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Fitting geometric shapes to observed data points (images) is a popular task in computer vision
and modern statistics (errors-in-variables regression). We investigate the problem of existence of
the best fit using geometric and probabilistic approaches.

1. Introduction

In many areas of human practice, one needs to approximate a set of points P1, . . . , Pn ∈ R
d

(representing experimental data or observations) by a simple geometric shape, such as a line,
plane, circular arc, elliptic arc, and spherical surface. This problem is known as fitting amodel
object (line, circle, sphere, etc.) to observed data points.

The best fit is achieved when the geometric distances from the given points to the
model object are minimized, in the least squares sense. Finding the best fit reduces to the
minimization of the objective function

F(S) =
n∑

i=1

[dist(Pi, S)]
2, (1.1)

where S ⊂ R
d denotes the model object (line, circle, sphere, etc.).

While other fitting criteria are used as well, it is the minimum of (1.1) that is
universally recognized as the most desirable solution of the fitting problem. It has been
adopted as a standard in industrial applications [1, 2]. In statistics, the minimum of
(1.1) corresponds to the maximum likelihood estimate under usual assumptions known
as functional model; see [3, 4]. Minimization of (1.1) is also called orthogonal distance
regression (ODR).
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Table 1

Objects Existence Existence Uniqueness
in all cases in typical cases

Lines Yes Yes No
Circles No Yes No
Ellipses No No No
All conics No Yes No

Geometric fitting in the sense of minimizing (1.1) has a long history. First publications
on fitting linear objects (lines, planes, etc.) to given points in 2D and 3D date back to the late
nineteenth century [5]. The problem of fitting lines and planes was solved analytically in the
1870s [6], and the statistical properties of the resulting estimates were studies throughout the
twenties century [7–9], the most important discoveries being made in the 1970s [3, 10, 11].
These studies gave rise to a new branch of mathematical statistics now known as errors-in-
variable (EIV) regression analysis [3, 4].

Since the 1950s, fitting circles and spheres to data points became popular in
archaeology, industry, and so forth, [12, 13]. In the 1970s, researchers started fitting ellipses
and hyperbolas to data points [14–17].

The interest to the problem of geometric fitting surged in the 1990s when it became
an agenda issue for the rapidly growing computer science community. Indeed, fitting simple
contours to digitized images is one of the basic tasks in pattern recognition and computer
vision. In most cases, those contours are lines, circles, ellipses and other conic sections (called
simply conics, for brevity) in 2D, and planes, spheres, ellipsoids in 3D. More complicated
curves and surfaces are used occasionally too [1, 18], but it is more common to divide
complex images into smaller segments and approximate each of those by a line or by a circular
arc. This way one can approximate a complex contour by a polygonal line or a circular spline
(see, e.g., [19, 20]).

Most publications on the geometric fitting problem are devoted to analytic solutions
(which are only possible for lines and planes), or practical algorithms for finding the best-
fitting object, or statistical properties of the resulting estimates. Very rarely one addresses
fundamental issues such as the existence and uniqueness of the best fit. If these issues do
come up, one either assumes that the best fit exists and is unique, or just points out examples
to the contrary without deep investigation.

In this paper we address the issue of existence of the best fit in a general and
comprehensive manner. The issue of uniqueness will be treated in a separate paper. These
issues turn out to be quite nontrivial and lead to unexpected conclusions. As a glimpse of
our results, we provide Table 1 summarizing the state of affairs in the problem of fitting 2D
objects (here Yes means the best-fitting object exists or is unique in all respective cases; No
means the existence/uniqueness fails in some of the respective cases).

We see that the existence and uniqueness of the best-fitting object cannot be just taken
for granted. Actually 2/3 of the answers in Table 1 are negative. The uniqueness can never be
guaranteed. The existence is guaranteed only for lines. In typical cases (i.e., for typical sets of
data points, in probabilistic sense; see precise definition in Section 6), the best-fitting line and
circle do exist, but the best-fitting ellipse does not.

The existence and uniqueness of the best fit are not only of theoretical interest but also
practically relevant. For example, knowing under what conditions the problem does not have
a solution might help us understand why the computer algorithm keeps diverging, or returns
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Figure 1: Sequence of lines Ln and the limit line L.

nonsense, or crashes altogether. While the cases where the best fit does not theoretically exist
may be exceptional, nearby cases may be practically hard to handle, as the best-fitting object
may be extremely difficult to find.

The nonuniqueness has its practical implications too. It means that the best-fitting
object may not be stable under slight perturbations of the data points. An example is
described by Nievergelt [21]; he presented a set of n = 4 points that can be fitted by three
different circles equally well. Then by arbitrarily small changes in the coordinates of the
points one can make any of these three circles fit the points a bit better than the other two
circles, thus the best-fitting circle will change abruptly. See also a similar example in [4,
Section 2.2].

Here we develop a general approach to the studies of existence of the best fit. Our
motivation primarily comes from popular applications where one fits lines, circles, ellipses,
and other conics, but our methods and ideas can be applied to much more general models.
Our approach works in any dimension; that is, we can treat data points P1, . . . , Pn ∈ R

d and
model objects S ⊂ R

d for any d ≥ 2, but for the sake of notational simplicity and ease of
illustrations we mostly restrict the exposition to the planar case d = 2.

2. W-Convergence and the Induced Topology

A crucial notion in our analysis is that of convergence (of model objects).

Motivating Example

Consider a sequence of lines Ln = {y = x/n}. They all pass through the origin (0, 0) and their
slopes 1/n decrease as n grows (Figure 1). Naturally, we would consider this sequence as
convergent; it converges to the x-axis, that is, to the line L = {y = 0}, as n → ∞.

However, it is not easy to define convergence so that the above sequence of lines would
satisfy it. For example, we may try to use Hausdorff distance to measure how close two
objects S1 and S2 ⊂ R

2 are. It is defined by

distH(S1, S2) = max

{
sup
P1∈S1

dist(P1, S2), sup
P2∈S2

dist(P2, S1)

}
. (2.1)

If the two sets S1 and S2 are closed and the Hausdorff distance between them is zero, that is,
distH(S1, S2) = 0, then they coincide S1 = S2. If the Hausdorff distance is small, the two sets
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S1 and S2 nearly coincide with each other. So the Hausdorff distance seems appropriate for
our purposes.

But it turns out that the Hausdorff distance between the lines Ln and L in our example
is infinite, that is, distH(Ln, L) = ∞ for every n. Thus the Hausdorff distance cannot be used to
characterize convergence of lines as we would like to see it.

Windows

So why do we think that the line Ln converges to the line L, despite an infinite Hausdorff
distance between them? It is because we do not really see an infinite line, we only “see”
objects in a certain finite area, like in Figure 1. Suppose we see objects in some rectangle

R =
{−A ≤ x ≤ A,−B ≤ y ≤ B

}
, (2.2)

which for themoment will play the role of our “window” throughwhichwe look at the plane.
Then we see segments of our lines within R; that is, we see intersections Ln ∩ R and L ∩ R.
Now clearly the segment Ln ∩R gets closer to L ∩R, as n grows, and in the limit n → ∞ they
become identical. This is why we see the lines Ln converging to L. We see this convergence
no matter how large the window R is. Note that the Hausdorff distance between Ln ∩ R and
L ∩ R indeed converges to zero: distH(Ln ∩ R, L ∩ R) → 0 as n → ∞.

Window-Restricted Hausdorff Distance

Taking cue from the above example, we define the Hausdorff distance between sets S1 and
S2 within a finite window R as follows:

distH(S1, S2;R) = max

{
sup

P∈S1∩R
dist(P, S2), sup

Q∈S2∩R
dist(Q,S1)

}
. (2.3)

The formula (2.3) applies whenever both sets, S1 and S2, intersect the window R. If only one
set, say S1, intersects R, we modify (2.3) as follows:

distH(S1, S2;R) = sup
P∈S1∩R

dist(P, S2). (2.4)

A similar modification is used if only S2 intersects R. If neither set intersects the window
R, we simply set distH(S1, S2;R) = 0 (because we “see” two empty sets, which are not
distinguishable).

We now define our notion of convergence for a sequence of sets.

Definition 2.1. Let Sn ⊂ R
2 be some sets and S ⊂ R

2 another set. We say that the sequence
Sn converges to S if for any finite window R we have

distH(Sn, S;R) −→ 0 as n −→ ∞. (2.5)
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In this definition the use of finite windows is crucial; hence we will call the resulting
notion Window convergence, or W convergence, for short. According to this definition, the
sequence of lines Ln in the above example indeed converges to the limit line L.

For finite-size (bounded) objects, like circles or ellipses, the W-convergence is
equivalent to the convergence with respect to the Hausdorff distance. However for
unbounded objects, such as lines and hyperbolas, we have to use our window-restricted
Hausdorff distance and formula (2.5).

Our definition of convergence (i.e., W-convergence) is intuitively clear, but some
complications may arise if it is used too widely. For example, if the limit object S is not
necessarily closed, then the same sequence {Sn} may have more than one limit S (though
the closure S of every limit set Swill be the same). Thus, from now on, to avoid pathological
situations, we will assume that all our sets S ⊂ R

2 are closed. All the standardmodel objects—
lines, circles, ellipses, hyperbolas—are closed.

Convergence induces topology in the collection of all closed sets S ⊂ R
2, which we

denote by X. A set Y ⊂ X is closed if for any sequence of sets Sn ∈ Y converging to a limit set
S the limit set also belongs to Y , that is, S ∈ Y . A set U ⊂ X is open if its complement X \U is
closed.

The above topology on X is metrizable. This means we can define a metric on X, that
is, a distance between closed sets in R

2, in such a way that the W-convergence Sn → Smeans
exactly that the distance between Sn and S goes down to zero. Such a distance can be defined
in many ways; here is one of them.

Definition 2.2. The W distance (or Window distance) between two closed sets S1 and S2 ⊂ R
2 is

defined as follows:

distW(S1, S2) =
∞∑

k=1

2−kdistH(S1, S2;Rk), (2.6)

where Rk is a square window of size 2k × 2k, that is, Rk = {|x| ≤ k, |y| ≤ k}.

In this formula, we use a growing sequence of nested windows and the Hausdorff
distances between S1 and S2 within those windows balanced by the factors 2−k. In the formula
(2.6), the first nonzero term corresponds to the smallest window Rk that intersects at least
one of the two sets, S1 or S2. The sum in (2.6) is always finite. Indeed, let us suppose, for
simplicity, that both S1 and S2 intersect each window Rk. Then (since the distance between
any two points in Rk is at most 2

√
2k) the above sum is bounded by 2

√
2
∑∞

k=1 k2
−k < 6.

3. Continuity of Objective Function

Recall finding the best-fitting object S for a given set of points P1, . . . , Pn ∈ R
2 consists of

minimization of the objective function (1.1).
Let M denote the collection of model objects. We put no restrictions on M other than

all S ∈ M are assumed to be closed sets. The collection M is then a subset of the space X of all
closed subsets S ⊂ R

2. The topology and metric on X defined above now induce a topology
and metric on M.
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Redundancy Principle

If an object S′ ∈ M is a subset of another object S ∈ M, that is, S′ ⊂ S, then for any point P
we have dist(P, S) ≤ dist(P, S′); thus S′ cannot fit any set of data points better than S does.
So for the purpose of minimizing F, that is, finding the best-fitting object, we may ignore all
model objects that are proper subsets of other model objects (they are redundant). This may
reduce the collection M somewhat. Such a reduction is not necessary, it is just a matter of
convenience, and we will occasionally apply it below.

Conversely, there is no harm in considering any subset S′ ⊂ S of an object S ∈ M as a
(smaller) object, too. Indeed, if S′ provides a best fit (i.e., minimizes the objective function F),
then so does S, because F(S) ≤ F(S′). Hence including S′ into the collection M will not really
be an extension of M, its inclusion will not change the best fit.

Theorem 3.1 (continuity of F). For any given points P1, . . . , Pn and any collection M of model
objects the function F defined by (1.1) that is continuous on M. This means that if a sequence of
objects Sm ∈ M converges (i.e., W converges) to another object S ∈ M, then F(Sm) → F(S).

Proof. Since F(S) is the sum of squares of distances dist(Pi, S) to individual points Pi, see
(1.1), it is enough to verify that the distance dist(P, S) is a continuous function of S for any
given point P .

Suppose P ∈ R
2 and a sequence of closed sets Sm W converging to a closed set S. We

denote by Q ∈ S the point in S closest to P , that is, such that dist(P,Q) = dist(P, S); such a
pointQ exists because S is closed. Denote byD the disk centered on P of radius 1+dist(P,Q);
it contains Q. Let R be a window containing the disk D.

Since R contains Q, it intersects with S, that is, R ∩ S/= ∅. This guarantees that
distH(Sm, S;R) → 0. Thus, there are points Qm ∈ Sm such that Qm → Q. Since dist(P, Sm) ≤
dist(P,Qm), we conclude that the upper limit of the sequence dist(P, Sm) does not exceed
dist(P, S), that is,

lim sup dist(P, Sm) ≤ dist(P, S). (3.1)

On the other hand, we will show that the lower limit of the sequence dist(P, Sm) cannot be
smaller than dist(P, S), that is,

lim inf dist(P, Sm) ≥ dist(P, S). (3.2)

The estimates (3.1) and (3.2) together imply that dist(P, Sm) → dist(P, S), as desired, and
hence the distance function dist(P, S)will be continuous on M. It remains to prove (3.2).

To prove (3.2) we assume that it is false. Then there is a subsequence Smk in our
sequence of sets Sm such that

lim
k→∞

dist(P, Smk) = lim inf dist(P, Sm) < dist(P, S). (3.3)

Denote by Qm ∈ Sm the point in Sm closest to P , that is, such that dist(P,Qm) = dist(P, Sm).
Then we have

lim
k→∞

dist(P,Qmk) = lim
k→∞

dist(P, Smk) < dist(P, S) = dist(P,Q). (3.4)
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Since the points Qmk are closer to P than the point Q is, we have Qmk ∈ D ⊂ R. Recall that
distH(Sm, S;R) → 0, hence

dist(Qmk , S) −→ 0 as k −→ ∞. (3.5)

Denote by Hmk ∈ S the point in S closest to Qmk , that is, such that dist(Qmk ,Hmk) =
dist(Qmk , S). Now we have, by triangle inequality,

dist(P, S) ≤ dist(P,Hmk) ≤ dist(P,Qmk) + dist(Qmk ,Hmk)

= dist(P,Qmk) + dist(Qmk , S).
(3.6)

The limit of the first term on the right hand side of (3.6) is < dist(P, S) by (3.4), and the limit
of the second term is zero by (3.5). This implies dist(P, S) < dist(P, S), which is absurd. The
contradiction proves (3.2). And the proof of (3.2) completes the proof of the theorem.

4. Existence of the Best Fit

The best-fitting object Sbest ∈ M corresponds to the (global) minimum of the objective
function F, that is, Sbest = argminS∈MF(S). The function F defined by (1.1) cannot be
negative; thus, it always has an infimum

F0 = inf
S∈M

F(S). (4.1)

This means that one cannot find objects S ∈ M such that F(S) < F0, but one can find objects
S ∈ M such that F(S) is arbitrarily close to F0. More precisely, there is a sequence of objects
Sm such that F(Sm) > F0 for each m and F(Sm) → F0 as m → ∞.

In practical terms, one usually runs a computer algorithm that executes a certain
iterative procedure. It produces a sequence of objects Sm (here m denotes the iteration
number) such that F(Sm) < F(Sm−1); that is, the quality of approximations improves at every
step. If the procedure is successful, the value F(Sm) converges to the minimal possible value,
F0, and the sequence of objects Sm converges (i.e., W-converges) to some limit object S0. Then
the continuity of the objective function F (proven earlier) guarantees that F(S0) = F0; that
is, S0 indeed provides the global minimum of the objective function, so it is the best-fitting
object S0 = Sbest.

A problem arises if the limit object S0 does not belong to the given collection M;
hence it is not admissible. Then we end up with a sequence of objects Sm, each of which
fits (approximates) the given points better than the previous one, but not as good as the next
one. None of them would qualify as the best fit, and in fact the best fit would not exist, so the
fitting problem would have no solution.

Illustrative Example

Suppose that our model objects are circles, and our given points are P1 = (−1, 0), P2 = (0, 0)
and P3 = (1, 0). Then the sequence of circles Sm defined by x2+(y−m)2 = m2 will fit the points
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Figure 2: Sequence of circles and the limit line.

progressively better (tighter) as m grows, so that F(Sm) → 0 as m → ∞ (Figure 2). On
the other hand, no circle can pass through three collinear points; hence no circle S satisfies
F(S) = 0. Thus the circle-fitting problem has no solution.

The above sequence of circles Sm converges (in our terms, W-converges) to the x axis,
which is a line, so it is natural to declare that line “the best fit.” This may not be satisfactory in
some practical applications, where one really needs to produce an estimate of the circle’s
center and radius. But if we want to present the best-fitting object here, it is clearly and
undeniably the line y = 0.

Thus, in order to guarantee the existence of the best-fitting object in all cases, we need
to include in our collection M all objects that can be obtained as limits of sequences of objects
from M. Such “limit objects” are called limit points of M, in the language of topology.

Definition 4.1. A collection M which already contains all its “limit points” is said to be closed. If
the collection M is not closed, then an extended collection M that includes all the limit points
of M is called the closure of M.

For example, the collection ML of all lines in R
2 is closed, as a sequence of lines can

only converge to a line. The collection MC of all circles in R
2 is not closed, as a sequence of

circles may converge to a line. The closure of the collection of circles MC includes all circles
and all lines, that is,

MC = MC ∪ ML. (4.2)

(Strictly speaking, a sequence of circles may also converge to a single point, see Section 5, so
singletons need to be included too.)

We see that the collection M of model objects must be closed if we want the best-fitting
object to exist in all cases. If M is not closed, we have to extend it by adding all its limit points
and thus make it closed.

Theorem 4.2 (existence of the best fit). Suppose that the given collection M of model objects is
closed. Then for any given points P1, . . . , Pn there exists the best-fitting object Sbest ∈ M, that is, the
objective function F attains its global minimum on M.

Proof. The key ingredients of our proof will be the continuity of the objective function F and
the compactness of a restricted domain of that function. We recall that a continuous real-valued
function on a compact set always takes its maximum value and its minimumvalue on that set.
In metric spaces (like our M), a subset M0 ⊂ M is compact if every sequence of its elements
Sm ∈ M0 has a subsequence Smk that converges to another element S ∈ M0, that is, Smk → S
as k → ∞.

We recall that our objective function F is continuous, and its domain M is now
assumed to be closed. If it was compact, the above general fact would guarantee that F had
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a global minimum, as desired. But in most practical settings M is not compact. Indeed, if it
was compact, the function Fwould not only have a minimum, but also a maximum. And this
is usually impossible; one can usually findmodel objects arbitrarily far from the given points,
thus making the distances from the points to the object arbitrarily large. Thus we need to find
a smaller (restricted) subcollection M0 ⊂ M which will be compact, and then we will apply
the above general fact.

LetDr = {x2 +y2 ≤ r2} denote the disk of radius r centered on the origin (0, 0). We can
find a large enough disk Dr that satisfies two conditions: (i) Dr covers all the given points
P1, . . . , Pn and (ii)Dr intersects at least one object S0 ∈ M, that is,D∩S0 /= ∅. The distances from
the given points to S0 cannot exceed the diameter of Dr , which is 2r, hence F(S0) ≤ (2r)2n.

Now we define our subcollection M0 ⊂ M; it consists of all model objects S ∈ M that
intersect the larger diskD3r of radius 3r. Objects that lie entirely outsideD3r are not included
in M0. Note that the subcollection M0 contains at least one object (S0 mentioned above); hence
M0 is not empty.

Recall that all our given points P1, . . . , Pn lie in Dr . They are separated from the region
outside the larger disk D3r by a “no man’s land”—the ring D3r \Dr , which is 2r wide. Thus
the distances from the given points to any object S which was not included in M0 are greater
than 2r; hence for such objects we have F(S) > (2r)2n. So objects not included in M0 cannot
fit our points better than S0 does. Thus they can be ignored in the process of minimization of
F. More precisely, if we find the best-fitting object Sbest within the subcollection M0, then for
any other object S ∈ M \ M0 we will have

F(S) > (2r)2n ≥ F(S0) ≥ F(Sbest), (4.3)

which shows that Sbest will be also the best-fitting object within the entire collection M.
It remains to verify that the subcollection M0 is compact; that is, every sequence of

objects Sm ∈ M0 has a subsequence converging to another object S∗ ∈ M0. We will use the
following standard fact. In a compact metric space any sequence of compact subsets has a
convergent subsequence with respect to the Hausdorff metric.

Now let j = [3r] + 1 be the smallest integer greater than 3r. Recall that all the objects
in M0 are required to intersect D3r ; thus, they all intersect Dj as well. The sets Sm ∩ Dj

are compact. By the above general fact, there is a subsequence S
(j)
k in the sequence Sm and

a compact subset S∗
j ⊂ Dj such that distH(S

(j)
k

∩ Dj, S
∗
j ) → 0 as k → ∞. Next, from the

subsequence S
(j)
k we extract a subsubsequence, call it S(j+1)

k that converges in the larger disk

Dj+1; that is, such that distH(S
(j+1)
k

∩ Dj+1, S
∗
j+1) → 0 as k → ∞ for some compact subset

S∗
j+1 ⊂ Dj+1. Since distH(S

(j+1)
k ∩Dj, S

∗
j ) → 0, we see that S∗

j+1 ∩Dj = S∗
j ; that is, the limit sets

S∗
j and S∗

j+1 “agree” within Dj .
Then we continue this procedure inductively for the progressively larger disks

Dj+2, Dj+3, . . .. In the end we use standard Cantor’s diagonal argument to construct a single
subsequence Smk such that for every i ≥ j we have distH(Smk ∩ Di, S

∗
i ) → 0 as k → ∞, and

the limiting subsets S∗
i ⊂ Di “agree” in the sense S∗

i+1 ∩Di = S∗
i for every i ≥ j. Then it follows

that the sequence of objects Smk converges (i.e., W converges) to the closed set S∗ = ∪i≥jS∗
i .

The limit set S∗ must belong to our collection M because that collection was assumed to be
closed. Lastly, S∗ intersects the disk D3r , so it also belongs to the subcollection M0. Our proof
is now complete.
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5. Some Popular Models

Lines and Planes

The most basic (and oldest) fitting application is fitting lines in 2D. The model collection ML

consists of all lines L ⊂ R
2. It is easy to see that a sequence of lines Lm can only converge to

another line; hence, the collection ML of lines is closed. This guarantees that the fitting problem
always has a solution.

Similarly, the collection of lines in 3D is closed. The collection of planes in 3D is closed,
too. Thus the problems of fitting lines and planes always have a solution. The same is true for
the problem of fitting k-dimensional planes in a d-dimensional space R

d for any 1 ≤ k < d.

Circles and Spheres

A less-trivial task is fitting circles in 2D. Now the model collection MC consists of all circles
C ⊂ R

2. A sequence of circles Cm can converge to an object of three possible types: a
circle C0 ⊂ R

2, a line L0 ⊂ R
2, or a single point (singleton) P0 ∈ R

2. Singletons can be
regarded as degenerate circles (whose radius is zero), or they can be ignored based on the
redundancy principle introduced in Section 3. But the lines are objects of a different type; thus,
the collection MC of circles is not closed.

As a result, the circle fitting problem does not always have a solution; a simple example
was given in Section 4. In order to guarantee the existence of the best-fitting object, one needs
to extend the given collection MC by adding all its “limit points,” in this case-lines. The
extended collection will include all circles and all lines, that is,

MC = MC ∪ ML. (5.1)

Now the (extended) circle fitting problem always has a solution; for any data points P1, . . . , Pn

there is a best-fitting object Sbest ∈ MC that minimizes the sum of squares of the distances to
P1, . . . , Pn. One has to keep in mind, though, that the best-fitting object may be a line, rather
than a circle.

The problem of fitting circles to data points has been around since the 1950’s [13].
Occasional nonexistence of the best-fitting circle has been first noticed empirically; see,
for example, Berman and Culpin [22]. The first theoretical analysis of the non-existence
phenomenon was done by Nievergelt [21] who traced it to the noncompactness of the
underlying model space and concluded that lines needed to be included in the model
space to guarantee the existence of the best fit. He actually studied this phenomenon in
many dimensions, so he dealt with hyperspheres and hyperplanes. He called hyperplanes
“generalized hyperspheres.” Similar analysis and conclusions, for circles and lines, were
published later, independently, by Chernov and Lesort [23] and by Zelniker and Clarkson
[24]; see also a recent book [4].

Ellipses

A popular task in computer vision is fitting ellipses. Now the model collection ME consists
of all ellipses E ⊂ R

2. A sequence of ellipses Em may converge to an object of many possible
types: an ellipse, a parabola, a line, a pair of parallel lines, a segment of a line, a half-line (a
ray); see Figure 3.
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Ellipses

Parabola
Parallel lines

Line segment Half-line

Figure 3: Sequences of ellipses converging to various limit objects.

Line segments can be regarded as degenerate ellipses whose minor axis is zero.
Alternatively, line segments and half-lines can be ignored based on the redundancy principle
(Section 3). Thus we have lines, pairs of parallel lines, and parabolas as limit objects of
different types.

We see that the collection ME of ellipses is not closed. As a result, the ellipse-fitting
problem does not always have a solution. For example, this happens when given points that
are placed on a line or on a parabola. (Actually, there are manymore examples; see Section 6.)

In order to guarantee the existence of the best-fitting object, one needs to extend the
collection ME of ellipses by adding all its “limit points,” in this case—lines, pairs of parallel
lines, and parabolas. We denote that extended collection by ME that

ME = ME ∪ ML ∪ M‖ ∪ M∪, (5.2)

where M‖ denotes the collection of pairs of parallel lines, and M∪ the collection of parabolas
(the symbol ∪ resembles a parabola).

Now the (extended) ellipse-fitting problem always has a solution, for any data points
P1, . . . , Pn there will be a best-fitting object Sbest ∈ ME that minimizes the sum of squares of
the distances to P1, . . . , Pn. One has to keep in mind, though, that the best-fitting object may
be a line, or a pair of parallel lines, or a parabola, rather than an ellipse.

The ellipse fitting problem has been around since the 1970s. The need to deal with
limiting cases was first notice by Bookstein [16] who wrote “The fitting of a parabola is
a limiting case, exactly transitional between ellipse and hyperbola. As the center of ellipse
moves off toward infinity while its major axis and the curvature of one end are held
constant. . ..” A first theoretical analysis on the non-existence of the best ellipse was done by
Nievergelt in [25] who traced it to the noncompactness of the underlying model space and
concluded that parabolas needed to be included in themodel space to guarantee the existence
of the best fit.

Conics

We now turn to a more general task of fitting quadratic curves (also known as conic sections,
or simply conics). Now the model collection MQ consists of all nondegenerate quadratic
curves, by which we mean ellipses, parabolas, and hyperbolas. A sequence of conics may
converge to an object of many possible types: a conic, a line, a line segment, a ray, two
opposite rays, and a pair of parallel lines, and a pair of intersecting lines; see Figures 3 and 4.
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Two opposite half-lines

Hyperbolas

Intersecting
lines

Hyperbolas

Figure 4: Sequences of hyperbolas converging to various limit objects.

Every line segment, ray, and two opposite rays are a part (subset) of a full line, so these
objects can be ignored based on the redundancy principle (Section 3). But pairs of parallel
lines and pairs of intersecting lines constitute limit objects of new types. We see that the
collection MQ of quadratic curves (conics) is not closed. As a result, the conic fitting problem
does not always have a solution.

In order to guarantee the existence of the best-fitting object, one needs to extend the
collection MQ of quadratic curves by adding all its “limit points”—pairs of lines (which may
be intersecting, parallel, or coincident)

MQ = MQ ∪ MLL, (5.3)

where MLL denotes the collection of pairs of lines.
Now the (extended) conic fitting problem always has a solution; for any data points

P1, . . . , Pn there is a best-fitting object Sbest ∈ MQ that minimizes the sum of squares of the
distances to P1, . . . , Pn. One has to keep in mind, though, that the best-fitting object may be a
pair of lines, rather than a genuine conic.

6. Sufficient and Deficient Models

We see that if the collection M of adopted model objects is not closed, then in order to
guarantee the existence of the best fit we have to close it up, that is, add to M all objects
that are obtained as limits of existing objects. The new, extended collection M will be closed
and will always provide the best fit. Here we discuss practical implications of extending M.

Definition 6.1. The original objects S ∈ M are called primary objects and the objects that have
been added, that is, S ∈ M \ M are called secondary objects.

The above extension of M by secondary objects, though necessary, may not be
completely harmless. Suppose again that one needs to fit circles to observed points. Since
the collection of circles MC is not closed, one has to add lines to it. That is, one really has to
operate with the extended collection MC = MC ∪ ML in which circles are primary objects and
lines are secondary objects. The best-fitting object to a given set of points will then belong to
MC; hence occasionally it will be a line, rather than a circle.

In practical applications, though, a line may not be totally acceptable as the best-fitting
object. For example, if one needs to produce an estimate of the circle’s radius and center, a
line will be of little help; it has no radius or center. Thus, when a secondary object happens to
be the best fit to the given data points, various unwanted complications may arise.

Next we investigate how frequently such unwanted events occur.
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In most applications points are obtained (measured or observed) with some random
noise. The noise has a probability distribution, which in statistical studies is usually assumed
to be normal [3, 4]. For our purposes it is enough to just assume that given points P1, . . . , Pn

have an absolutely continuous distribution:

Assumption 6.2. The points P1, . . . , Pn are obtained randomly with a probability distribution
that has a joint probability density ρ(x1, y1, . . . , xn, yn) > 0.

Let us first see how frequently the best-fitting circle fails to exist under this assumption.
We begin with the simplest case of n = 3 points. If they are not collinear, then they can be
interpolated by a circle. If they are collinear (and distinct), there is no interpolating circle, so
the best fit is achieved by a line. The three points (xi, yi), 1 ≤ i ≤ 3 are collinear if and only if

(x1 − x2)
(
y1 − y3

)
= (x1 − x3)

(
y1 − y2

)
. (6.1)

This equation defines a hypersurface in R
6. Under the above assumption, the probability

of that hypersurface is zero; that is, the collinearity occurs with probability zero. In simple
practical terms, it is “impossible,” it “never happens.” If we generate three data points by
using a computer random number generator, we will practically never see collinear points.
All our practical experience tells us; the best-fitting circle always exists. Perhaps for this reason
the circle-fitting problem is usually studied without including lines in the collection of model
objects.

In the case of n > 3 data points, the best-fitting circle fails to exist when the points are
collinear, but there are other instances too. For example, let n = 4 points be at (0, 1), (0,−1),
(A, 0), and (−B, 0) for some large A,B � 1. Then it is not hard to check, by direct inspection,
that the best-fitting circle fails to exist, and the best fit is achieved by the line y = 0.

It is not easy to describe all sets of points for which the best-fitting circle fails to exist,
but such a description exists—it is given in [4] (see Theorem 8 on page 68 there). We skip
technical details, only state the final conclusion; for every n > 3, the best-fitting circle exists
unless the (2n)-vector (x1, y1, . . . , xn, yn) belongs to a certain algebraic submanifold in R

2n.
So, under our assumption, the best-fitting circle exists with probability one.

In other words, no matter how large or small the data set is, the best-fitting circle
will exist with probability one, so practically we never have to resort to secondary objects
(lines); that is, we never have to worry about existence. The model of circles is adequate and
sufficient; it does not really require an extension.

Definition 6.3. We say that a collection M of model objects is sufficient (for fitting purposes) if
the best-fitting object Sbest exists with probability one under the above assumption. Otherwise
the model collection will be called deficient.

We note that under our assumption an event occurs with probability zero if and only
if it occurs on a subset A ⊂ R

2n of Lebesgue measure zero, that is, Leb(A) = 0. Therefore, our
notion of sufficiency does not depend on the choice of the probability density ρ.

As we have just seen, the collection of circles is sufficient for fitting purposes. Next we
examine the model collection ME of ellipses E ⊂ R

2. As we know, this collection is not closed;
its closure must include all lines, pairs of parallel lines, and parabolas.
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Ellipses

Let us see how frequently the best-fitting ellipse fails to exist. It is particularly easy to deal
with n = 5 data points. For any set of distinct 5 points in a general linear position (which
means that no three points are collinear), there exists a unique quadratic curve (conic)
that passes through all of them (i.e., interpolates them). That conic may be an ellipse, or a
parabola, or a hyperbola. If 5 points are not in generic linear position (i.e., at least three of
them are collinear), then they can be interpolated by a degenerate conic (a pair of lines).

If the interpolating conic is an ellipse, then obviously that ellipse is the best fit (the
objective function takes it absolute minimum value, zero). What if the interpolating conic is
a parabola or a pair of parallel lines? Then it is a secondary object in the extended model
(5.2), and we have an unwanted event; a secondary object provides the best fit. We remark,
however, that this event occurs with probability zero, so it is not a real concern. But there are
other ways in which unwanted events occur, see below.

Suppose that the interpolating conic is a hyperbola or a pair of intersecting lines. Now
the situation is less clear, as such an interpolating conic would not belong to the extended
collection ME; see (5.2). Is it possible then that the best-fitting object Sbest ∈ ME is an ellipse?
The answer is “no”, and our argument is based on the following theorem that is interesting
itself:

Theorem 6.4 (no local minima for n = 5). For any set of five points the objective function F has no
local minima on conics. In other words, for any non interpolating conic S there exist other conics S′,
arbitrarily close to S, which fit our data points better than S does, that is, F(S′) < F(S).

The proof is given in the appendix, and here we answer the previous question.
Suppose n = 5 points are interpolated by a hyperbola or a pair of intersecting lines. If there
were a best-fitting ellipse Ebest ∈ ME, then no other ellipse could provide a better fit; that is,
for any other ellipse E ∈ ME we would have F(E) ≥ F(Ebest), which contradicts the above
theorem. Thus the best-fitting object Sbest ∈ ME is not an ellipse but a secondary object (a
parabola, or a line, or a pair of parallel lines), that is, an unwanted event occurs.

One can easily estimate the probability of the above unwanted event numerically. For
a given probability distribution one can generate random samples of n = 5 points and for
each sample find the interpolating conic (by elementary geometry). Every time that conic
happens to be other than an ellipse, an unwanted event occurs; that is, the best fit fromwithin
the collection (5.2) is provided by a secondary object.

We have run the above experiment with a standard normal distribution, where each
coordinate xi and yi (for i = 1, . . . , 5) was generated independently according to a standard
normal law N(0, 1). We found that the random points were interpolated by an ellipse with
probability 22% and by a hyperbola with probability 78%. (Other conics, including parabolas,
never turned up; in fact, it is not hard to prove that they occur with probability zero.) This is
a striking result; hyperbolas actually dominate over ellipses! Thus the best-fitting ellipse fails
to exist with a probability as high as 78%.

We note that this percentage will remain the same if we generate points (xi, yi)
independently according to any other 2D normal distribution. Indeed, any 2D normal
distribution can be transformed to a standard 2D normal distribution by a linear map of
the plane R

2. Now under linear transformations conics are transformed to conics, and their
types are preserved (i.e., ellipses are transformed to ellipses, hyperbolas to hyperbolas, etc.).
Therefore the type of the interpolating conic cannot change.
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Table 2: Percentage (%) of randomly generated samples of n points for which the best-fitting ellipse exists.

Distribution n = 5 n = 6 n = 8 n = 10 n = 20 n = 50
Normal V1 22 23 23 24 27 27
Normal V2 22 22 24 26 27 33
Square [0, 1] × [0, 1] 28 32 40 46 52 60
Rectangle [0, 2] × [0, 1] 28 29 28 30 31 32

In another experiment we sampled points from the unit square [0, 1] × [0, 1] with a
uniform distribution; that is, we selected each coordinate xi and yi independently from the
unit interval [0, 1]. In this experiment ellipses turned upwith probability 28% and hyperbolas
with probability 72%, again an overwhelming domination of hyperbolas!

And again, these percentages will remain the same if we generate points (xi, yi)
according to any other rectangular (uniform) distribution. Indeed, any rectangle can be
transformed to the square [0, 1] × [0, 1] by a linear map of the plane, and then the same
argument as before applies.

We also conducted numerical tests for n > 5 points. In these tests we generated
points P1, . . . , Pn, independently according to four predefined distributions: normal with
covariance matrix V1 =

[
1 0
0 1

]
, normal with covariance matrix V2 =

[
4 0
0 1

]
, uniform in the

square [0, 1] × [0, 1], uniform in the rectangle [0, 2] × [0, 1]. Table 2 shows the percentage of
randomly generated samples of n points for which the best-fitting ellipse exists.

We see that in most cases the best-fitting ellipse fails to exist with a high probability.
Only for the uniform distribution is the square [0, 1] × [0, 1] the failures decrease as n → ∞,
and apparently the probability of existence of the best-fitting ellipse grows to 100%. We will
explain this in Section 7.

We note that for n ≥ 6 points there is no interpolating conic, so one has to find a global
minimum ofF via an extensive search over the model space MQ of conics. This is a very time-
consuming procedure and its results are never totally reliable. Thus our estimates, especially
for larger n’s, are quite approximate, but we believe that they are accurate to within 5%.

Insufficiency of Ellipses

We conclude that the collection of ellipses is not sufficient for fitting purposes. This means that
there is a real chance that for a given set of data points no ellipse could be selected as the best
fit to the points; that is, the ellipse-fitting problemwould have no solution. More precisely, for
any ellipse E there will be another ellipse E′ providing a better fit, in the sense F(E′) < F(E).
If one constructs a sequence of ellipses that fit the given points progressively better and on
which the objective function F converges to its infimum, then those ellipses will grow in size
and converge to something different than an ellipse (most likely, to a parabola).

In practical terms, one usually runs a computer algorithm that executes an iterative
procedure such as Gauss-Newton or Levenberg-Marquardt. It produces a sequence of ellipses
Em (here m denotes the iteration number) such that F(Em) < F(Em−1); that is, the quality of
approximations improves at every step, but those ellipses would keep growing in size and
approach a parabola. This situation commonly occurs in practice [16, 25, 26], and one either
accepts a parabola as the best fit or choose an ellipse by an alternative procedure (e.g., by
sirect ellipse fit [27]).

We see that whenever the best-fitting ellipse fails to exist, the ellipse-fitting procedure
will attempt to move beyond the collection of ellipses, so it will end up on the border of
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that collection and then return a secondary object (a parabola or a pair of lines). In a sense,
the scope of the collection of ellipses is too narrow for fitting purposes. In other words,
this collection is deficient, or badly incomplete. Its deficiency indicates that it should be
substantially extended for the fitting problem to have a reasonable (adequate) solution with
probability one.

Conics

Such an extension is achieved by the collection of all conics (ellipses, hyperbolas, and
parabolas) denoted by MQ; see Section 5. If one searches for the best-fitting object Sbest in
the entire collection of conics, then Sbest will exist with probability one. This was confirmed
in numerous computer experiments that we have conducted. In fact, the best-fitting object
has always been either an ellipse or hyperbola, so parabolas apparently can be excluded.
Thus our numerical tests strongly suggest that the collection MEH = ME ∪MH of ellipses, and
hyperbolas is sufficient (though we do not have a proof).

7. Generalizations

In the basic formula (1.1) all the n points make equal contributions toF. In some applications,
though, one needs to minimize a weighted sum

Fw(S) =
n∑

i=1

wi[dist(Pi, S)]
2, (7.1)

for some fixed wi > 0. This problem is known as weighted least squares. All our results on the
existence of the best fit apply to it as well.

More generally, given a probability distribution dP(x, y) on R
2, one can “fit” an object

S to it (or approximate it) by minimizing

FP (S) =
∫∫

d2(x, y
)
dP

(
x, y

)
, (7.2)

where d(x, y) = dist[(x, y), S]. Note that (7.1) is a particular version of (7.2) in which dP is a
discrete measure with a finite support. In order to guarantee the finiteness of the integral in
(7.2) one needs to assume that the distribution dP has finite second moments. After that all
our results apply.

The generalization (7.2) is relevant to the numerical tests described in Section 6.
Suppose again that n points are selected independently according to a probability distribution
dP(x, y) on R

2. As n grows, due to the law of large numbers of probability theory that the
normalized objective function (1/n)F converges exactly to the integral (7.2).

Now the global minimum of the function FP (S) would give us the best-fitting object
corresponding to the given probability distribution dP, whichwould be the best “asymptotic”
fit to a random sample of size n selected from the distribution dP, as n → ∞. This relation
helps us explain some experimental results reported in Section 6.
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Fitting object Value ofF

Best ellipse (either of the two)

Best circle (of radius 0.38265)

Two diagonals of the square

0.02001

0.02025

0.02083

Figure 5: The best fit to a uniform distribution in a square.

Suppose that dP is a uniform distribution in a rectangle R = [0, L] × [0, 1]. Then the
integral in (7.2) becomes

FP (S) = L−1
∫L

0

∫1

0
d2(x, y

)
dy dx. (7.3)

We have computed it numerically in order to find the best-fitting conic S. The results are
given below.

Perfect Square (R = [0, 1] × [0, 1])

One would naturally expect that the best fit to a mass uniformly distributed in a perfect
square would be either a circle or a pair of lines (say, the diagonals of the square).

What we found was totally unexpected; the best-fitting conic is an ellipse! Its center
coincides with the center of the square, and its axes are aligned with the sides of the square,
but its axes are different; the major axis is 2a = 0.9489 and the minor axis is 2b = 0.6445
(assuming that the square has unit side). In fact, there are exactly two such ellipses; one
is oriented horizontally and the other—vertically; see the left panel of Figure 5. These two
ellipses beat any circle and any pair of lines (see the table in Figure 5); they provide the global
minimum of the objective function (7.3).

The fact that the best-fitting conic to amass distributed in a square is an ellipse explains
why for large samples generated from the uniform distribution in a square ellipses dominate
over hyperbolas (Section 6).

As the rectangle R gets extended horizontally, that is, as L > 1 increases the best-fitting
conic changes. We found that for L < L1 ≈ 1.2, the best-fitting conic is still an ellipse (though
it gets elongated compared to the one found for the square, when L = 1). But for L > L1, the
best-fitting conic abruptly changes from an ellipse to a pair of parallel lines. Those two lines
are running through the rectangle horizontally; their equations are y = 0.25 and y = 0.75 (See
Figure 6).

This fact might explain why for longer rectangles, such as R = [0, 2] × [0, 1] used in
Section 6, the percentage of samples for which the best-fitting ellipse exists does not grow
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L > 1.21 < L < 1.2

Figure 6: The best fit to a uniform distribution in a rectangle.

much as n increases. Though it remains unclear which type of conics (ellipses or hyperbolas)
dominates for large samples taken from longer rectangles [0, L] × [0, 1] with L > L1.

8. Megaspace

Our conclusions can be illustrated by an interesting construction in a multidimensional space
“megaspace”. It was first used by Malinvaud [28, Chapter 10] and then by Chernov [4,
Sections 1.5 and 3.4].

Recall that given n data points P1 = (x1, y1), . . ., Pn = (xn, yn) and a model object S
(a closed subset of R

2), our objective function F(S) is defined by (1.1) and for the distances
dist(Pi, S)we can write

[dist(Pi, S)]
2 = min

(x′
i ,y

′
i)∈S

{(
xi − x′

i

)2 +
(
yi − y′

i

)2}
. (8.1)

Thus we can express the objective function F(S) as follows:

F(S) = min

{
n∑

i=1

[(
xi − x′

i

)2 +
(
yi − y′

i

)2];
(
x′
i, y

′
i

) ∈ S ∀i
}
. (8.2)

Now let us represent the n data points P1 = (x1, y1), . . . , Pn = (xn, yn) by one point
(“megapoint”) P in the 2n-dimensional space R

2n with coordinates x1, y1, . . . , xn, yn. For the
given object S, let us also define a multidimensional set “megaset” MS ⊂ R

2n as follows:

P′ =
(
x′
1, y

′
1, . . . , x

′
n, y

′
n

) ∈ MS ⇐⇒ (
x′
i, y

′
i

) ∈ S ∀i. (8.3)

Note that
∑n

i=1[(xi − x′
i)
2 + (yi − y′

i)
2] in (8.2) is the square of the distance from P to P′ ∈ MS,

in the megaspace R
2n. Therefore consider

F(S) = min
P′∈MS

[
dist

(P,P′)]2 = [dist(P,MS)]
2. (8.4)
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Next given a collection M of model objects we define a large megaset M(M) ⊂ R
2n as follows:

M(M) = ∪S∈MMS. Alternatively, it can be defined as

(
x′
1, y

′
1, . . . , x

′
n, y

′
n

) ∈ M(M) ⇐⇒ ∃S ∈ M :
(
x′
i, y

′
i

) ∈ S ∀i. (8.5)

The best-fitting object Sbest minimizes the function F(S). Thus, due to (8.4), Sbest minimizes
the distance from the megapoint P representing the data set P1, . . . , Pn to the megaset M(M)
representing the collection M.

Thus, the problem of finding the best-fitting object Sbest reduces to the problem of
finding the megapoint P′ ∈ M(M) that is closest to the given megapoint P (representing the
given n points). In other words, we need to project the megapoint P onto the megaset M(M),
and the footpoint P′ of the projection would correspond to the best-fitting object Sbest.

We conclude that the best-fitting object Sbest ∈ M exists if and only if there exists a
megapoint P′ ∈ M(M) that is closest to the given megapoint P. It is a simple fact that given a
set D ⊂ R

d with d ≥ 1, the closest point X′ ∈ D to a given point X ∈ R
d exists for any X ∈ R

d

if and only if the set D is closed. Thus the existence of the best-fitting object Sbest requires
the megaset M(M) to be topologically closed. Again we see that the property of closedness is
vital for the fitting problem to have a solution for every set of data points P1, . . . , Pn.

Theorem 8.1 (closedness of megasets). If the model collection M is closed (in the sense of W
convergence), then the megaset M(M) is closed in the natural topology of R

2n.

Clearly, this theorem provides an alternative proof of the existence of the best-fitting
object, provided that the model collection M is closed.

Proof. Suppose a sequence of megapoints

P(k) =
(
x
(k)
1 , y

(k)
1 , . . . , x

(k)
n , y

(k)
n

)
, (8.6)

all belonging to the megaset M(M), converges, as k → ∞, to a megapoint

P(∞) =
(
x
(∞)
1 , y

(∞)
1 , . . . , x

(∞)
n , y

(∞)
n

)
(8.7)

in the usual topology of R
2n. Equivalently, for every i = 1, . . . , n the point (x(k)

i , y
(k)
i )

converges, as k → ∞, to the point (x(∞)
i , y

(∞)
i ). We need to show that P(∞) ∈ M(M).

Now for every k there exists a model object S(k) ∈ M that contains the n points
(x(k)

1 , y
(k)
1 ), . . . , (x(k)

n , y
(k)
n ). The sequence {S(k)} contains a convergent subsequence Skr , that

is, such that Skr → S as r → ∞ for some closed set S ⊂ R
2. (The existence of a convergent

subsequence can be verified by the diagonal argument as in the proof of the existence theorem
in Section 4.)

As we assumed that the collection M is closed, it follows that M contains the limit
object S, that is, S ∈ M. It is intuitively clear (and can be verified by a routine calculus-type
argument) that S contains all the limit points (x(∞)

1 , y
(∞)
1 ), . . . , (x(∞)

n , y
(∞)
n ). Therefore the limit

megapoint P(∞) belongs to the megaset M(M). This proves that the latter is closed.
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Megaset for Lines

Let ML consist of all lines in R
2. The corresponding megaset M(ML) ⊂ R

2n is described in [28,
Chapter 10]. A megapoint (x1, y1, . . . , xn, yn) belongs to M(ML) if and only if all the n planar
points (x1, y1), . . . , (xn, yn) belong to one line (i.e., they are collinear). This condition can be
expressed by Cn,3 algebraic relations as follow:

det
[
xi − xj yi − yj

xi − xk yi − yk

]
= 0 (8.8)

for all 1 ≤ i < j < k ≤ n. Each of these relations means that the three points (xi, yi), (xj , yj),
and (xk, yk) are collinear; cf. (6.1). All of these relations together mean that all the n points
(x1, y1), . . . , (xn, yn) are collinear.

Note that ML is specified by n − 2-independent relations; hence it is an (n + 2)-
dimensional manifold (algebraic variety) in R

2n. The relations (8.8) are quadratic, so ML is
a quadratic surface. It is closed in topological sense; hence the problem of finding the best-
fitting line always has a solution.

Megaset for Circles

Let MC consist of all circles in R
2. The correspondingmegasetM(MC) ⊂ R

2n is described in [4,
Section 3.4], and we briefly repeat it here. A megapoint (x1, y1, . . . , xn, yn) belongs to M(MC)
if and only if all the n planar points (x1, y1), . . . , (xn, yn) belong to one circle (we say that they
are “cocircular”). In that case all these points satisfy one quadratic equation of a special type
as follow:

A
(
x2 + y2

)
+ Bx + Cy +D = 0. (8.9)

This condition can be expressed by Cn,4 algebraic relations as follow:

det

⎡
⎢⎣
xi − xj yi − yj x2

i − x2
j + y2

i − y2
j

xi − xk yi − yk x2
i − x2

k + y2
i − y2

k

xi − xm yi − ym x2
i − x2

m + y2
i − y2

m

⎤
⎥⎦ = 0 (8.10)

for 1 ≤ i < j < k < m ≤ n. Note that (8.10) include megapoints satisfying (8.8); hence they
actually describe the union M(MC) ∪ M(ML).

The determinant in (8.10) is a polynomial of degree four, and M(MC) ∪ M(ML) is
an (n + 3)-dimensional algebraic variety (manifold) in R

2n defined by quartic polynomial
equations. Note that the dimension of M(MC) ∪ M(ML) is one higher than that of M(ML),
that is,

dim M(MC) ∪ M(ML) = dim M(ML) + 1. (8.11)

A closer examination shows that M(ML) plays the role of the boundary of M(MC), that is,
M(MC) terminates on M(ML). The megaset M(MC) is not closed, but if we add its boundary
M(ML) to it, it will become closed.
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Megaset for Ellipses

LetME consist of all ellipses in R
2. The correspondingmegasetM(ME) ⊂ R

2n can be described
in a similar manner as above. A point (x1, y1, . . . , xn, yn) belongs in M(ME) if and only
if all the n planar points (x1, y1), . . . , (xn, yn) belong to one ellipse (we say that they are
“coelliptical”). In that case all these points satisfy one quadratic equation of a general type as
follow:

Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0. (8.12)

This equation actually means that the points belong to one conic (either regular or
degenerate). This condition can be expressed by Cn,6 algebraic relations as follow:

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xi − xj yi − yj x2
i − x2

j y2
i − y2

j xiyi − xjyj

xi − xk yi − yk x2
i − x2

k
y2
i − y2

k
xiyi − xkyk

xi − xm yi − ym x2
i − x2

m y2
i − y2

m xiyi − xmym

xi − xl yi − yl x2
i − x2

l y2
i − y2

l xiyi − xlyl

xi − xr yi − yr x2
i − x2

r y2
i − y2

r xiyi − xryr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (8.13)

for 1 ≤ i < j < k < m < l < r ≤ n. Each of these relations means that the six points (xi, yi),
(xj , yj), (xk, yk), (xm, ym), (xl, yl), and (xr, yr) satisfy one quadratic equation of type (8.12);
that is, they belong to one conic (either regular or degenerate). All of these relations together
mean that all the n points (x1, y1), . . . , (xn, yn) satisfy one quadratic equation of type (8.12);
that is, they all belong to one conic (regular or degenerate). Therefore the relations (8.13)
describe a much larger megaset M(MConics) corresponding to the collection of all conics,
regular and degenerate, that is,

MConics = ME ∪ MH ∪ M∪ ∪ MLL (8.14)

using our previous notation.
The determinant in (8.13) is a polynomial of the eighth degree, and M(MConics) is a

closed (n + 5)-dimensional algebraic manifold in R
2n. It is mostly made of two big megasets:

M(ME) and M(MH) and they both are (n + 5)-dimensional. Other megasets (parabolas and
pairs of lines) have smaller dimensions and play the role of the boundaries of the bigger
megasets M(ME) and M(MH).

Illustrations

The structure of the megaset M(MConics) is schematically depicted in Figure 7, where it is
shown as the xy plane {z = 0} in the 3D space (the latter plays the role of the megaspace
R

2n). The positive half-plane H+ = {y > 0, z = 0} represents the elliptic megaset M(ME),
and the negative half-plane H− = {y < 0, z = 0} represents the hyperbolic megaset M(MH).
The x-axis {y = z = 0} separating these two half-planes represents the lower-dimensional
megasets M(M∪ ∪ MLL) in the decomposition (8.14). True, the real structure of M(MConics) is
much more complicated, but our simplified picture still shows its most basic features.
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Figure 7: Schematic illustration of the megaset M(MConics).

Now recall that finding the best-fitting conic corresponds to an orthogonal projection
of the given megapoint P in the megaspace R

2n (in our illustration, it would be a point
(x, y, z) ∈ R

3) onto the megaset M(MConics) (in our illustration—onto the xy plane). In
Figure 7 the point (x, y, z) is simply projected onto (x, y, 0). What are the chances that the
footpoint of the projection corresponds to a “boundary” object inM∪∪MLL (i.e., to a secondary
object)? Clearly, only the points of the xz plane {y = 0} are projected onto the line {y = z = 0}.
If the point (x, y, z) ∈ R

3 is selected randomly with an absolutely continuous distribution,
then a point on the xz plane would be chosen with probability zero. This fact illustrates the
sufficiency of the model collection of nondegenerate conics (even the sufficiency of ellipses
and hyperbolas alone, without parabolas); the best-fitting object will be a primary object with
probability one.

But what if our model collection consists of ellipses only, without hyperbolas? Then
in our illustration, the corresponding megaset would be the positive half-plane H+ = {y >
0, z = 0}. Finding the best-fitting ellipse would correspond to an orthogonal projection of the
given point (x, y, z) ∈ R

3 onto the positive half-plane H+ = {y > 0, z = 0}. Now if the given
point (x, y, z) has a positive y-coordinate, then it is projected onto (x, y, 0), as before, and we
get the desired best-fitting ellipse. But if it has a negative y-coordinate, then it is projected
onto (x, 0, 0), which is on the boundary of the half-plane, so we get a boundary footpoint;
that is, a secondary object will be the best fit. We see that all the points (x, y, z) with y < 0
(making a whole half-space!) are projected onto the boundary line, hence for all those points
the best-fitting ellipse would not exist! This fact clearly illustrates the deficiency of the model
collection of ellipses.

One may wonder: How is it possible that the collection of circles is sufficient (as we
proved in Section 5), while the larger collection of ellipses is not? Indeed every circle is an
ellipse, hence the collection of ellipses contains all the circles. So why the sufficiency of circles
does not guarantee the sufficiency of the bigger, inclusive collection of ellipses? Well, this
seemingly counterintuitive fact can be illustrated too (see Figure 8).

Suppose that the megaset M(MC) for the collection of circles is represented by the set
U = {y = x2, x /= 0, z = 0} in our illustration. Note that U consists of two curves (branches of
a parabola on the xy plane), both lie in the half-planeH+ = {y > 0, z = 0} that corresponds to
the collection of ellipses. So the required inclusion U ⊂ H+ does take place. The two curves
making U terminate at the point (0, 0, 0), which does not belong to U, so it plays the role of
the boundary of U.

Now suppose a randomly selected point (x, y, z) ∈ R
3 is to be projected onto the setU.

What are the chances that its projection will end up on the boundary ofU, that is, at the origin
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Figure 8: Schematic illustration of the megaset M(MC) ⊂ M(ME).

(0, 0, 0)? It is not hard to see (and prove by elementary geometry) that only points on the yz
plane may be projected onto the origin (0, 0, 0) (and not even all of them; points with large
positive y-coordinates would be projected onto some interior points of U). So the chance
that the footpoint of the projection ends up at the boundary of U is zero. This illustrates the
sufficiency of the smallermodel collection of circles, despite the deficiency of the largermodel
collection of ellipses (which we have seen in Figure 7).

Appendix

Here we prove the theorem on no local minima for n = 5 (Section 6).

Proof. Suppose that S is a conic on which F takes a local minimum. We will assume that S is
nondegenerate; that is, S is an ellipse, or hyperbola, or parabola. Degenerate conics are easier
to handle, so we omit them.

Let P1, P2, P3, P4, P5 denote the given points andQ1,Q2,Q3,Q4, andQ5 their projections
onto S. Since S does not interpolate all the given points simultaneously, there exists at least
one which is not on S. Suppose that it is P1, hence P1 /=Q1.

Let us first assume that Q1 is different from the other projections Q2, Q3, Q4, andQ5.
Then letQ′

1 be a point nearQ1 such that dist(Q′
1, P1) < dist(Q1, P1). In other words, we perturb

Q1 slightly by moving it in the direction of P1. Then there exists another non-degenerate conic
S′ that interpolates the points Q′

1, Q2, Q3, Q4, and Q5. It is easy to see that

dist
(
P1, S

′) ≤ dist
(
P1, Q

′
1

)
< dist(P1, Q1) = dist(P1, S),

dist
(
Pi, S

′) ≤ dist(Pi,Qi) = dist(Pi, S) for every i = 2, . . . , 5.
(A.1)

As a result,

F(S′) =
5∑

i=1

[
dist

(
Pi, S

′)]2 <
5∑

i=1

[dist(Pi, S)]
2 = F(S), (A.2)

as desired. Since Q′
1 can be placed arbitrarily close to Q1, the new conic S′ can be made

arbitrarily close to S.
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Now suppose that the projection point Q1 coincides with some other projection
point(s). In that case there are at most four distinct projection points. We will not move
the point Q1, but we will rotate (slightly) the tangent line to the conic S at the point Q1.
Denote that tangent line by T . Note that T is perpendicular to the line passing through P1 and
Q1.

Now let T ′ be another line passing through the point Q1 and making an arbitrarily
small angle with T . It is not hard to show, by elementary geometry, that there exists another
nondegenerate conic S′ passing though the same (≤4) projection points and having the
tangent line T ′ at Q1.

Since the tangent line T ′ to the conic S′ at the point Q1 is not orthogonal to the line
P1Q1, we easily have

dist
(
P1, S

′) < dist(P1, Q1) = dist(P1, S). (A.3)

At the same time we have

dist
(
Pi, S

′) ≤ dist(Pi,Qi) = dist(Pi, S) for every i = 2, . . . , 5. (A.4)

As a result, consider

F(S′) =
5∑

i=1

[
dist

(
Pi, S

′)]2 <
5∑

i=1

[dist(Pi, S)]
2 = F(S), (A.5)

as desired. Since the line T ′ can be selected arbitrarily close to T , the new conic S′ will be
arbitrarily close to S.
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