
1 23

Journal of Mathematical Imaging and
Vision

ISSN 0924-9907

J Math Imaging Vis
DOI 10.1007/s10851-013-0461-4

Fast and Numerically Stable Circle Fit

H. Abdul-Rahman & N. Chernov

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

J Math Imaging Vis
DOI 10.1007/s10851-013-0461-4

Fast and Numerically Stable Circle Fit

H. Abdul-Rahman · N. Chernov

© Springer Science+Business Media New York 2013

Abstract We develop a new algorithm for fitting circles that
does not have drawbacks commonly found in existing cir-
cle fits. Our fit achieves ultimate accuracy (to machine pre-
cision), avoids divergence, and is numerically stable even
when fitting circles get arbitrary large. Lastly, our algorithm
takes less than 10 iterations to converge, on average.

Keywords Fitting circles · Geometric fit ·
Levenberg–Marquardt · Gauss–Newton

1 Introduction

Fitting circles and circular arcs to observed points is a basic
task in pattern recognition and computer vision [1, 2, 4, 6–
10, 18]. Some authors assert that “most of the objects in the
world are made up of circular arcs and straight lines”; see
[16, 21].

The classical least squares fit minimizes geometric dis-
tances from the observed points to the fitting circle:

F(a, b,R) =
n∑

i=1

[√
(xi − a)2 + (yi − b)2 − R

]2 → min

(1.1)

Here (xi, yi) denotes the observed points, (a, b) the center
and R the radius of the fitting circle.

H. Abdul-Rahman · N. Chernov (B)
Department of Mathematics, University of Alabama at
Birmingham, Birmingham, AL 35294, USA
e-mail: chernov@uab.edu

H. Abdul-Rahman
e-mail: houssam@uab.edu

The geometric fit (1.1) has many attractive features. It is
invariant under translations, rotations, and scaling, i.e., the
best fitting arc does not depend on the choice of the coor-
dinate system. It provides the maximum likelihood estimate
under standard statistical assumptions [3–5]. The minimiza-
tion of geometric distances is often regarded as the most de-
sirable solution1 of the fitting problem, albeit hard to com-
pute in some cases.

Our paper is devoted to practical algorithms for min-
imization of (1.1). Theoretical aspects of the circle fit-
ting problem are covered elsewhere: for the existence and
uniqueness of the global minimum of the objective func-
tion F(a, b,R) see [4, 5, 13, 22], for its differentiability see
Lemma 7 in [14], etc.

Most authors solve (1.1) by general minimization algo-
rithms, such as Gauss–Newton (GN) [8, 9] or Levenberg–
Marquardt (LM) [6, 17]; see a review [4]. Circle-specific
schemes exist [12, 18] but they converge linearly and often
take hundreds of iterations [4, 6], which makes them imprac-
tical.

The GN and LM normally converge in 5–10 iterations,
but they have a number of known issues. First, they occa-
sionally diverge. It was shown [6] (see a detailed proof in
[4, Sect. 3.8]) that there is a valley in the parameter space
that extends to infinity, along which the objective func-
tion slowly decreases but remains above its minimum value.
Thus if the minimization algorithm starts in that valley (or
gets there by chance) it will be forced to move away from
the minimum of (1.1).

Numerical tests [6] show that if the initial guess is picked
at random, the chance of divergence may be as high as 50 %.
If the initial guess is supplied by an algebraic circle fit (such

1In particular, it has been prescribed by a recently ratified standard for
testing the data processing software for coordinate metrology [1].

Author's personal copy

mailto:chernov@uab.edu
mailto:houssam@uab.edu

J Math Imaging Vis

as Kåsa fit [11]), then the chances of divergence are very
low, but it is still possible (see an example in [4, Sect. 5.13]).

One way to avoid divergence is to use the so-called alge-
braic parameters, in which the circle equation is
A(x2 + y2) + Bx + Cy + D = 0 with additional constraint
B2 + C2 = 4AD + 1; see details in [4, 6]. One can deter-
mine A,B,C,D for the best fitting circle and then convert
them to a, b,R. Such an algorithm was proposed in [6], and
it indeed converges to a minimum of (1.1) from any start-
ing point. But using algebraic parameters A,B,C,D leads
to very complicated formulas, and the resulting algorithm
is about 10 times slower than the one using the geometric
parameters a, b,R (see [4, 6]). There is also a possible loss
of accuracy at the stage of converting the algebraic param-
eters to the geometric ones. Our numerical tests (Sect. 7)
demonstrate these drawbacks.

The second issue is accuracy. Standard algorithms use an
adaptive step procedure: if the value of the objective func-
tion (1.1) is not decreasing at the next iteration, the latter is
rejected and the step is recomputed by adjusting the value
of a control parameter. This ‘acceptance rule’ makes the ac-
curacy of the parameter estimates no better than O(ε1/2),
where ε denotes the machine precision (ε ≈ 2 · 10−16 in the
standard double precision arithmetic); we explain this be-
low. In fact, most algorithms stop iterations whenever the
step gets smaller than ε1/2; see [8, 15].

We modify this ‘acceptance rule’ so that the accuracy of
the parameter estimates becomes O(ε), rather than O(ε1/2).
This makes our algorithm numerically stable, in a formal
sense [20]. This ultimate accuracy is achieved by using the
norm of the gradient of the objective function, rather than
the function itself, as the ‘acceptance criterion’; see below.

One may wonder how many additional iterations it takes
to reach this ultimate accuracy. The standard Gauss–Newton
and Levenberg–Marquardt schemes are known to converge
linearly in the vicinity of a minimum, so they might take
10–15 extra iterations. Instead, we employ a version of a
‘full Newton method’ [15] which guarantees quadratic con-
vergence. So it takes just 1–2 extra iterations to reach the
ultimate accuracy.

The third issue is related to large circles. If the data points
lie along a circular arc with low curvature, then the best fit-
ting circle has a large radius R and a far away center (a, b).
This leads to catastrophic cancelation in the calculation of
the function (1.1) and its derivatives, so the resulting esti-
mates get poor. As a remedy, one can use algebraic parame-
ters [6] or other special parameters [10], but again this leads
to very complicated formulas and involves an inevitable loss
of accuracy at the stage of conversion from one set of param-
eters to another.

We resolve this issue while staying with the natural ge-
ometric parameters (a, b,R) at all times. For large circles
we use different formulas for the objective function (1.1)

and its derivatives, which are mathematically equivalent to
the standard formulas but are organized differently to avoid
catastrophic cancelation; see Sect. 5.

Our numerical tests show that the resulting algorithm has
the following features: convergence to a local minimum of
(1.1) from nearly any initial guess (in fact, it never failed to
converge in our tests), the final accuracy O(ε), the average
number of iterations is only 7–8, and the average execution
time is only 50 % higher compared to standard GN and LM
algorithms (which have issues as listed above). We tested
all the other published algorithms and none of them came
close to these characteristics; see Sect. 7. While the numeri-
cal tests may not ‘prove’ the superiority of our approach, we
believe that our theoretical resolution of the above difficult
issues constitutes the real novelty of our work.

The paper is organizes as follows. We begin with a stan-
dard modification and reduction of the objective function. In
Sect. 3 we propose a “two phase” acceptance rule to increase
the accuracy from O(ε1/2) to O(ε). In Sect. 4 we present
our version of the full Newton method with Levenberg–
Marquardt correction. In Sect. 5 we derive formulas for
the objective function, its derivative and Hessian, that avoid
catastrophic cancelation for large circles. In Sect. 6 we de-
scribe a method that prevents divergence. In Sect. 7 we
present our numerical tests.

2 Reducing and Modifying the Problem

Expression (1.1) can be reduced by eliminating the radius R,
as the right hand side of (1.1) is a quadratic polynomial in R.
Setting ∂F/∂R = 0 and solving for R yields

R = r where ri =
√

(xi − a)2 + (yi − b)2 (2.1)

Here we use the “sample mean” notation r = 1
n

∑n
i=1 ri .

Similar notation is used below for x = 1
n

∑n
i=1 xi , xy =

1
n

∑n
i=1 xiyi , etc. Now (1.1) reads

F(a, b) =
n∑

i=1

(ri − r)2

=
n∑

i=1

(
x2
i + y2

i

) + n
(
a2 + b2 − r2)

− 2anx − 2bny (2.2)

Since the term
∑n

i=1(x
2
i + y2

i) is constant, we can drop it,
then divide F by n, and proceed to minimize the “reduced”
objective function

F(a, b) = a2 + b2 − r2 − 2ax − 2by (2.3)

Centering the data prior to the fit is known to help reduce
round-off errors [7, 19]. This is done by translation x′

i =

Author's personal copy

J Math Imaging Vis

Fig. 1 F has quadratic behavior in the vicinity of a minimum

xi − x and y′
i = yi − y. It also helps to scale the data to

make their values of order one. This is done by x′′
i = x′

i/S

and y′′
i = y′

i/S where S = [x′x′ + y′y′]1/2.
After one estimates the circle center (a, b) using the cen-

tered and scaled data points, one needs to rescale and re-
translate it by a �→ Sa + x and b �→ Sb + y and then com-
pute R by (2.1).

We will assume that the data is already centered and
scaled. In particular, this makes x = y = 0, hence (2.3) fur-
ther reduces to

F(a, b) = a2 + b2 − r2. (2.4)

3 Using a Gradient Based Acceptance Rule

The objective function F is smooth, hence its gradient van-
ishes at any local minimum pmin (we use notation p =
(a, b)), thus

F(pmin + h) −F(pmin) = O
(‖h‖2)

This means that if ‖h‖ ≤ ε1/2, then round-off errors make it
impossible to reliably compare the values of F(pmin + h)

and F(pmin) (see Fig. 1). Thus, standard minimization
schemes with adaptive step (GN, LM, or Trust Region [4]),
which accept the next iteration if F(pnext) < F(pcurrent), are
doomed to stall in the O(ε1/2) neighborhood of pmin. We
use this acceptance rule (we call it AR1) only outside that
neighborhood.

Inside the O(ε1/2) neighborhood of pmin we use the
norm of the gradient ∇F ; i.e., we accept the next iteration
provided ‖∇F(pnext)‖ < ‖∇F(pcurrent)‖ (we call this rule
AR2). Since F is twice differentiable, we have

∇F(pmin) = 0 and ‖∇F(pmin + h)‖ = O(‖h‖)
thus the numerically computed value of ‖∇F(p)‖ remains
significantly different from zero all the way down to ‖h‖ =
O(ε); see Fig. 2.

Fig. 2 ∇F has linear behavior in the vicinity of the minimum

More precisely, we abandon AR1 and start using AR2
once

‖∇F‖ ≤ ε∗
(
ε∗ ∼ ε1/2) (3.1)

where ε∗ = 3 × 10−8 in double precision and 10−4 in single
precision [15].

4 Full Newton Minimization

Fast (quadratic) convergence to a minimum of F in its
O(ε1/2) vicinity requires the use of the full Newton method,
i.e., exact formulas for the gradient and Hessian matrix of F .
By standard formulas [4], the gradient is

1
2∇F =

[
a + ur

b + vr

]
(4.1)

and the Hessian matrix

1
2H =

[
1 − u2 − rvv/r −uv + ruv/r

−uv + ruv/r 1 − v2 − ruu/r

]
(4.2)

where we used our “sample mean” notation and denoted

ui = −∂ri

∂a
= xi − a

ri
, vi = −∂ri

∂b
= yi − b

ri

In particular, uv/r = 1
n

∑
uivi/ri , etc.

Our adaptive step rule is based on the Levenberg–
Marquardt type correction to the Hessian matrix:

Hλ = H+ λI

where λ > 0 is a control parameter and I is the 2×2 identity
matrix. The next iteration step is then computed by

h = −H−1
λ · (∇F) (4.3)

Author's personal copy

J Math Imaging Vis

For better accuracy, we use an eigenvalue decomposition
of H

H = QDQT (4.4)

where Q is an orthogonal matrix and D = diag{d1, d2} is a
diagonal matrix containing the eigenvalues of H. Since H
is a 2 × 2 matrix, its eigendecomposition can be computed
by fast direct formulas (without using matrix algebra func-
tions). Now

Hλ = QDλQT (4.5)

where

Dλ = diag{d1 + λ,d2 + λ} (4.6)

and (4.3) takes form

h = −QD−1
λ QT ∇F (4.7)

where D−1
λ = diag{1/(d1 + λ),1/(d2 + λ)}.

We choose λ so that (i) the matrix Hλ is positive defi-
nite and, moreover, (ii) the step h is not too large. The latter
means

‖h‖ ≤ hmax = α1‖p‖ + α0 (4.8)

where α0, α1 < 1 are constants whose values can be selected
empirically.

In terms of (4.7), condition (4.8) reads

‖D−1
λ g‖ ≤ hmax, g = QT ∇F (4.9)

For simplicity we replace the 2-norm with the maximum
norm and get
∣∣∣∣

g1

d1 + λ

∣∣∣∣ ≤ hmax and

∣∣∣∣
g2

d2 + λ

∣∣∣∣ ≤ hmax (4.10)

which gives a lower bound on λ:

λ ≥ λmin = max

{ |g1|
hmax

− d1,
|g2|
hmax

− d2

}
(4.11)

This not only enforces (4.8), but also guarantees that Hλ is
positive definite. Rather than imposing (4.11), we adjust λ

as usual: if the iteration is accepted, λ decreases by a cer-
tain factor (∼0.1), otherwise it increases by a certain fac-
tor (∼10). After the AR2 rule is adopted (i.e., once we get
‖∇F‖ < ε∗), we actually set λ = 0 after every successful
iteration, so that the convergence would be truly quadratic.

To summarize, here is the scheme of one iteration of our
algorithm:

One iteration of our algorithm

• Given p = (a, b), compute F(p), ∇F(p), and H(p)

• if ‖∇F‖ < ε∗ then switch from AR1 rule to AR2 rule
• Compute the eigendecomposition (4.4) of the matrix
H(p)

• Compute the vector g = (g1,g2) by (4.9)
• Compute hmax by (4.8) and λmin by (4.11)
• If AR2 rule applies, set λ = 0
• while

◦ If λ < λmin, set λ = λmin

◦ Compute the step h by (4.7)
◦ if ‖h‖ < ε‖p‖ then terminate iterations and EXIT
◦ Compute p′ = p + h and F(p′) with ∇F(p′)
◦ if AR1 applies:

∗ if F(p′) < F(p) then set pnext = p′, reduce λ, break
∗ else (reject p′) increase λ, continue

◦ if AR2 applies:

∗ if ‖∇F(p′)‖ < ‖∇F(p)‖
then set pnext = p′, reduce λ, break

∗ else (reject p′) increase λ, continue

• end while

5 Big Circle Formulas

If our fitting circle is large and still passes near the data
points, then either a or b must be large. In that case we
use modified formulas for F and its derivatives to avoid
catastrophic cancelations and minimize round off errors. We
use polar coordinates D2 = a2 + b2 and θ ∈ [0,2π) so
that a = D cos θ and b = D sin θ . We denote δ = 1/D and
zi = x2

i + y2
i . Now

ri =
√

(a − xi)2 + (b − yi)2 = Dwi

where wi = √
1 − 2δpi + δ2zi and pi = xi cos θ + yi sin θ .

We also have ri = D + γi where

γi = D(wi − 1) = − τi

1 + wi

, τi = 2pi − δzi

Further modification gives

γi = −pi + δgi, gi = zi + piγi

2 + δγi

Averaging over i = 1, . . . , n gives p = 0 (because the data
is centered so that x = y = 0) and r = D + δg, thus (2.4)
becomes

F = −2g − δ2g2 (5.1)

We found that (5.1) gives a more accurate value of F than
(2.4) even for relatively small circles, such as 1 < D < 10.

Author's personal copy

J Math Imaging Vis

For larger circles, D ≥ 10, (5.1) remains numerically stable
while (2.4) breaks down (see Fig. 3).

Similar modifications can be made for the formulas (4.1)
and (4.2). We omit algebraic details and give the final re-
sults. Denote

αi = (xi + γi cos θ)/wi, βi = (yi + γi sin θ)/wi

ηi = 1

1 + δγi

, κi = γi

2 + δγi

Then using our sample mean notation we define

P = 1
2 (τγ η − δτγ ηκ), Q = 1

2 (τκ + z)

and

X = xγ η, Y = yγ η

Now the gradient is given by

1
2∇F = δ

[
A cos θ − BX

A sin θ − BY

]
(5.2)

where

A = P + δ2(P + Q)Q, B = 1 + δ2Q

The Hessian is

1
2H = δ2

[
U(2c − δ2U) − Qs2 − BN Us + V c − δ2UV + Qsc + BL

Us + V c − δ2UV + Qsc + BL V (2s − δ2V) − Qc2 − BM

]
(5.3)

where we use shorthand notation c = cos θ and s = sin θ and
denote

U = (P + Q)c − X, V = (P + Q)s − Y

and

M = (γ γ η − Q)c2 + 2(αγ η − U)c + ααη

N = (γ γ η − Q)s2 + 2(βγ η − V)s + ββη

L = (γ γ η − Q)cs + (αγ η − U)s + (βγ η − V)c + αβη

The above formulas look more complicated than (4.1)–(4.2).
Indeed a careful flop count shows that they require 55n +
const flops, while (4.1)–(4.2) require 19n + const flops, so
the computational time roughly triples.

Fig. 3 The number of accurate digits in the value of F computed by
the standard rule (2.4) and by the modified rule (5.1). The picture is
almost identical for the gradient and Hessian

6 Preventing Divergence

It is shown in [4] that the graph of the objective function
F(a, b) has two valleys stretching toward infinity in op-
posite directions. In one valley F(a, b) decreases toward
its global minimum, so all the standard algorithms tend to
move toward the minimum and converge. The other valley
is separated from the minimum by a ridge, and in that valley
F(a, b) decreases as the point (a, b) moves along the val-
ley bottom toward infinity. Thus standard algorithms tend to
diverge. We refer to [4, Sect. 3.7] for a detailed account.

To prevent divergence, our program detects whether the
current iteration falls in the “wrong” valley, in which case
the algorithm restarts from a point in the “right” valley.

The valleys stretch along the eigenvector corresponding
to the smaller eigenvalue of the scatter matrix. The latter is
given by

S =
[
xx xy

xy yy

]
(6.1)

(remember we assumed x = y = 0). Now suppose the co-
ordinate system is rotated so that the x direction is aligned
with the major eigenvector of S and the y direction with its
minor eigenvector. This gives xy = 0 and xx > yy. Now the
valleys stretch in the y (vertical) direction.

Under these conditions it was proven in [4, Sect. 3.9] that
the location of the “wrong” valley is determined by the sign
of xxy = 1

n

∑
x2
i yi as follows:

(a) if xxy > 0, then the wrong valley lies below the x axis;
(b) if xxy < 0, then the wrong valley lies above the x axis.

Author's personal copy

J Math Imaging Vis

Our algorithm includes the following block preventing di-
vergence in the wrong valley (here L > 0 is a large constant;
we use L = 100):

Divergence prevention

• if |a| > L or |b| > L then
• if the above condition occurs for the first time then

◦ Compute the components of the scatter matrix S
◦ Compute an eigendecomposition of S
◦ Rotate the coordinate system aligning the x direction
with the major eigenvector of S

◦ Compute xxy and record its sign, Z =sign(xxy)

• Compute the center coordinates (a, b) in the rotated sys-
tem

• if Zb < 0 (i.e., if the center is in the “wrong” valley) then
• Restart the algorithm from a point in the “right” valley

As a restarting point we choose (0,ZL) and rotate it back
to the original coordinate system.

Lastly, the best fitting circle may not exist at all [4, 13,
22]. In that case the data points are best fitted by a line
(more precisely, by the line passing through the origin and
spanned by the major eigenvector of S). It was proven in [4,
Sect. 3.9] that this event can only occur if xxy = 0. Thus our
algorithm abandons the search for the best circle whenever
max{|a|, |b|} > L and |xxy| = O(ε). In that case it returns
the best fitting line.

7 Numerical Results

We have compared the proposed algorithm with a few
others in a series of computer tests. As competitors, we
chose the Gauss–Newton (GN) method described in [8] (the
code was downloaded from the author’s web page), the
Levenberg–Marquardt (LM) method (see [4, Sect. 4.7]), and
the Chernov–Lesort (CL) fit based on algebraic circle pa-
rameters (see [6]).

All these fits use the standard stopping rule: they ter-
minate iterations whenever the step gets smaller than ε1/2,
thus they only achieve suboptimal accuracy O(ε1/2). The
GN method is actually able to achieve the optimal accuracy
O(ε) if it continues iterations until the step gets smaller
than ε. We included this modified version (GNm) in our
tests.

In our tests we have generated samples of n = 8 points
randomly, with a uniform distribution in the square [−1,1]×
[−1,1]. Each sample was then centered and scaled as de-
scribed in Sect. 2. Uniform distribution produced totally
“chaotic” samples without any predefined pattern. It is, in
a sense, the worst case scenario, corresponding to very large
noise in data. Thus our algorithms were tested under the
most challenging conditions.

Table 1 Percentage of divergencies and the average number of itera-
tions

Initial guess Average # of
iterationsAlgebraic

Kåsa fit
Randomly chosen in
[−5,5] × [−5,5]

New 0 % 0 % 8.1

GNm 0.07 % 75 % 29.7

GN 0.07 % 75 % 11.4

LM 0.07 % 23.5 % 11.8

CL 0 % 0.02 % 11.7

We initialized our fitting algorithms in two different
ways. First, we applied a non-iterative algebraic circle fit,
such as Kåsa fit [11]. Second, we chose the center (a, b)

randomly in the square [−1,1] × [−1,1] and computed the
radius R by (2.1).

Table 1 shows how frequently each algorithm diverges
and how many iterations it takes to converge (whenever they
do converge). The GN and LM mostly diverge when the it-
eration gets into the “wrong valley”. The CL fit is designed
to converge all the time, but due to its suboptimal accuracy it
occasionally stalls. Our results are consistent with the ones
reported in [6].

Next we tested the accuracy of each algorithm. For each
generated sample we first fitted a very precise circle by using
the built-in function vpa (available in MATLAB Symbolic
Toolbox) that is able to keep track of 32 (and more) accurate
decimal digits. We regard it as “ideal” circle. Now each al-
gorithm produced its own fitting circle and we computed the
relative error E in the estimated circle parameters, versus
the “ideal” circle. Then we found k = [− log10 E], which
is the number of zeros after the decimal point in the digital
representation of E. This can be roughly interpreted as the
number of correct (trustworthy) decimal digits in the param-
eters of the fitted circle. Whenever k ≥ 15, the approxima-
tion reaches the desired “superaccuracy”. The cases k ≤ 14
are regarded as “bad enough” to be of interest to us and are
recorded.

Table 2 shows the number of recorded “bad” cases for
each k = 1,2, . . . ,14 for each algorithm, after 104 runs. The
table does not include the super accurate results (k ≥ 15).
All the algorithms here were initialized by the Kåsa alge-
braic circle fit. We only included runs where all the algo-
rithms converged to the same minimum of the objective
function F (in all these cases E < 10−2).

The table shows that the methods GN, LM, CL with a
suboptimal stopping rule (terminating iterations once the
step gets smaller than ε1/2) give suboptimal accuracy with
5 ≤ k ≤ 9 in most cases. The modified GN and our new
method use the optimal stopping rule and achieve better ac-
curacy k ≥ 14 in most cases. But the modified GN falters
occasionally having rare bad cases down to k = 4. And it

Author's personal copy

J Math Imaging Vis

Table 2 The distribution of “bad” cases over k = 1, . . . ,14. The total number of runs is 104. Superaccurate results (k ≥ 15) are not shown

1 to 3 4 5 6 7 8 9 10 11 12 13 14

New 0 0 0 0 0 0 0 0 2 2 11 31

GNm 0 2 1 0 2 6 2 3 2 8 13 69

GN 0 0 59 2459 6215 1210 55 2 0 0 0 0

LM 0 2 174 8427 1390 7 0 0 0 0 0 0

CL 1 1 96 3270 5650 953 28 1 0 0 0 0

takes almost 30 iterations, on average to reach the desired
accuracy, while our method takes only 8 iterations.

Our numerical results demonstrate the superiority of our
new algorithm over the main existing algorithms.

Acknowledgement N.C. was partially supported by National Sci-
ence Foundation, grant DMS-0969187.

References

1. Ahn, S.J.: Least Squares Orthogonal Distance Fitting of Curves
and Surfaces in Space. LNCS, vol. 3151. Springer, Berlin (2004)

2. Atieg, A., Watson, G.A.: Fitting circular arcs by orthogonal dis-
tance regression. Appl. Numer. Anal. Comput. Math. 1, 66–76
(2004)

3. Chan, N.N.: On circular functional relationships. J. R. Stat. Soc. B
27, 45–56 (1965)

4. Chernov, N.: Circular and linear regression: fitting circles and
lines by least squares. In: Monographs on Statistics and Applied
Probability, vol. 117. Chapman & Hall, London (2010)

5. Chernov, N., Lesort, C.: Statistical efficiency of curve fitting algo-
rithms. Comput. Stat. Data Anal. 47, 713–728 (2004)

6. Chernov, N., Lesort, C.: Least squares fitting of circles. J. Math.
Imaging Vis. 23, 239–251 (2005)

7. Crawford, J.F.: A non-iterative method for fitting circular arcs to
measured points. Nucl. Instrum. Methods 211, 223–225 (1983)

8. Gander, W., Golub, G.H., Strebel, R.: Least squares fitting of cir-
cles and ellipses. BIT Numer. Math. 34, 558–578 (1994)

9. Joseph, S.H.: Unbiased least-squares fitting of circular arcs.
Graph. Models Image Process. 56, 424–432 (1994)

10. Karimäki, V.: Effective circle fitting for particle trajectories. Nucl.
Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect.
Assoc. Equip. 305, 187–191 (1991)

11. Kasa, I.: A curve fitting procedure and its error analysis. IEEE
Trans. Instrum. Meas. 25, 8–14 (1976)

12. Landau, U.M.: Estimation of a circular arc center and its radius.
Comput. Vis. Graph. Image Process. 38, 317–326 (1987)

13. Nievergelt, Y.: A finite algorithm to fit geometrically all midrange
lines, circles, planes, spheres, hyperplanes, and hyperspheres. Nu-
mer. Math. 91, 257–303 (2002)

14. Nievergelt, Y.: Perturbation analysis for circles, spheres, and
generalized hyperspheres fitted to data by geometric total least-
squares. Math. Comput. 73, 169–180 (2004)

15. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Nu-
merical Recipes in C++. Cambridge University Press, Cambridge
(2002)

16. Perkins, W.A.: A model-based vision system for industrial parts.
IEEE Trans. Comput. 27, 126–143 (1978)

17. Shakarji, C.: Least-squares fitting algorithms of the NIST algo-
rithm testing system. J. Res. Natl. Inst. Stand. Technol. 103, 633–
641 (1998)

18. Spath, H.: Least-squares fitting by circles. Computing 57, 179–
185 (1996)

19. Taubin, G.: Estimation of planar curves, surfaces and nonplanar
space curves defined by implicit equations, with applications to
edge and range image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 13, 1115–1138 (1991)

20. Trefethen, L., Bau III, D.: Numerical Linear Algebra. SIAM,
Philadelphia (1997)

21. Yuen, P.C., Feng, G.C.: A novel method for parameter estimation
of digital arcs. Pattern Recognit. Lett. 17, 929–938 (1996)

22. Zelniker, E., Clarkson, V.: A statistical analysis of the Delogne–
Kåsa method for fitting circles. Digit. Signal Process. 16, 498–522
(2006)

H. Abdul-Rahman is currently a
Ph.D. student at University of Al-
abama at Birmingham (USA).

N. Chernov got Ph.D. in mathe-
matics from Moscow University in
1984. He worked at Joint Institute
for Nuclear Research (Russia) in
1983–1991. Since 1994 he is a Pro-
fessor at University of Alabama at
Birmingham (USA).

Author's personal copy

	Fast and Numerically Stable Circle Fit
	Abstract
	Introduction
	Reducing and Modifying the Problem
	Using a Gradient Based Acceptance Rule
	Full Newton Minimization
	Big Circle Formulas
	Preventing Divergence
	Numerical Results
	Acknowledgement
	References

