;A)|/‖∇P (xi, yi;A)‖ = di +o(di), by Taylor expansion. This
formula is also known as “Sampson error” (Sampson [23] was first to apply
it to ellipses). By direct calculation ‖∇P (xi, yi;A)‖2 = ATViA, where

(6) Vi =




4x2
i 2xiyi 0 2xi 0 0

2xiyi x2
i + y2

i 2xiyi yi xi 0
0 2xiyi 4y2

i 0 2yi 0
2xi yi 0 1 0 0
0 xi 2yi 0 1 0
0 0 0 0 0 0




is a symmetric matrix, hence

(7) Fw(A) =
n∑

i=1

ATMiA

ATViA

is the sum of rational functions of A. Note that F(A) is invariant under
rescaling A 7→ cA, thus no additional constraints on A are required, and we
will simply set ‖A‖ = 1. Differentiating (7) with respect to A gives

(8) MA = LA

where we use the following notation:

(9) M =
n∑

i=1

γ−1
i Mi with γi = ATViA

and

(10) L =
n∑

i=1

γ−2
i (ATMiA)Vi.

Thus A is a generalized eigenvector for the matrix pencil (M,L). We call
the solution of (8) the gradient weighted algebraic fit, or GRAF for brevity.

Since both M and L depend on A, Eq. (8) can only be solved by iter-
ative procedures. Various practical solutions were proposed, including FNS
(Fundamental Numerical Scheme) [8] and HEIV (Heteroscedastic Error-In-
Variables) [22]. These schemes may occasionally diverge, but they are usually
simpler and faster than the geometric fit (2).
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The matrix M in (9) is usually of order 1, but the matrix L is small,
L = O(σ2) where σ denotes the noise level (see Section 2). Hence L is of
lesser significance, and some authors [4, 14, 16] propose to drop L and solve

(11) MA = 0.

We call (11) the reduced GRAF. Other authors propose to replace L in (9)
with some matrix N which may depend on A, too. Then one finds A as a
unit generalized eigenvector for the matrix pencil (M,N ), i.e., by solving

(12) MA = λNA,

see surveys [4, 7] and Section 3. We call (12) generalized GRAF. We note
that (11)–(12) do not minimize any specific function, so in case of multiple
solutions the choice of the “right” one is not obvious. For (12), one usually
chooses the eigenvector A corresponding to the smallest eigenvalue λ.

The accuracy of a statistical estimator Â of the parameter vector A can
be described by its variance and bias. If the noise level is represented by σ
(see precise definitions in Section 2), then

(13) Var(Â) = E
[
(Â− E(A))(Â− E(A))T

]
= σ2K +O(σ4)

where K is a positive semidefinite matrix and

bias(Â) = E(Â− Ã) = σ2B +O(σ4)

where B is a vector (here Ã denotes the true value of A). The mean square
error is given by

MSE(Â) = E
[
(Â− Ã)(Â− Ã)T

]

= Var(Â) + bias(Â)bias(Â)T

= σ2K + σ4BBT + · · · ,(14)

hence K is the most important characteristic of the estimator Â. It satisfies
the Kanatani-Cramer-Rao (KCR) lower bound K ≥ Kmin (in the sense that
K − Kmin is a positive semidefinite matrix). In fact, Kmin = M̃− is the
Moore-Penrose pseudoinverse of the matrix M̃, which is the “true” version
of the random matrix M, as defined in Section 2 (see proofs in [6, 12]).

We remark that due to the indeterminacy of A (which is only determined
up to a scalar multiple) and our setting ‖A‖ = 1, all statistical variations
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of A occur in the hyperplane orthogonal to Ã, hence K is singular with
Ker(K) = span(Ã). For the same reason, Ker(M̃) = span(Ã); see Section 2.

Now for the geometric fit (2) we have K = Kmin, i.e., the estimator
is optimal to the leading order. The same is true for GRAF (7) and for
generalized GRAF (12), i.e., they are optimal, too (see proofs in [6] and in
Section 3). But this is not true for the algebraic fit (3). The corresponding
matrix K is independent of N and strictly greater than Kmin; see [19].

On the other hand, there is no lower bound for the bias leading term
B. In fact, in the context of the algebraic fit one can choose the constraint
matrix N so that B = 0; see [19].

This gives the best possible algebraic fit, though it is still not fully opti-
mal, as its leading matrix K exceeds Kmin.

Our goal is to find a matrix N for the generalized GRAF (12) so that its
leading bias will vanish, i.e., B = 0. At the same time its leading variance K
will remain equal to Kmin. Thus we will obtain a doubly optimal fit, which
has the minimal possible variance, K = Kmin, and the minimal possible bias,
B = 0. To our best knowledge, it is the only fit combining both features.

Our numerical tests show that our fit is practically more accurate than
some popular versions of GRAF. At the same time it is much faster and
simpler than the geometric fit.

Lastly, we must admit that our expansion (14) should also contain terms
of order σ4 coming from Var(A), but those are of lesser significance. If one
takes into account n, the number of data points, then those missing terms are
of order σ4/n, while bias(Â)bias(Â)T is of order σ4; see [2] and [5, Chapter 6].
In all the relevant publications [2, 5, 18, 19, 20], the σ4 terms coming from
Var(A) are ignored, and we follow this tradition.

For the reader’s convenience, we list our main symbols below, with refer-
ences to an equation where they are defined:

e13, see (18) G̃1, see (30) G̃2, see (31) G̃∗
1, see (42)

K, see (13)-(14) L, see (10) M,Mi, see (5) M, see (9)
N , see (12) R, see (28) Vi, see (6) Zi, see (4)
γi, see (9) λ, see (12) εi, see (15) δi, see (15)

ψ̃i, see (32) Γ̃i, see (33)
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2 Error Analysis of GRAF

It is a standard assumption in Errors-In-Variables (EIV) analysis that the ob-
served points (xi, yi) are random perturbations of some unknown true points
(x̃i, ỹi) which lie on the (unknown) true conic, i.e., satisfy P (x̃i, ỹi, Ã) = 0
for all i = 1, . . . , n. In other words,

(15) xi = x̃i + δi and yi = ỹi + εi,

where δi and εi are small random errors (noise). The pairs (δi, εi) are com-
monly assumed to be independent normal vectors with zero mean.

We will further assume that the noise is homogeneous and isotropic,
i.e., δi’s and εi’s are independent and have a common variance σ2, i.e.,
Cov(δi, εi) = 0 and δi ∼ N(0, σ2) and εi ∼ N(0, σ2). Now σ represents
the noise level.

The true points (x̃i, ỹi) can be thought of as fixed and treated as nuisance
parameters; this is known as functional model. Alternatively x̃’s and ỹ’s
may be treated as realizations of some random variables; this is known as
structural model. The functional model is more suitable for image processing
applications [17], and we adopt it here. Our analysis is based on treating
σ as a small parameter and expanding all variables into Taylor series; see
a detailed presentation in [2] and [5, Chapter 6]. In particular, the random
vector Zi in (4) can be written as

(16) Zi = Z̃i + ∆1Zi + ∆2Zi +OP(σ3),

where Z̃i = (x̃2
i , x̃iỹi, ỹ

2
i , x̃i, ỹi, 1)T and the symbol OP denotes the order of

magnitude in probability. The first order error ∆1Zi is a linear combination
of δi’s and εi’s, and it is easy to see that

(17) ∆1Zi = ∇Zi(δi, εi)
T =

[
2x̃i ỹi 0 1 0 0
0 x̃i 2ỹi 0 1 0

]T [
δi

εi

]

where ∇Zi is the gradient matrix evaluated at the true points (x̃i, ỹi). Ac-
cordingly, the variance matrix Var(∆1Zi) is equal to σ2Ṽi, where Ṽi =
∇Zi∇ZT

i is just the “true” version of the random matrix (6). The second
order term ∆2Zi = (δ2

i , δiεi, ε
2
i , 0, 0)T has mean E(∆2Zi) = σ2e13, where for

brevity we denote

(18) e13 = (1, 0, 1, 0, 0, 0)T
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In our formulas, the tilde will always denote the true value of a random
variable, obtained by substituting x̃i and ỹi for xi and yi (and Ã for A).
In particular, the minimal variance matrix Kmin in the KCR lower bound is
Kmin = M̃−, where M̃ is the so constructed “true” version of the random
matrix M defined by (9).

We will expand various functions of xi’s and yi’s into Taylor series up to
quadratic terms around the true values x̃i and ỹi. Since our noise is of order
σ, we will always assume that σ is less than the radius of convergence. Our
experiments reported in Section 5 indicate that for small σ the influence of
higher order terms is negligible.

Now the Taylor expansion of γ−1
i = (ATViA)−1 is

(19) γ−1
i = γ̃−1

i

[
1− γ̃−1

i (∆1γi + ∆2γi) + γ̃−2
i (∆1γi)

2
]
+OP (σ3)

and that of Mi = ZiZ
T
i is Mi = M̃i + ∆1Mi + ∆2Mi +OP (σ3), where

∆1Mi = Z̃i ∆1Z
T
i + ∆1Z Z̃T

i

∆2Mi = ∆1Z∆1Z
T
i + ∆2ZiZ̃

T
i + Z̃i ∆2Z

T
i .

(20)

Thus expanding M =
∑n

i=1 γ−1
i Mi gives

M = M̃+ ∆1
1M+ ∆2

1M+ ∆1
2M+ ∆2

2M+ ∆3
2M+OP(σ3),

where ∆1
1M etc. denote various “parts” of ∆1M and ∆2M defined as follows:

∆1
1M =

n∑
i=1

γ̃−1
i ∆1Mi, ∆2

1M = −
n∑

i=1

γ̃−2
i ∆1γi M̃i,

∆1
2M =

n∑
i=1

γ̃−1
i ∆2Mi, ∆2

2M = −
n∑

i=1

γ̃−2
i ∆1γi∆1Mi,

∆3
2M =

n∑
i=1

γ̃−2
i

[−∆2γi + γ̃−1
i (∆1γi)

2
]
M̃i.

Since ATMiA = (ZT
i A)2 and Z̃T

i Ã = 0, we have ATMiA ∼ OP (σ2), and
hence L̃ = ∆1L = 0, thus L = ∆2L+OP(σ3). In fact,

(21) ∆2L =
n∑

i=1

γ̃−2
i

[
(∆1 ZT

i Ã)2 + (Z̃T
i ∆1 A)2 + 2Z̃T

i ∆1 A∆1 ZT
i Ã

]
Ṽi.
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Now the perturbation of equation (8) is

(M̃+ ∆1M+ ∆2M+ · · · )(Ã + ∆1A + ∆2 A + · · · )
= (∆2L+ · · · )(Ã + ∆1A + ∆2 A + · · · ).(22)

Equating terms according to their order (in σ) gives us

M̃∆1A + ∆1MÃ = 0,

M̃∆2A + ∆1M∆1A + ∆2MÃ = ∆2LÃ.

Assuming that there are at least five distinct true points on the true ellipse,
the kernel of M̃ is one dimensional, i.e., kernel(M̃) = span(Ã).

Note that ‖A‖ = ‖Ã‖ = 1, hence

(23) 2ÃT ∆1A + 2ÃT ∆2A + ‖∆1A‖2 +OP (σ3) = 0.

Hence ÃT ∆1A = 0, i.e., ∆1A is orthogonal to Ã, and we can write

(24) ∆1A = −M̃−∆1MÃ.

Recalling that Z̃T
i Ã = 0 we rewrite (24) as

(25) ∆1A = −M̃−∆1
1MÃ = −M̃−

n∑
i=1

γ̃−1
i (ÃT ∆1Z̃i)Z̃i.

This gives us the variance of A, to the leading order:

Var(∆1A) = M̃−
n∑

i=1

γ̃−2
i

[
ÃTE

(
∆1 Zi∆1 ZT

i )Ã
]
Z̃iZ̃

T
i M−

= σ2M̃−
n∑

i=1

γ̃−1
i M̃iM−

= σ2M̃−,(26)

where we used the identity M̃−M̃M̃− = M̃−. Thus Var(∆1A) achieves the
KCR lower bound. Since (26) does not involve L, it applies to the reduced
GRAF (11) as well, in which case ∆2L = 0. Thus both fits, the GRAF and
the reduced GRAF, are statistically optimal in the sense of variance.
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We now turn to the bias of A. As (23) implies, 2ÃT ∆2A + ‖∆1A‖2 = 0,

hence ∆2A is not orthogonal to Ã. We decompose ∆2A = ∆
‖
2A+∆⊥

2 A into

the components parallel and orthogonal to Ã. Then ∆
‖
2A = −1

2
‖∆1A‖2Ã

and E(∆
‖
2A) = −1

2
σ2(trM−)Ã, which really accounts for the curvature of

the unit sphere ‖A‖ = 1 rather than represents the bias of A. Our goal
will be to evaluate ∆⊥

2 A and E(∆⊥
2 A), and we will suppress the ⊥ sign for

brevity.
Since ∆2

1MÃ = ∆3
2MÃ = 0, we have

∆2A = M̃−(
∆2LÃ−∆1M∆1A−∆2MÃ

)

= M̃−(
∆2L −R

)
Ã,(27)

where we denote for brevity

(28) R = ∆1
2M+ ∆2

2M− (
∆1

1M+ ∆2
1M

)M̃−∆1
1M.

For the reduced GRAF, we have ∆2L = 0, hence ∆2ARed = −M̃−RÃ. The
following formula will be proved in Appendix:

E(R)Ã = σ2(G̃1 + G̃2)Ã

= σ2(G̃1 + G̃2 + G̃T
2 )Ã,(29)

where

(30) G̃1 =
n∑

i=1

(γ̃−1
i − γ̃−2

i ψ̃i)Ṽi

and

(31) G̃2 =
n∑

i=1

[
γ̃−1

i Z̃ie
T
13 − γ̃−2

i M̃iM̃−Ṽi + γ̃−3
i M̃iM̃−Γ̃i − γ̃−2

i Γ̃i

]
.

Here

(32) ψ̃i = Z̃T
i M̃−Z̃i

and

(33) Γ̃i = (ÃT T̃iÃ)Z̃iã
T
i + (ÃT S̃iÃ)Z̃ib̃

T
i ,
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where ãi and b̃i are the first and the second columns of ∇Zi, see (17)
(34)

T̃i =




8x̃i 2ỹi 0 2 0 0
2ỹi 2x̃i 2ỹi 0 1 0
0 2ỹi 0 0 0 0
2 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0




, S̃i =




0 2x̃i 0 0 0 0
2x̃i 2ỹi 2x̃i 1 0 0
0 2x̃i 8ỹi 0 2 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0




.

Now (29) gives us the bias of the reduced GRAF (11):

(35) E(∆2ARed) = −σ2M̃−(G̃1 + G̃2)Ã

To find the bias of GRAF (8) we need E(∆2L), which was computed by
Kanatani [16, pages 181–182]; it can also be easily derived from (21):

E(∆2L) = σ2

n∑
i=1

(γ̃−1
i − γ̃−2

i ψ̃i)Ṽi.

Thus adding M̃−E(∆2L)Ã to (35) will cancel G̃1, hence

(36) E(∆2AGRAF) = −σ2M̃−G̃2Ã

We see that matrix L plays a productive role in (9) and should not be
dropped. While the resulting estimator Â will have a minimal variance in
either case, with or without L, the use of L helps reduce its bias. As a re-
sult, GRAF is more accurate than its reduced version (11); this was observed
numerically in [4].

We should note that the bias of GRAF (36) is not always smaller than
that of the reduced GRAF (35). Indeed, the vectors G̃1Ã and G̃2Ã depend
on the true ellipse (specified by Ã) and the location of the true points on it,
and it may happen that the vector G̃1Ã partially cancels G̃2Ã, so the sum
(G̃1 + G̃2)Ã is actually smaller than G̃2Ã. However in general these two
6-dimensional vectors are loosely related to each other, so the cancelation is
unlikely, i.e., in typical cases their sum is larger than each of them. We will
adopt this principle throughout: every extra term (vector) in our formulas
for the bias indicates that the resulting bias is larger.
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3 Error analysis of generalized GRAF

Here we analyze the generalized GRAF (12). Applying matrix perturbation
to M, N , A, and λ in (12) gives

(M̃+ ∆1M+ ∆2M)(Ã + ∆1A + ∆2A)

= (λ̃ + ∆1λ + ∆2λ)(Ñ + ∆1N + ∆2N )(Ã + ∆1A + ∆2A),

where terms of order σ3 are omitted.
Setting σ = 0 gives M̃Ã = λ̃ Ñ Ã. We will assume that Ñ Ã 6= 0, as

otherwise the method is difficult to analyze. Since M̃Ã = 0, we get λ̃ = 0.
Now equating the terms of order σ gives

(37) M̃∆1A + ∆1MÃ = ∆1λÑ Ã

Premultiplying (37) with ÃT we get zero on the left hand side (note that
ÃT ∆1MÃ = 0 because ÃTZi = 0), hence ∆1λ = 0.

Therefore ∆1A is again given by (24)–(25), and its variance by (26).
In particular, the generalized GRAF is statistically optimal (has a minimal
variance) for any matrix N .

Next we turn to its bias. The second order term ∆2A satisfies

M̃∆2A = −(∆2M Ã + ∆1M∆1A) + ∆2λÑ Ã.(38)

We note a useful identity:

RÃ = (∆1
2M+ ∆2

2M)Ã− (∆1
1M+ ∆2

1M)M̃−∆1
1MÃ

= ∆2MÃ + ∆1M∆1A.

To find ∆2λ, we premultiply (38) with ÃT and get ÃTM̃ = 0, hence

(39) ∆2λ =
ÃT

(
∆2MÃ + ∆1M∆1A

)

ÃT Ñ Ã
=

ÃTRÃ

ÃT Ñ Ã
,

thus ∆2A can be written as

(40) ∆2A = −M̃−RÃ + M̃− Ñ ÃÃT

ÃT Ñ Ã
RÃ.

Recall that −M̃−RÃ = ∆2ARed. Premultiplying (29) by ÃT gives

ÃTE(R)Ã = σ2

n∑
i=1

(γ̃−1
i − γ̃−2

i ψ̃i)Ã
T ṼiÃ = σ2

n∑
i=1

(1− γ̃−1
i ψ̃i)
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Also note that
n∑

i=1

γ̃−1
i ψ̃i =

n∑
i=1

γ̃−1
i Z̃T

i M̃−Z̃i =
n∑

i=1

γ̃−1
i tr(M̃−M̃i) = tr(M̃−M̃) = 5,

because kernel(M̃) = span(Ã) is one-dimensional. Thus

E(∆2A) = E(∆2ARed) + σ2M̃− n− 5

ÃT Ñ Ã
Ñ Ã.

Thus the bias of the generalized GRAF may be even larger than that of the
reduced GRAF. However, by a clever choice of the matrix N one can actually
suppress it. In the next section we will construct N for which E(∆2A) = 0.

We conclude this section by reviewing a particular version of the general-
ized GRAF proposed by Kanatani [11, 12] known as renormalization scheme;
its constraint matrix is N =

∑n
i=1 γ−1

i Vi. In this case ÃT Ñ Ã = n, hence

(41) E(∆2ARen) = −σ2M̃−(G̃∗
1 + G̃2)Ã

where

(42) G̃∗
1 =

n∑
i=1

(5n−1γ̃−1
i − γ̃−2

i ψ̃i)Ṽi,

which differs from G̃1 by an extra factor of 5n−1 in front of γ̃−1
i . Thus for

n = 5 the biases of the reduced and renormalization schemes coincide, but
for larger n’s the latter is smaller. At the same time (41) is larger than the
bias of GRAF (36), because of G̃∗

1.
In fact, for n = 5 all our fits return the same ellipse (the one interpolating

the data points), so their biases are the same. Indeed, by simple algebra one
can see that n = 5 implies γ̃i = ψ̃i, hence G̃1 = G̃∗

1 = 0.
On the other hand, for large n, we have M̃ = O(n), hence M̃− = O(n−1)

and ψi = O(n−1). This implies G̃∗
1 = O(1), while G̃1 = O(n). Thus the

renormalization scheme suppresses G̃1 to a matrix of a smaller order, while
GRAF eliminates it completely.

4 Doubly optimal generalized GRAF

We now turn to our main goal – choosing a constraint matrix N for the
generalized GRAF (12) so that E(∆2A) = 0.
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Recall that ∆2A is given by (40), in which only the matrix R is random.
Thus we need to find N so that

(43)
ÃTE(R)Ã

ÃT Ñ Ã
Ñ Ã = E(R)Ã.

This is true if and only if the vector Ñ Ã is parallel to E(R)Ã. We recall
that E(R)Ã = σ2(G̃1 + G̃2)Ã and choose N so that Ñ = G̃1 + G̃2. The
matrix N can be simply constructed by replacing the true values (x̃i, ỹi)’s
with the observations (xi, yi)’s and Ã with A in G̃1 + G̃2, which is given by
(29)–(31). Thus we set N : = G1 + G2, where

G1 =
n∑

i=1

(γ−1
i − γ−2

i ψi)Vi

G2 =
n∑

i=1

[
γ−1

i Zie
T
13 − γ−2

i MiM−Vi + γ−3
i MiM−Γi − γ−2

i Γi

]
.

(44)

One can think of Gk, k = 1, 2, as a “random realization” of G̃k.
Note that G1 is symmetric but G2 is not. For solving the generalized

eigenvalue problem (12) it is desirable to have a symmetric constraint matrix
N , and one can be defined by N : = G1 + G2 + GT

2 . This also implies (43)
due to (29).

Next we need to choose a particular eigenvector A solving (12). It is a
common practice to take the one corresponding to the smallest (closest to
zero) eigenvalue λ; see [2, 18, 19, 20]. The rational here is that the true value
of λ equals zero; in fact we proved that λ = O(σ2).

Lastly we summarize our algorithm:

1. Set k = 0 and choose an initial guess A (see below).

2. Compute matrices M and N given by equations (9) and (44).

3. Solve the generalized eigenvalue problem MA′ = λNA′ and take a
unit vector A′ corresponding to the smallest (closest to zero) λ.

4. if ‖A + A′‖2 < ‖A−A′‖2, reset A′ = −A′;

5. If ‖A−A′‖2 is small enough, terminate the procedure, return A.

6. Update A = A′ and go back to Step 2.

For the initial guess, we use the best algebraic fit (called HyperLS) de-
veloped recently by Kanatani and Rangarajan [18].
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5 Numerical test

We have tested our algorithm against three other schemes described before:
GRAF, the renormalization method, and the reduced scheme.

We used ellipse x2/a2 +y2/b2 = 1 with semiaxes a = 10 and b = 2, placed
n = 30 true points according to

x̃i = a cos ϕi, ỹi = b sin ϕi, ϕi = π(i− 0.5)/n

for i = 1, . . . , n, so that all the points are on the upper half of the ellipse, and
added Gaussian noise at level σ, which ranged from 0.0005 to 0.045 (when
σ > 0.045, some fits start returning hyperbolas or diverging). For each σ,
we generated N = 107 random samples and fit ellipses by each of the tested
scheme. All our schemes are iterative and we used Taubin’s algebraic ellipse
fit [24] to initialize them.

−0.005 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

Reduced scheme

Renormalization

GRAF

Doubly optimal fit

5.056

2.390

1.528

0.000

σ

Figure 1: The normalized bias, ‖B‖/σ2, plotted versus σ for the reduced
scheme, the renormalization method, the GRAF, and our doubly optimal fit.
As σ → 0, each normalized bias converges to a limit value printed on the left
and marked by a horizontal dotted line (for each fit separately).

For each estimator Â we computed its bias by B = 1
N

∑
Â− Ã and then

plotted the “normalized” bias ‖B‖/σ2 versus σ. Recall that B = O(σ2), so
the ratio ‖B‖/σ2 converges to a constant as σ → 0, i.e.,

lim
σ→0

‖B‖
σ2

= b,

14



where b ≥ 0 is different for each method. The theoretically computed values
of b are b = 5.056 for the reduced scheme, b = 2.390 for the renormalization
method, b = 1.528 for GRAF, and b = 0 for our doubly optimal fit. These
values are also marked on our plot.

The plot shows a remarkable stability of the bias for each method, it
hardly changes over the range 0 < σ ≤ 0.045. Note that the bias of the
reduced scheme slightly increases as σ approaches 0.045, but other biases
remain virtually constant. This indicates that the higher order corrections
(from the terms of order σ3) are insignificant.

Our experiment clearly demonstrates the superiority of the doubly opti-
mal fit over others in this group.

We note that some other ways for reducing bias were proposed in the liter-
ature. Certain implementations of the GRAF [15, 22] include bias-reduction
options, but our paper provides a first full proof of the elimination of the
bias to the leading order.

We emphasize that our analysis is based on the assumption that n is
fixed and σ → 0, which is common in computer vision applications (see
[13] or [5, Sect. 2.4]). One may want to adopt a more traditional statistical
approach, i.e., fix σ > 0 and let n → ∞. It is known, however, that none
of the standard fitting algorithms (not even the geometric fit (2)) would be
statistically consistent. More precisely, the estimate Â would converge (in
probability and almost surely), as n → ∞, to a limit A∗ different from the
true value Ã. This fact is proved under general conditions in [9], see also [5,
Sect. 6.10]. When the sample size n is large and σ is not small, one should
use special consistent ellipse fits; see [21].

Acknowledgement. We are grateful to K. Kanatani and to anonymous
referees for many useful remarks. N. C. is partially supported by NSF grant
DMS-0969187.
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Appendix

Here we prove (29). Let Λi =
(
ÃT ṼiM̃−∆1

1MÃ)∆1
1M. Then

E
(
Λi

)
=

n∑

j,k=1

γ̃−1
j γ̃−1

k E
[
(ÃT ṼiM̃−(∆1Z

T
j Ã)Z̃j)

(
∆1 ZkZ̃

T
k + Z̃k∆1 ZT

k

)]
,

=
n∑

j,k=1

γ̃−1
j γ̃−1

k (ÃT ṼiM̃−Z̃j)
[
EkjÃZ̃T

k + Z̃kÃ
TEjk

]
.

where Ekj : = E(∆1 Zk∆1 ZT
j ) = σ2Ṽk if k = j and 0 otherwise, so

(45) E
(
Λi

)
= 2σ2

n∑
j=1

γ̃−2
j (ÃT ṼiM̃−Z̃j)S

[
ṼjÃZ̃T

j

]
.

where S(·) denotes the symmetrization of a matrix, i.e., S(B) = (B+BT )/2.
Next, since γi = ATViA, we have

(46) ∆1γi = 2(∆1A
T ṼiÃ) + ÃT ∆1ViÃ,

where ∆1Vi = T̃iδi + S̃iεi, with T̃i and S̃i being defined in (34).
Now we integrate (28) term by term. First we compute

I1 : = E(∆1
1MM̃−∆1

1M) =
n∑

i=1

γ̃−2
i E

(
∆1MiM̃−∆1Mi

)
,

which expands to

n∑
i=1

γ̃−2
i E

((
∆1 ZiZ̃

T
i + Z̃i∆1 ZT

i

)M̃−(
∆1 ZiZ̃

T
i + Z̃i∆1 ZT

i

))
.

By direct inspection, E
(
∆1 ZT

i M̃−∆1 Zi

)
= σ2tr(M̃−Ṽi), hence

(47) I1 = σ2

n∑
i=1

γ̃−2
i

[
2S[ṼiM̃−M̃i] + tr (M̃−Ṽi)M̃i + ψ̃iṼi

]
.

We will also need an auxiliary formula below that follows from (25):

(48) E(∆1A∆1Z
T
i ) = −σ2γ̃−1

i M̃−Z̃iÃ
T Ṽi
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and hence E(∆1Zi∆1A
T ) = −σ2γ̃−1

i ṼiÃZ̃T
i M̃−. Next we compute

(49) I2 : = E(∆2
1MM̃−∆1

1M) = −
n∑

i=1

γ̃−2
i E

(
∆1γiM̃iM̃−∆1

1M
)
.

Using ∆1
1M =

∑
γ̃−1

i ∆1Mi, then (46), (45), and (48) gives

I2 = −
n∑

i=1

γ̃−2
i E

[(
2(∆1A

T ṼiÃ) + ÃT ∆1ViÃ
)
M̃iM̃−∆1

1M
]

= −
n∑

i=1

γ̃−2
i E

(
2(∆1A

T ṼiÃ)M̃iM̃−∆1
1M

)

−
n∑

i=1

γ̃−2
i E

(
(ÃT ∆1ViÃ)M̃iM̃−∆1

1M
)

= 4σ2

n∑
i,j=1

γ̃−2
i γ̃−2

j (ÃT ṼiM̃−Z̃j)M̃iM̃−S[ṼjÃZ̃T
j ]

−
n∑

i=1

γ̃−3
i M̃iM̃−E

(
(ÃT ∆1ViÃ)∆1Mi

)
.

Now recall that ÃT ∆1ViÃ = (ÃT T̃iÃ)δi + (ÃT S̃iÃ)εi. Also note that
E(δi∆1Mi) = 2σ2S[ãiZ̃

T
i ] and E(εi∆1Mi) = 2σ2S[b̃iZ̃

T
i ], where ãi and b̃i

denote the first and second columns of ∇Zi. Thus

E
(
(ÃT ∆1ViÃ)∆1Mi

)
= 2σ2(ÃT T̃iÃ)S[ãiZ̃

T
i ] + 2σ2(ÃT S̃iÃ)S[b̃iZ̃

T
i ]

= 2σ2S[Γ̃i],(50)

where Γ̃i is defined in (33). These facts imply

I2 = 4σ2

n∑
i,j=1

γ̃−2
i γ̃−2

j (ÃT ṼiM̃−Z̃j)M̃iM̃−S[ṼjÃZ̃T
j ]

− 2σ2

n∑
i=1

γ̃−3
i M̃iM̃−S[Γ̃i].(51)

Next we use (20) to compute

(52) E(∆1
2M) =

n∑
i=1

γ̃−1
i E(∆2Mi) = σ2

n∑
i=1

γ̃−1
i

(
Ṽi + 2S[

e13Z̃
T
i

])
.
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Lastly, we compute

E(∆2
2M) = −

n∑
i=1

γ̃−2
i E(∆1γi∆1Mi)

= −
n∑

i=1

γ̃−2
i E

((
2(ÃT Ṽi∆1A) + ÃT ∆1ViÃ

)
∆1Mi

)
.

We handle the first term by (48) and the second by (50), thus

(53) E(∆2
2M) = 2σ2

n∑
i=1

(
2γ̃−3

i (ÃT ṼiM̃−Z̃i)S[ṼiÃZ̃T
i ]− γ̃−2

i S[Γ̃i]
)

This completes the integration of (28).
To prove (29) we multiply (47), (51), (52), and (53) by Ã. First,

(54) I1Ã = σ2

n∑
i=1

γ̃−2
i

[
M̃iM̃−ṼiÃ + ψ̃iṼiÃ

]
,

Also note a useful identity S[ṼjÃZ̃T
j ]Ã = Z̃j(Ã

T ṼjÃ) = γ̃jZ̃j, as well as

Γ̃T
i Ã = 0. Now we have

I2Ã = 2σ2

n∑
i,j=1

γ̃−2
i γ̃−1

j (ÃT ṼiM̃−Z̃j)M̃iM̃−Z̃j − σ2

n∑
i=1

γ̃−3
i M̃iM̃−Γ̃iÃ

= 2σ2

n∑
i=1

γ̃−2
i M̃iM̃−

[ n∑
j=1

γ̃−1
j M̃j

]
M̃−ṼiÃ− σ2

n∑
i=1

γ̃−3
i M̃iM̃−Γ̃iÃ

= 2σ2

n∑
i=1

γ̃−2
i M̃iM̃−ṼiÃ− σ2

n∑
i=1

γ̃−3
i M̃iM̃−Γ̃iÃ,(55)

where we used the identity M̃−M̃M̃− = M̃−. Next

(56) E(∆1
2M)Ã = σ2

n∑
i=1

γ̃−1
i (ṼiÃ + Z̃ie

T
13Ã).

Lastly, we apply the above useful identities again and compute

(57) E(∆2
2M)Ã = σ2

n∑
i=1

(
2γ̃−2

i M̃iM̃−ṼiÃ− γ̃−2
i Γ̃iÃ

)

Combining (54), (55), (56), and (57) completes the proof of (29) (note that
G̃T

2 Ã = 0). Note that some terms in (55) and (57) cancel each other.
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