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Fitting straight lines and simple curved objects (circles, ellipses, etc.) to observed data points is a basic task in computer vision
and modern statistics (errors�in�variables regression). We have investigated the problem of existence of the best �t in our previous
paper (see Chernov et al. (2012)). Here we deal with the issue of uniqueness of the best �t.

1. Introduction

is is a continuation of our paper [1] where we studied the
problem of existence of the best �tting curve. Here we deal
with its uniqueness.

Our interest in these problems comes from applications
where one describes a set of points 𝑃𝑃1,… , 𝑃𝑃𝑛𝑛 (representing
experimental data or observations) by simple geometric
shapes, such as lines, circular arc, elliptic arc, and so forth.
e best �t is achieved when the geometric distances from
the given points to the �tting curve are minimized, in
the least squares sense. Finding the best �t reduces to the
minimization of the objective function

ℱ(𝑆𝑆) =
𝑛𝑛
󵠈󵠈
𝑖𝑖𝑖𝑖
󶁡󶁡dist 󶀡󶀡𝑃𝑃𝑖𝑖, 𝑆𝑆󶀱󶀱󶁱󶁱

2, (1)

where 𝑆𝑆 denotes the �tting curve (line, circle, ellipse, etc.).
Here dist(𝑃𝑃𝑃𝑃𝑃𝑃𝑃   𝑃𝑃𝑃𝑄𝑄𝑄𝑄𝑄 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 denotes the shortest distance
from 𝑃𝑃 to 𝑆𝑆, and 𝑑𝑑 stands for the Euclidean metric in ℝ2. We
refer the reader to [1] for the background of the geometric
�tting problem.

Most publications on the �tting problem are devoted
to practical algorithms for �nding the best �tting curve
minimization (1) or statistical properties of the resulting
estimates. Very rarely one addresses fundamental issues such
as the existence and uniqueness of the best �t. If these issues
do come up, one either assumes that the best �t exists and is
unique or just points out examples to the contrary without
deep investigation.

In our previous paper [1] we investigated the existence of
the best �t. Here we address the issue of uniqueness. ese
issues turn out to be quite nontrivial and lead to unexpected
conclusions. As a glimpse of our results, here and in [1],
we provide a table summarizing the state of affairs in the
problem of �tting most popular 2D objects (here Yes means
the best �tting object exists or is unique in all respective
cases;Nomeans the existence/uniqueness fails in some of the
respective cases).

We see that the existence anduniqueness of the best �tting
object cannot be just taken for granted. Actually 2/3 of the
answers in Table 1 are negative. In particular, the uniqueness
can never be guaranteed. (For the exact meaning of all cases
and typical cases we refer the reader to [1].)

e uniqueness of the best �t is not only of theoretical
interest but also practically relevant. e nonuniqueness
means that the best �tting object may not be stable under
slight perturbations of the data points. An example is
described byNievergelt [2]. He presented a set of 𝑛𝑛 𝑛 𝑛 points
that can be �tted by three different circles equally well. en
by arbitrarily small changes in the coordinates of the points,
one can make any of these three circles �t the points a bit
better than the other two circles, thus the best �tting circle
will change abruptly.

A similar example was described by Chernov in [3,
Section 2.2], where the best �tting line to a given data set of
𝑛𝑛 𝑛 𝑛 points is horizontal, but aer an arbitrarily small change
in the coordinates of the data points, it turns 90∘ and becomes
vertical.
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Such examples show that the best �tting object may be
extremely sensitive to small numerical errors in the data or
round-off errors of the calculation.

2. Uniqueness of the Best Fitting Line

We begin our study of the uniqueness problem with the
simplest case��tting straight lines to data points. We �rst
introduce relevant statistical symbols and notation.

Given data points (𝑥𝑥1, 𝑦𝑦1),…,(𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛), we denote
by 𝑥𝑥 and 𝑦𝑦 the sample means

𝑥𝑥 𝑥
1
𝑛𝑛

𝑛𝑛
󵠈󵠈
𝑖𝑖𝑖𝑖
𝑥𝑥𝑖𝑖, 𝑦𝑦 𝑦

1
𝑛𝑛

𝑛𝑛
󵠈󵠈
𝑖𝑖𝑖𝑖
𝑦𝑦𝑖𝑖. (2)

e point (𝑥𝑥𝑥 𝑦𝑦𝑦 is called the center of mass or the centroid of
the given data set. We also denote by

𝑠𝑠𝑥𝑥𝑥𝑥 =
𝑛𝑛
󵠈󵠈
𝑖𝑖𝑖𝑖
󶀡󶀡𝑥𝑥𝑖𝑖 − 𝑥𝑥󶀱󶀱2, 𝑠𝑠𝑦𝑦𝑦𝑦 =

𝑛𝑛
󵠈󵠈
𝑖𝑖𝑖𝑖
󶀡󶀡𝑦𝑦𝑖𝑖 − 𝑦𝑦󶀱󶀱2,

𝑠𝑠𝑥𝑥𝑥𝑥 =
𝑛𝑛
󵠈󵠈
𝑖𝑖𝑖𝑖

󶀡󶀡𝑥𝑥𝑖𝑖 − 𝑥𝑥󶀱󶀱 󶀱󶀱𝑦𝑦𝑖𝑖 − 𝑦𝑦󶀱󶀱 ,

(3)

the components of the so-called “scatter matrix”

𝐒𝐒 𝐒 󶁥󶁥
𝑠𝑠𝑥𝑥𝑥𝑥 𝑠𝑠𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥𝑥𝑥 𝑠𝑠𝑦𝑦𝑦𝑦

󶁵󶁵 , (4)

which characterizes the “spread” of the data set about its
centroid (𝑥𝑥𝑥 𝑦𝑦𝑦.

is matrix is symmetric and positive semide�nte. e
scatter matrix 𝐒𝐒 de�nes the so called scattering ellipse whose
center is (𝑥𝑥𝑥 𝑦𝑦𝑦 and whose axes are spanned by the eigenvec-
tors of the scatter matrix 𝐒𝐒 (the major axis is spanned by the
eigenvector corresponding to the larger eigenvalue).

Next we �nd the following best �tting line �3, Chapter 2].
We will describe lines in the 𝑥𝑥𝑥𝑥 plane by equation

𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴 𝐴 𝐴𝐴 (5)

where 𝐴𝐴𝐴 𝐴𝐴𝐴 and 𝐶𝐶 are the parameters of the line. Now the
best �tting line is found byminimizing the objective function

ℱ(𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴) =
1

𝐴𝐴2 +𝐵𝐵 2

𝑛𝑛
󵠈󵠈
𝑖𝑖𝑖𝑖
󶀡󶀡𝐴𝐴𝐴𝐴𝑖𝑖 +𝐵𝐵𝐵𝐵 𝑖𝑖 +𝐶𝐶 󶀱󶀱2. (6)

e parameters (𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴 need only be speci�ed up to a scalar
multiple. us we can impose constraint 𝐴𝐴2 +𝐵𝐵 2 = 1. Since
the parameter 𝐶𝐶 is unconstrained, we can eliminate it, which
gives

𝐶𝐶𝐶𝐶𝐶𝐶  𝑥𝑥 𝑥𝑥𝑥 𝑦𝑦𝑦 (7)

In particular, we see that the best �tting line always passes
through the centroid (𝑥𝑥𝑥 𝑦𝑦𝑦 of the data set. Now the objective
function is

ℱ(𝐴𝐴𝐴 𝐴𝐴) =
𝑛𝑛
󵠈󵠈
𝑖𝑖𝑖𝑖
󶁡󶁡𝐴𝐴 󶀡󶀡𝑥𝑥𝑖𝑖 − 𝑥𝑥󶀱󶀱 +𝐵𝐵  󶀡󶀡𝑦𝑦𝑖𝑖 − 𝑦𝑦󶀱󶀱󶀱󶀱2

= 𝑠𝑠𝑥𝑥𝑥𝑥𝐴𝐴
2 + 2𝑠𝑠𝑥𝑥𝑥𝑥𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝑦𝑦𝑦𝑦𝐵𝐵

2,

(8)

or in matrix form

ℱ(𝐀𝐀) = 𝐀𝐀𝑇𝑇𝐒𝐒𝐒𝐒𝐒 (9)

where𝐀𝐀 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀  𝑇𝑇 denotes the parameter vector.Minimizing
(9) subject to the constraint ‖𝐀𝐀𝐀𝐀𝐀   is a simple problem of
thematrix algebra; its solution is the eigenvector of the scatter
matrix 𝐒𝐒 corresponding to the smaller eigenvalue.

Observe that the parameter vector 𝐀𝐀 is orthogonal to the
line (5), thus the line itself is parallel to the other eigenvector.
In addition, it passes through the centroid, hence it is the
major axis of the scattering ellipse.

e above observations are summarized as follows.

eorem 1. �very best �tting line 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴 𝐴 𝐴 passes
through the centroid and coincides with the major axis of the
scattering ellipse.

For typical data sets, the above procedure leads to a
unique best �tting line. �ut there are certain exceptions.

If the two eigenvalues of 𝐒𝐒 coincide, then every vector
𝐀𝐀𝐀𝐀𝐀 is its eigenvector, and the function ℱ(𝐴𝐴𝐴 𝐴𝐴𝐴 is actually
constant on the unit circle ‖𝐀𝐀𝐀𝐀𝐀  . In that case all the lines
passing through the centroid of the data minimizeℱ; hence,
the problem has multiple (in�nitely many) solutions. is
happens if and only if 𝐒𝐒 is a scalar matrix, that is,

𝑠𝑠𝑥𝑥𝑥𝑥 = 𝑠𝑠𝑦𝑦𝑦𝑦, 𝑠𝑠𝑥𝑥𝑥𝑥 =0 . (10)

e above observations are summarized as follows.

eorem 2. � best �tting line is not uni�ue if and only if the
eigenvalues of the scatter matrix 𝐒𝐒 coincide. In this case the
scattering ellipse becomes a circle. Moreover, in this case every
line passing through the centroid (𝑥𝑥𝑥 𝑦𝑦𝑦 is one of the best �tting
lines.

us we have a dichotomy; either there is a single best
�tting line or there are in�nitely many best �tting lines. In
the latter case, the whole bundle of lines passing through the
centroid (𝑥𝑥𝑥 𝑦𝑦𝑦 are best �tting lines.

A simple example of a data set forwhich there aremultiple
best �tting lines is 𝑛𝑛 points placed at the vertices of a regular
polygon with 𝑛𝑛 vertices (𝑛𝑛-gon). Rotating the data set around
its center by the angle 2𝜋𝜋𝜋𝜋𝜋 takes the data set back to itself. So
if there is one best �tting line, then by rotating it through the
angle 2𝜋𝜋𝜋𝜋𝜋 we get another line that �ts equally well. us the
best �tting line is not unique.

It is less obvious (but true, according to eorem 2) that
every line passing through the center of our regular polygon
is a best �tting line; they all minimize the objective function.

Data points placed at vertices of a regular polygon seem
like a very exceptional situation.�owevermultiple best �tting
lines are much more common. e following is true.

eorem 3. Given any data points (𝑥𝑥1, 𝑦𝑦1), …, (𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛), one
can alwaysmove one of them so that the new data set will admit
multiple best �tting lines. �recisely, there are always 𝑥𝑥′𝑛𝑛 and
𝑦𝑦′𝑛𝑛 such that the set (𝑥𝑥1, 𝑦𝑦1), …, (𝑥𝑥𝑛𝑛𝑛𝑛, 𝑦𝑦𝑛𝑛𝑛𝑛), (𝑥𝑥

′
𝑛𝑛, 𝑦𝑦

′
𝑛𝑛) admit

multiple best �tting lines.
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T 1

Objects Existence in all
cases

Existence in
typical cases Uniqueness

Lines Yes Yes No
Circles No Yes No
Ellipses No No No
All conics No Yes No

In other words, the 𝑛𝑛 𝑛 𝑛 points can be placed arbitrarily,
without any regular pattern whatever, and then we can add
just one extra point so that the set of all 𝑛𝑛 points will admit
multiple best �tting lines, that is, will satisfy (10).

Still, the existence of multiple best �tting lines is a
very unlikely event in probabilistic terms. If data points are
sampled randomly from an absolutely continuous probability
distribution, then this event occurs with probability zero.
Indeed, (10) speci�es a subsurface (submanifold) in the 2𝑛𝑛-
dimensional space with coordinates 𝑥𝑥1, 𝑦𝑦1,… , 𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛. at
submanifold has zero volume; hence, for any absolutely
continuous probability distribution, its probability is zero.

However, if the data points are obtained from a digital
image (say, they are pixels on a computer screen), then the
chance of having (10) may no longer be negligible and may
have to be reckonedwith. For instance, a simple con�guration
of 4 pixels making a 2 × 2 square satis�es (10), and thus the
orthogonal �tting line is not uniquely de�ned.

3. Uniqueness of the Best Fitting Circle

We have seen in Section 2 that the simplest �tting prob-
lem�that of �tting straight lines�can have multiple solu-
tions, so it may not be too surprising to �nd out that
more complicated problems also can have multiple solutions
(we emphasize that the best �tting circle minimizes the
sum of squares of geometric distances, as de�ned in the
Introduction). Here we demonstrate the multiplicity of the
best �t for circles.

However, we cannot describe all data sets for which the
best �tting circle is not unique in the same comprehensive
manner as we did that for lines in Section 2. We can only give
some examples of such data sets.

All the known examples are based on the rotational
symmetry of the data set. We already used this idea in Section
2. Suppose the data set can be rotated around some point 𝑂𝑂
through the angle 2𝜋𝜋𝜋𝜋𝜋 for some integer 𝑘𝑘 𝑘 𝑘, and aer the
rotation it comes back to itself. en, if there is a best �tting
circle, rotating it around𝑂𝑂 through the angle 2𝜋𝜋𝜋𝜋𝜋would give
us another circle that would �t the data set equally well. is
is how we get more than one best �tting circle.

is is a nice idea but it breaks down instantly if the center
of the best �tting circle happens to coincide with the center
of rotation𝑂𝑂. en we would rotate the circle around its own
center and obviously would get the same circle again. us
one has to construct a rotationally symmetric data set more
carefully to avoid best �tting circles centered on the natural
center of symmetry of the set.

F 1: Four data points and three �tting circles.

e earliest and simplest example was given byNievergelt
[2]. He chose 𝑛𝑛 𝑛 𝑛 data points as follows:

(0, 0) , (0, 2) , 󶀢󶀢√3, −1󶀲󶀲 , 󶀢󶀢−√3, −1󶀲󶀲 . (11)

e last three points are at the vertices of an equilateral
triangle centered on (0, 0). So the whole set can be rotated
around the origin (0, 0) through the angle 2𝜋𝜋𝜋𝜋, and it will
come back to itself.

Nievergelt claimed that the best �tting circle has center
(0, −3/4) and radius 𝑅𝑅 𝑅 𝑅𝑅𝑅. is circle passes through the
last two data points and cuts right in the middle between the
�rst two. So the �rst two points are at distance 𝑑𝑑 𝑑𝑑  from that
circle, and the last two are right on it (their distance from the
circle is zero). us the objective function is

ℱ =1 2 + 12 + 02 + 02 = 2. (12)

It is easy to believe that Nievergelt’s circle is the best, indeed,
as any attempt to perturb its center or radiuswould onlymake
the �t worse (the objective function would grow). However a
complete mathematical proof of this claim would be perhaps
prohibitively difficult, so we leave it out.

Our goal is actually more modest than �nding the best
�tting circle in Nievergelt’s example. Our goal is to show that
there are multiple best �tting circles (without �nding them
explicitly). And themultiplicity here can be proven as follows.

According to our general results [1], for every data set the
best �t exists, whichmay be a circle or a line. If the best object
is a circle, then its center is either at (0, 0) or elsewhere. So we
have three possible cases: (i) the best �tting object is a line,
(ii) the best �tting object is a circle centered on (0, 0), and (iii)
the best �tting object is a circle with a center di�erent from
(0, 0). In the last case our rotational symmetry will work, as
explained above, and prove the multiplicity of the best �tting
circle. So we need to rule out the �rst two cases.

Consider any circle of radius𝑅𝑅 centered on (0, 0). It is easy
to see that the respective objective function is

ℱ = 𝑅𝑅2 + 3(2 − 𝑅𝑅)2 =4 𝑅𝑅2 −1 2𝑅𝑅 𝑅𝑅𝑅𝑅  (13)

Its minimum is attained at 𝑅𝑅 𝑅𝑅𝑅𝑅 , and its minimum value
is

ℱ = 󶀤󶀤
3
2
󶀴󶀴
2
+ 3󶀤󶀤

1
2
󶀴󶀴
2
= 3. (14)
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is is larger thanℱ = 2 in (12).us circles centered on the
origin cannot compete with Nievergelt’s circle and should be
ruled out.

Next we consider all lines. As we have seen in Section
2, for rotationally symmetric data sets, all the best �tting
lines pass through the center. All of those lines �t equally
well. Taking the 𝑥𝑥 axis, for example, it is easy to see that the
corresponding objective function is

ℱ = 22 + 12 + 12 + 02 = 6. (15)

is is greater than ℱ = 2 in (12) and even greater than
ℱ = 3 in (14).us lines are even less competitive than circles
centered on the origin, so they are ruled out as well.e proof
is �nished.

erefore, the best �tting circle has a center different from
(0, 0).us by rotating this circle through the angles 2𝜋𝜋𝜋𝜋 and
4𝜋𝜋𝜋𝜋, we get two more circles that �t the data equally well.
So the circle �tting problem has three distinct solutions. e
alleged best �tting circles are shown in Figure 1.

Aer Nievergelt’s example, two other papers presented,
independently, similar examples of nonunique circle �ts.

Chernov and Lesort [4] used a perfect square, instead of
Nievergelt’s regular triangle. ey placed four points at the
vertices of the square and another 4 points at its center, so
the data set consisted of 𝑛𝑛 𝑛 𝑛 points total. en they used
the above strategy to prove that at least four different circles
achieve the best �t.

Zelniker and Clarkson [5] used a regular triangle again
and placed three points at its vertices and three more points
at its center (so that the data set consisted of 𝑛𝑛 𝑛𝑛  points).
en they showed that at least three different circles achieve
the best �t.

ese examples lead to an interesting fact that may seem
rather counterintuitive. Let 𝐶𝐶 be a circle of radius 𝑅𝑅 with
center 𝑂𝑂. Let us place a large number of data points on 𝐶𝐶
and a single data point at the center 𝑂𝑂. Suppose the points
on 𝐶𝐶 are placed uniformly (say at the vertices of a regular
polygon). en it seems like 𝐶𝐶 is an excellent candidate for
the best �tting circle—it interpolates all the data points and
misses only at 𝑂𝑂, so ℱ = 𝑅𝑅2. It is hard to imagine that any
other circle or line can do any better.

However, a striking fact proved by Nievergelt [6, Lemma
�] says that the center of the best �tting circle cannot coincide
with any data point. erefore in our example, 𝐶𝐶 cannot be
the best �tting circle. Hence some other circle with center
𝑂𝑂′ ≠𝑂𝑂 �ts the data set better. And again, rotating the best
circle about𝑂𝑂 gives other best �tting circles, so those are not
unique.

Rotationally symmetric data sets described above are
clearly exceptional; small perturbations of data points easily
destroy the symmetry. But there are probably many other
data sets, without any symmetries, that admit multiple circle
�ts, too.We believe that they are all unusual and can be easily
destroyed by small perturbations. Below is our argument.

Suppose a set of data points 𝑃𝑃1,… , 𝑃𝑃𝑛𝑛 admits two best
circle �ts, and denote those circles by 𝐶𝐶1 and 𝐶𝐶2. First
consider a simple case;𝐶𝐶1 and𝐶𝐶2 are concentric, that is, have
a common center, 𝑂𝑂. Let 𝐷𝐷𝑖𝑖 denote the distance from the

F 2: e best �t to a uniform distribution in a square.

point 𝑃𝑃𝑖𝑖 to the center 𝑂𝑂. By direct inspection, for any circle
of radius 𝑅𝑅 centered on𝑂𝑂 the objective function is

ℱ =
𝑛𝑛
󵠈󵠈
𝑖𝑖𝑖𝑖
󶀡󶀡𝑅𝑅 𝑅 𝑅𝑅𝑖𝑖󶀱󶀱

2 = 𝑛𝑛𝑛𝑛2 − 2𝑅𝑅
𝑛𝑛
󵠈󵠈
𝑖𝑖𝑖𝑖
𝐷𝐷𝑖𝑖 +

𝑛𝑛
󵠈󵠈
𝑖𝑖𝑖𝑖
𝐷𝐷2
𝑖𝑖 . (16)

is is a quadratic polynomial in 𝑅𝑅, so it cannot have two
distinct minima. So the two best �tting circles cannot be
concentric.

Now suppose the circles 𝐶𝐶1 and 𝐶𝐶2 are not concentric,
that is, they have distinct centers, 𝑂𝑂1 and 𝑂𝑂2. Let 𝐿𝐿 denote
the line passing through𝑂𝑂1 and𝑂𝑂2. Note that the data points
cannot be all on the line 𝐿𝐿 (because if the data points were
collinear, the best �t would be achieved by the interpolating
line and not by two circles). So there exists a point 𝑃𝑃𝑖𝑖 that
does not lie on the line 𝐿𝐿. Hence we can move it slightly
toward the circle 𝐶𝐶1 but away from the circle 𝐶𝐶2. en the
objective function ℱ changes slightly, and it will decrease
at one minimum (on 𝐶𝐶1) and increase at the other (on 𝐶𝐶2).
is will break the tie and ensure the uniqueness of the global
minimum.

4. Uniqueness of the Best Fitting Ellipse

Based on the previous two sections, we should expect that
data sets exist for which the best �tting ellipse is not unique.
However, we could not �nd any explicit examples in the
literature, so we supply our own.

Our previous paper [1]was the �rst to provide an example
of that sort. We �tted conics to a uniform distribution in a
perfect square, [0, 1] × [0, 1]. We found, quite unexpectedly,
that the best �twas achieved by twodistinct ellipses; theywere
geometrically equal (i.e., they had the samemajor axis and the
sameminor axis), and they had a common center, but onewas
oriented vertically and the other horizontally. See Figure 2.

Strictly speaking, in this example we did not have a
data set—we replaced it with a uniform distribution that is
obtained as a limit of large samples, as 𝑛𝑛 𝑛 𝑛. But we
would get the same picture—two best �tting ellipses—if we
place 𝑁𝑁 𝑁 𝑁𝑁 data points in the square arranged as a perfect
square lattice (e.g., the points have coordinates (𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖,
where 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖   and 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗   ).

A more elegant example can be constructed as follows.
Recall (Section 3) that Nievergelt’s example of multiple �tting
circles consisted of 𝑛𝑛 𝑛𝑛  data points; three were placed at
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F 3: Six data points and �ve �tting ellipses.

vertices of an equilateral triangle and the fourth one at its
center.

Note that a circle has three independent parameters, but
an ellipse has �ve. So it is natural to generalize Nievergelt�s
example by placing ��e data points at vertices of a regular
pentagon and the sixth one at its center. us we have 𝑛𝑛 𝑛 𝑛
data points as follows:

(0, 0) , (0, 2) ,

󶀤󶀤±2 cos
𝜋𝜋
10

, 2 sin
𝜋𝜋
10

󶀴󶀴 , 󶀤󶀤±2 cos
3𝜋𝜋
10

, −2 sin
3𝜋𝜋
10

󶀴󶀴 .
(17)

We strongly believe that the best �tting ellipse passes
through the last four data points and the point (0, 1). ese
�ve points determine the ellipse uniquely. It is obviously
symmetric about the 𝑦𝑦 axis, so its major axis is horizontal.
is ellipse cuts right in themiddle between the �rst two data
points. So those two points are at distance 𝑑𝑑 𝑑𝑑  from that
ellipse and the last four are right on it (the distance is zero).
us the objective function is

ℱ = 12 + 12 + 02 + 02 + 02 + 02 = 2. (18)

Below we provide a partial proof of our claim that the above
ellipse is the best. We also designed a full computer-assisted
proof that involves extensive numerical computations.

Lastly, by rotating this ellipse through the angles 2𝜋𝜋𝜋𝜋𝜋𝜋
for 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘     𝑘 we get four more ellipses that �t the data
equally well. So the ellipse �tting problem has �ve distinct
solutions; see Figure 3.

We will compare our ellipse to the best �tting circle
centered on the origin and the best �tting lines. Consider any
circle of radius 𝑅𝑅 centered on (0, 0). It is easy to see that the
respective objective function is

ℱ = 𝑅𝑅2 + 5(2 − 𝑅𝑅)2 =6 𝑅𝑅2 − 20𝑅𝑅 𝑅𝑅𝑅𝑅  (19)

Its minimum is attained at 𝑅𝑅 𝑅𝑅𝑅𝑅 , and its minimum value
is

ℱ = 󶀤󶀤
5
3
󶀴󶀴
2
+ 5󶀤󶀤

1
3
󶀴󶀴
2
=
10
3
. (20)

is is larger thanℱ = 2 in (18). us circles centered on the
origin cannot compete with our ellipse.

Consider all lines. As we have seen in Section 2, for
rotationally symmetric data sets all the best �tting lines pass
through the center, and all of those lines �t equally well.
Taking the 𝑥𝑥 axis, for example, it is easy to see that the
corresponding objective function is

ℱ = 22 + 2󶀤󶀤2 sin 󶀤󶀤
𝜋𝜋
10

󶀴󶀴󶀴󶀴
2
+ 2󶀤󶀤2 sin 󶀤󶀤

3𝜋𝜋
10

󶀴󶀴󶀴󶀴
2
= 10. (21)

is is greater than ℱ = 2 in (18) and even greater than ℱ =
10/3 in (20). us lines are even less competitive than circles
centered on the origin.

Also, in the ellipse �tting problem, pairs of parallel lines
are legitimate model objects; see [1]. We examined the �ts
achieved by pairs of parallel lines. e best �t we found was
by two horizontal lines 𝑦𝑦 𝑦 𝑦𝑦1 and 𝑦𝑦 𝑦 𝑦𝑦2, where

𝑦𝑦1 =
(2 + 4 sin (𝜋𝜋𝜋𝜋𝜋))

4
, 𝑦𝑦2 = −2 sin 󶀤󶀤

3𝜋𝜋
10

󶀴󶀴 . (22)

Note that𝑦𝑦1 is the average𝑦𝑦-coordinate of the �rst four points
in our sample. us the �rst line is the best �tting line for the
�rst four points, and the second line passes through the last
two points. e objective function for this pair of lines is

ℱ = 󶀡󶀡2 − 𝑦𝑦1󶀱󶀱
2 + 2󶀤󶀤2 sin 󶀤󶀤

𝜋𝜋
10

󶀴󶀴 − 𝑦𝑦1󶀴󶀴
2
+ 󶀡󶀡0 − 𝑦𝑦1󶀱󶀱

2 ≈ 2.146.
(23)

is is pretty good, better than the best �tting circle in (20).
But still it is a little worse than the best �tting ellipse in (18).

us our ellipse �ts better than any circle centered on
the origin, any line, and any pair of parallel lines. In order
to conclude that it is really the best �tting ellipse, we would
have to compare it to all other ellipses and parabolas. is
task seems prohibitively difficult if one uses only theoretical
arguments as above. Instead, we developed a computer-
assisted proof. It is a part of the Ph.D. thesis by Q. Huang,
which we plan to post on the web [7].
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