
Least squares fitting 1

Chapter 1

LEAST SQUARES FITTING OF QUADRATIC CURVES
AND SURFACES

N. Chernov and H. Ma∗
University of Alabama at Birmingham

Birmingham, AL 35294, USA

Key Words: Least squares, orthogonal regression, fitting ellipses, conics, quadrics.

AMS Subject Classification: 62J.

Abstract

In computer vision one often fits ellipses and other conics to observed points on a
plane or ellipsoids/quadrics to spacial point clouds. The most accurate and robust fit
is obtained by minimizing geometric (orthogonal) distances, but this problem has no
closed form solution and most known algorithms are prohibitively slow. We revisit this
issue based on recent advances by S. J. Ahn, D. Eberly, and our own. Ahn has sorted
out various approaches and identified the most efficient one. Eberly has developed a
fast method of projecting points onto ellipses/ellipsoids (and gave a proof of its conver-
gence). We extend Eberly’s projection algorithm to other conics, as well as quadrics
in space. We also demonstrate that Eberly’s projection method combined with Ahn’s
most efficient approach (and using Taubin’s algebraic fit for initialization) makes a
highly efficient fitting scheme working well for all quadratic curves and surfaces.

∗E-mail address: chernov@math.uab.edu; hma@uab.edu

2 N. Chernov and H. Ma

1. Introduction

Fitting simple contours (primitives) to observed image data is one of the basic tasks in
pattern recognition and computer vision. The most popular contours are lines, circles, and
ellipses (recall that round objects appear as elliptic ovals on photos). In 3D space, one
often fits planes, spheres, or more complex surfaces (such as ellipsoids) to point clouds.
We review the most advanced fitting methods and extend them to all quadratic curves and
surfaces.

We begin with the 2D fitting problem. Let (x1, y1), . . . , (xn, yn) denote the observed
points. Let P (x, y; Θ) = 0 be the equation of the fitting contour, where Θ represents the
vector of unknown parameters. For example, lines can be defined by equation

x cos θ + y sin θ + d = 0, (1)

so Θ = (θ, d). Circles can be described by

(x− a)2 + (y − b)2 −R2 = 0, (2)

so Θ = (a, b, R). Ellipses can be defined by

x̆2

a2
+

y̆2

b2
− 1 = 0 (3)

in the canonical coordinates x̆, y̆, which can be related to x, y by translation and rotation,
i.e., x̆ = (x − c1) cos θ − (y − c2) sin θ and y̆ = (x − c1) sin θ + (y − c2) cos θ; now
Θ = (a, b, c1, c2, θ), where (c1, c2) is the center, a, b are the semiaxes, and θ is the angle of
tilt.

The classical least squares fit minimizes geometric distances from the observed points
to the fitting curve:

F(Θ) =
n∑

i=1

d2
i =

n∑

i=1

(xi − x′i)
2 + (yi − y′i)

2 → min . (4)

Here di denotes the geometric distance from the observed point (xi, yi) to the fitting con-
tour, and (x′i, y

′
i) the (orthogonal) projection of (xi, yi) onto the contour.

The least squares fit (4) has many nice features. It is invariant under translations, ro-
tations, and scaling, i.e., the fitting contour does not depend on the choice of the coordi-
nate system. It provides the maximum likelihood estimate of Θ under standard statisti-
cal assumptions (where points are observed with an independent isotropic gaussian noise
[9, 12, 15]). The minimization (4) is always regarded as the most desirable solution1 of the
fitting problem, albeit hard to compute in most cases.

Fig. 1 shows a sample of eight points (their coordinates are given in Table 1; they
are borrowed from [19]) and the best fitting ellipse obtained by (4). We will explore this
example at the end of Section 2.

1In particular, (4) has been prescribed by a recently ratified standard for testing the data processing software
for coordinate metrology [20].

Least squares fitting 3

−4 −2 0 2 4 6 8 10
−1

1

3

5

7

9

Figure 1. A sample of eight points and the best fitting ellipse.

When one fits lines (1), the problem (4) has a closed form solution, and its properties
have been studied deeply [10, 15]. When one fits circles (2), the problem (4) has no closed
form solution, but one has an explicit formula for the distances,

di =
√

(xi − a)2 + (yi − b)2 −R, (5)

hence one can easily compute the objective function (4), as well as its derivatives with
respect to a, b, R. This makes the minimization of F rather straightforward – the standard
Levenberg-Marquardt algorithm (the most popular and reputable scheme for solving least-
squares problems [15, 19]) works well. Algebraic circle fits (say, the one by Taubin; see
Appendix) provide good initial guesses.

When one fits ellipses, no simple explicit formulas are available for the distances di’s or
the projections (x′i, y

′
i). Theoretically, the projection (x′i, y

′
i) can be found by solving a poly-

nomial equation of degree four [28], but such a solution is complicated and inconvenient
(it involves complex numbers), and even worse – it is numerically unstable [4]. Besides it
is not clear how to differentiate di with respect to Θ. Since one cannot easily compute the
objective function (4) or its derivatives, it appears that the Levenberg-Marquardt scheme is
impractical (see [25] that mentioned such a point of view).

The first thorough investigation of the ellipse fitting problem was done in the middle
1990’s by Gander, Golub, and Strebel [19]. They developed a roundabout way of mini-
mizing F by using auxiliary parameters ωi, i = 1, . . . , n, describing the location of the
projected points (x′i, y

′
i) on the ellipse; the latter, in the canonical coordinates (3) were

expressed by x̆′i = a cosωi and y̆′i = b sinωi. Thus the objective function becomes

F =
n∑

i=1

(xi − c1 − a cosωi cos θ − b sinωi sin θ)2

+ (yi − c2 + a cosωi sin θ − b sinωi cos θ)2.

In [19], F was minimized with respect to a, b, c1, c2, θ, ω1, . . . , ωn simultaneously. This
procedure avoids the calculation of di’s, but the minimization in the (n + 5)-dimensional
parameter space is predictably cumbersome and slow. So the authors of [19] demonstrated
that the minimization of geometric distances for ellipses was a prohibitively difficult task.

4 N. Chernov and H. Ma

Recently Sturm and Gargallo [25] modified the above method in several ways. In par-
ticular, they used a projective matrix that allowed them to describe conics of all types (el-
lipses, hyperbolas, parabolas) with the same set of 5 parameters. Thus their method could
freely switch between types during iterations. But they still work in an (n+5)-dimensional
parameter space, in that sense their method is similar to that of [19].

In the late 1990s, in computer vision applications various alternative fitting schemes
were developed, where so called algebraic distances were minimized; we review them in
Appendix. They produce ellipses that fit less accurately than those minimizing geometric
distances (4). Some authors say that “the performance gap between algebraic fitting and
geometric fitting is wide...” (see [7, p. 12]).

In the early 2000’s another approach to the minimization of geometric distances (4)
emerged, due to Ahn et. al. [4, 6, 7], that turned out to be very efficient. We describe it in a
general form.

2. Fitting implicit curves and surfaces

Least squares problems are commonly solved by the Gauss-Newton (GN) method or its
Levenberg-Marquardt (LM) correction. If one minimizes a sum of squares F(Θ) =

∑
f2

i ,
then both GM and LM would use the values of fi’s and their first derivatives with respect
to Θ, which we denote by (fi)Θ.

Now suppose, as before, that we fit a curve defined by implicit equation P (x, y; Θ) = 0
to observed points (xi, yi). Our goal is to minimize the sum of squares (4). The GN and
LM methods can be applied here in two ways: we either treat F as a sum of n squares,
F =

∑
d2

i , or a sum of 2n squares,F =
∑

g2
i +

∑
h2

i , where gi = xi−x′i and hi = yi−y′i.
In the former case we will need di’s and their derivatives (di)Θ. In the latter we need fi’s
and gi’s, as well as their derivatives (gi)Θ and (fi)Θ. The resulting algorithm is said to be
distance-based if one uses di’s, or coordinate-based if one uses gi’s and hi’s; see Ahn et al.
[6, 7].

Obviously, it is enough to know the projections (x′i, y
′
i) in order to compute di’s, gi’s,

and hi’s. But their derivatives (di)Θ, (gi)Θ, (fi)Θ present a more challenging problem.
Sometimes finite differences are used to approximate these derivatives, which reduces the
accuracy of the fit. But there are surprisingly simple formulas for these derivatives:

Proposition. Let (x, y) be a given a point and (x′, y′) denote its projection onto the curve
P (x, y; Θ) = 0 (then x′, y′ depend on Θ). Denote g = x−x′, h = y−y′, and d2 = g2+h2.
Then we have

gΘ =
PΘP 2

x − gPy(PxPyΘ − PyPxΘ)
Px(P 2

x + P 2
y)

, (6)

hΘ =
PΘP 2

y + hPx(PxPyΘ − PyPxΘ)
Py(P 2

x + P 2
y)

, (7)

and

dΘ =
PΘ√

P 2
x + P 2

y

, (8)

Least squares fitting 5

where PΘ, Px, Py denote the first order partial derivatives of P with respect to Θ, x, y,
respectively, and PxΘ and PyΘ the corresponding second order partial derivatives; all the
derivatives are taken at the projection point (x′, y′).

Proof. Since the vector (x− x′, y − y′) is orthogonal to the curve,

g = x− x′ = tPx and h = y − y′ = tPy (9)

for some scalar t. This immediately gives

d2 = g2 + h2 = t2(P 2
x + P 2

y). (10)

Next we use differentiation with respect to Θ. Differentiating the identity P (x′, y′; Θ) = 0
gives

PΘ = −Pxx′Θ − Pyy
′
Θ = (ggΘ + hhΘ)/t, (11)

and differentiating the identity d2 = g2 + h2 gives

ddΘ = ggΘ + hhΘ = tPΘ. (12)

Now (8) follows from (12) and (10). Differentiation of (9) gives

gΘ = tΘPx + tPxΘ, hΘ = tΘPy + tPyΘ.

Eliminating tΘ from these two equations yields

gΘPy − hΘPx = −t(PxPyΘ − PyPxΘ). (13)

Solving (12) and (13) for gΘ and hΘ we obtain (6) and (7).

The formulas (6)–(8) were essentially obtained by Ahn et al. [6, 7]. Independently the
formula (8) was derived in [3] (see eq. (24) there).

Practically, the calculation of the derivatives dΘ, gΘ, hΘ by (6)–(8) is easy once the
projection point (x′, y′) is located. The differentiation of P (x, y; Θ) with respect to Θ is
usually straightforward; for example, one can easily find the derivatives of (3) with respect
to a, b, c1, c2, θ.

Alternatively, one can try to change the parametrization scheme in order to simplify
differentiation. For example, instead of (3) one can define an ellipse by equation

√
(x− p1)2 + (y − p2)2 +

√
(x− q1)2 + (y − q2)2 − 2a = 0 (14)

where (p1, p2) and (q1, q2) denote its foci and 2a, as before, the major axis. These are
sometimes called Kepler’s parameters of an ellipse; they have certain advantages [11]. In
particular, differentiation of (14) with respect to p1, p2, q1, q2, and a is quite straightforward.

We note that the coordinate-based scheme using gi’s and hi’s operates with 2n terms and
involves the second order derivatives PxΘ and PyΘ. The distance-based scheme operates
only with n terms and does not involve the second order derivatives; cf. (8). As a result, the
coordinate-based scheme seems to be less efficient, and we will only use the distance-based
fit in what follows.

6 N. Chernov and H. Ma

x 1 2 5 7 9 3 6 8
y 7 6 8 7 5 7 2 4

Table 1. A benchmark example with eight points [19].

Remark. Since the distance d given must be differentiable, we have to treat it as a signed
distance – it must be positive on one side of the curve and negative on the other, just as we
had it in (5). For ellipses, one can make d > 0 for points outside the ellipse and d < 0 for
points inside.

The above minimization scheme also works for surfaces in the 3D space, when they are
defined by implicit equations P (x, y, z; Θ) = 0. In that case the above formulas acquire an
extra term corresponding to the z variable, otherwise they remain pretty much the same.

Now the minimization problem (4) can be solved by the Gauss-Newton or Levenberg-
Marquardt algorithm provided one can project any given point (x, y) onto a given
curve/surface P = 0. We will discuss the projection subproblem later. The rate of con-
verges of the GN and LM algorithms is nearly quadratic provided one has a good initial
guess (which can be found, for example, by a non-iterative algebraic fit, such as the Taubin
fit, see Appendix).

Ahn et al. have applied the above minimization scheme to quadratic curves (ellipses,
hyperbolas, and parabolas) and some quadratic surfaces (spheres, ellipsoids, cones); see [4,
6, 7]. They compared it with several other minimization algorithms [5, 6, 7] and concluded
that this one is the fastest and most robust. We have also tested it on quadratic curves and
surfaces of various types and found that it has the following two advantages over other
schemes: (i) it converges in fewer iterations, and (ii) it finds a smaller value of the objective
function F more frequently than other methods do (i.e., the other methods tend to end up
in a local minimum or diverge more often that this method does).

A benchmark example introduced in [19] and used later in [4] and other papers is a
simple eight point set whose coordinates are shown in Table 1. The best fitting ellipse is
known to have center (2.6996, 3.8160), axes a = 6.5187 and b = 3.0319, and angle of
tilt θ = 0.3596; see Fig. 1. We have run two fitting algorithms – the implicit fit described
here and the Gander-Golub-Strebel (GGS) method, which simultaneously optimizes n + 5
parameters, as mentioned earlier. Both methods were initialized by randomly generated
ellipses (to get an initial ellipse, we just picked 5 points randomly in the square 0 ≤ x, y ≤
10 and used the ellipse interpolating those 5 points). After running these fitting methods
from 105 random initial guesses, we found that the implicit fit failed to converged to the
best ellipse in 11% of the cases, while the GGS method failed in 26% of the cases. In
those cases where both algorithms converged, the implicit method took 20 iterations, on the
average, while the GGS method took 60 iterations, on the average. The cost of one iteration
was also higher for the GGS method. Table 2 summarizes the results.

We note that a high number of iterations here is not unusual. The authors of [19] used
a modification of the best fitting circle to initialize their GGS procedure, and it took 71
iterations (!) to converge. A coordinate-based variant of the implicit fit used in [4] took 19
iterations to converge (it was also initialized with the best fitting circle). Our distance-based

Least squares fitting 7

Failure rate Avg. iter. Cost per iter. (flops)
Implicit 11% 20 1640

GGS 26% 60 1710

Table 2. Comparison of two ellipse fitting methods.

Initial ellipse
Best Circle “Direct fit” Taubin fit

Implicit (G) 16 17 17
Implicit (K) 14 16 16

GGS 50 54 54

Table 3. Comparison of two ellipse fitting methods.

implicit fit converged in 16 iterations.
In our experiment we used standard geometric parameters of the ellipse, i.e.,

c1, c2, a, b, θ. With Kepler’s parameters (14), things get a little faster – the implicit method
converged in 14 iterations. Table 3 gives the number of iterations taken by our fitting meth-
ods (the implicit method was implemented in geometric parameters (G) and in Kepler pa-
rameters (K)), initialized with the modified best fitting circle as in [19], the “direct ellipse
fit” [18], and the Taubin fit (see Appendix).

3. Projection onto conics

The fitting scheme described above will work well only if one uses an efficient and reliable
solution to the projection subproblem. The latter remains the time consuming part of the
fitting process [6, 7].

In practice, various heuristic projection algorithms are employed [4, 5, 6, 7, 28] that are
relatively fast, but their convergence is not guaranteed (and occasionally they do fail). On
the other hand, certain theoretically reliable methods were proposed [2, 27], but most of
them are overly complicated and too slow for practical use. For example, the projection of
a point (u, v) onto an ellipse can be found as a root of a polynomial of degree four, but, as
we said, this method is quite impractical and virtually never used.

A remarkable approach to projecting points onto ellipses was found by D. Eberly in
2004 [1, Section 14.13.1]. Not only it produces the desired projection faster than anything
known previously (including heuristic schemes), but it comes with a mathematical proof of
converging to the correct projection point in all cases, i.e., it is completely reliable. Below
we describe Eberly’s method for ellipses and then adapt it to other quadratic curves and
surfaces. In each case we provide a theoretical proof of convergence. We consider such
proofs as an important asset of the proposed methods.

Ellipses. It will be sufficient to project a point (u, v) onto an ellipse in its canonical coor-

8 N. Chernov and H. Ma

dinates:
x2

a2
+

y2

b2
− 1 = 0. (15)

Indeed, other ellipses can be translated and rotated to the canonical form (15), and then the
projection point can be translated and rotated back to the original ellipse (the details are
straightforward, we omit them).

Due to the obvious symmetry, it is enough to work in the first quadrant u > 0, v > 0;
then the projection point (x, y) will also be in the first quadrant, i.e., x > 0, y > 0. (Other
points can be reflected to the first quadrant about the axes, and then the projection point can
be reflected back.) Also, we exclude the degenerate cases where u = 0 or v = 0; they are
fairly simple and can be handled separately (see details in [1]).

Now the projection point (x, y) on the ellipse satisfies the orthogonality conditions (9),
hence

u− x = tx/a2 and v − y = ty/b2 (16)

for some real t (note that t < 0 for points inside the ellipse and t > 0 for points outside the
ellipse). From (16) we find

x =
a2u

t + a2
and y =

b2v

t + b2
(17)

Since x, y > 0, we have constraints t > −a2 and t > −b2. Assuming, as usual, that a ≥ b
we get a single constraint t > −b2. Substituting (17) into (15) we obtain a function

F (t) =
a2u2

(t + a2)2
+

b2v2

(t + b2)2
− 1, (18)

whose root we need to find (because (x, y) must lie on the ellipse). Once we solve equation
(18) for t, we can compute the projection point (x, y) by (17). Note that

lim
t→−b2+

F (t) = +∞ and lim
t→∞F (t) = −1.

Taking the derivatives of F we see that

F ′(t) = − 2a2u2

(t + a2)3
− 2b2v2

(t + b2)3
(19)

and

F ′′(t) =
6a2u2

(t + a2)4
+

6b2v2

(t + b2)4
. (20)

Thus on the interval (−b2,∞) we have F ′ < 0 and F ′′ > 0, i.e., the function F is mono-
tonically decreasing and concave; see Fig. 2. Thus standard Newton’s method starting at
any point t0 where F (t0) > 0 will converge to the unique root of F . Eberly suggests to
start with t0 = bv − b2, because F (t0) > 0 is guaranteed by (18). We found that it is more
beneficial to start with

t0 = max{au− a2, bv − b2}. (21)

Then Newton’s method converges in 3-5 iterations in all practical cases and finds the root to
within 7-8 significant digits. This is, on average, 2-3 times faster than solving equation of

Least squares fitting 9

t

F(t)

-1

-b
2

Figure 2. A typical graph of F (t) for t > −b2 and the progress of Newton’s iterations
toward the root.

degree four or using general heuristics [4, 7]. The MATLAB code for this method is posted
on our web page [29].

Hyperbolas. Now let us project a point (u, v) onto a hyperbola. Again, the latter can be
defined in its canonical coordinates:

x2

a2
− y2

b2
− 1 = 0. (22)

Due to symmetry, we restrict the method to u > 0, v > 0, then we also have x > 0, y > 0.
The orthogonality conditions (9) now read

u− x = tx/a2 and v − y = −ty/b2, (23)

from which

x =
a2u

t + a2
and y =

b2v

−t + b2
(24)

Since x, y > 0, we have constraints −a2 < t < b2. Substituting (24) into (22) we obtain a
function

F (t) =
a2u2

(t + a2)2
− b2v2

(−t + b2)2
− 1, (25)

whose root we need to find. Note that

lim
t→−a2+

F (t) = +∞ and lim
t→b2−

F (t) = −∞.

Taking the derivatives of F we see that

F ′(t) = − 2a2u2

(t + a2)3
− 2b2v2

(−t + b2)3
(26)

hence F ′ < 0 for all t ∈ (−a2, b2). Next,

F ′′(t) =
6a2u2

(t + a2)4
− 6b2v2

(−t + b2)4
. (27)

10 N. Chernov and H. Ma

Now F ′′ decreases from +∞ (near −a2) to −∞ (near b2), and it is monotonic (because
F ′′′ < 0, as one can easily verify). Thus F has a unique inflection point, t∗, within the
interval (−a2, b2). See Fig. 3, where two possible cases are shown: (a) the inflection point
lies above the x axis, i.e., F (t∗) > 0 and (b) the inflection point lies below the x axis. The
inflection point is found by solving F ′′ = 0, hence

t∗ =
b2√au− a2

√
bv√

au +
√

bv
.

Now by computing F (t∗) we can determine which case, (a) or (b), we have at hand. Stan-
dard Newton’s method will converge to the root of F (t) = 0, but the starting point t0 must
be selected wisely. In the case (a) we need to choose t0 such that F (t0) < 0, and in the
case (b) we need F (t0) > 0. In the case (a) we can try points tk = b2 − (b2 − t∗)/2k

for k = 1, 2, . . . until we find one where F is negative. In the case (b) we can try points
tk = −a2 + (t∗ + a2)/2k for k = 1, 2, . . . until we find one where F is positive. This
process of choosing t0 is relatively inexpensive and it does not involve the derivatives of F .
This completes our projection algorithm for hyperbolas.

In practice, it works about 1.5 longer than the projection algorithm for ellipses, due to
a more elaborate choice of t0, so its speed is close to that of heuristic schemes [4, 7]. But it
is guaranteed to converge, according to our analysis.

t

F(t)

t
*

t

F(t)

t
*

(a) (b)

Figure 3. Two possible appearances of F (t) on the interval −a2 < t < −b2. Arrows show
the progress of Newton’s iterations toward the root.

The MATLAB code for this method is posted on our web page [29].

Parabolas. Next let us project a point (u, v) onto a parabola. Again, the latter can be
defined in its canonical coordinates:

y2 − 2px = 0, (28)

where p > 0 is the distance from the focus to the directrix. Due to symmetry, we restrict
the method to v > 0, then we also have y > 0. The orthogonality conditions (9) now give

u− x = −pt and v − y = yt (29)

Least squares fitting 11

from which
x = u + pt and y =

v

t + 1
(30)

Since y > 0, we have constraint t > −1. Substituting (30) into (28) we obtain a function

F (t) =
v2

(t + 1)2
− 2pu− 2p2t, (31)

whose root we need to find. Note that

lim
t→−1+

F (t) = +∞ and lim
t→∞F (t) = −∞.

Taking the derivatives of F we see that F ′(t) = − 2v2

(t+1)3
− 2p2 and F ′′(t) = 6v2

(t+1)4
. Thus

on the interval (−1,∞) we have F ′ < 0 and F ′′ > 0, i.e., the function F is monotonically
decreasing and concave. Now standard Newton’s method starting at any point t0 where
F (t0) > 0 will converge to the unique root of F . We can try points tk = −1 + 2−k for
k = 1, 2, . . . until we find one where F is positive. The MATLAB code for this method is
posted on our web page [29].

4. Projection onto quadrics

Here we describe the projection of a spacial point (u, v, w) onto quadratic surfaces of vari-
ous kinds.

Ellipsoids. An ellipsoid is defined its canonical coordinates as follows:

x2

a2
+

y2

b2
+

z2

c2
− 1 = 0, (32)

where a ≥ b ≥ c > 0 are its semiaxes. (Other ellipsoids case be translated and rotated to
the canonical form (32), and then the projection point can be translated and rotated back to
the original ellipsoid.) Due to symmetry, we restrict the method to u > 0, v > 0, w > 0,
then we also have x > 0, y > 0, z > 0. The orthogonality conditions now give

u− x = tx/a2, v − y = ty/b2, w − z = tz/c2 (33)

for some scalar t, from which

x =
a2u

t + a2
, y =

b2v

t + b2
z =

c2w

t + c2
(34)

Since x, y, z > 0, we have constraint t > max{−a2,−b2 − c2} = −c2. Substituting (34)
into (32) we obtain a function

F (t) =
a2u2

(t + a2)2
+

b2v2

(t + b2)2
+

c2w2

(t + c2)2
− 1, (35)

whose root we need to find. Note that

lim
t→−c2+

F (t) = +∞ and lim
t→∞F (t) = −1.

12 N. Chernov and H. Ma

Taking the derivatives of F we see that

F ′(t) = − 2a2u2

(t + a2)3
− 2b2v2

(t + b2)3
− 2c2w2

(t + c2)3
(36)

and

F ′′(t) =
6a2u2

(t + a2)4
+

6b2v2

(t + b2)4
+

6c2w2

(t + c2)4
. (37)

Thus on the interval (−c2,∞) we have F ′ < 0 and F ′′ > 0, i.e., the function F is mono-
tonically decreasing and concave, just as in Fig. 2. Thus standard Newton’s method starting
at any point t0 where F (t0) > 0 will converge to the unique root of F , and we choose (see
(21))

t0 = max{au− a2, bv − b2, cw − c2}.

Hyperbolic paraboloids. Now let us project a point (u, v, w) onto a hyperbolic paraboloid
(“saddle”) defined in its canonical coordinates as

x2

a2
− y2

b2
− z = 0. (38)

Due to symmetry, we restrict the method to u > 0, v > 0, then we also have x > 0, y > 0.
The orthogonality conditions now give

u− x = tx/a2, v − y = −ty/b2, w − z = −t/2 (39)

for some scalar t, from which

x =
a2u

t + a2
, y =

b2v

−t + b2
, z = w +

t

2
. (40)

Since x, y > 0, we have constraints −a2 < t < b2. Substituting (40) into (38) we obtain a
function

F (t) =
a2u2

(t + a2)2
− b2v2

(−t + b2)2
− w − t

2
, (41)

whose root we need to find. Note that

lim
t→−a2+

F (t) = +∞ and lim
t→b2−

F (t) = −∞.

Taking the derivatives of F we see that

F ′(t) = − 2a2u2

(t + a2)3
− 2b2v2

(−t + b2)3
− 1

2
(42)

hence F ′ < 0 for all t ∈ (−a2, b2). Next,

F ′′(t) =
6a2u2

(t + a2)4
− 6b2v2

(−t + b2)4
. (43)

Now F ′′ decreases from +∞ (near −a2) to −∞ (near b2), and it is monotonic (because
F ′′′ < 0, as one can easily verify). Thus F has a unique inflection point, t∗, within the

Least squares fitting 13

interval (−a2, b2). Our further analysis repeats that done for hyperbolas in the previous
section.

Hyperboloids. Now let us project a point (u, v, w) onto a hyperboloid (one sheet) defined
in its canonical coordinates as

x2

a2
+

y2

b2
− z2

c2
− 1 = 0, (44)

where we can assume a ≥ b. Due to symmetry, we restrict the method to u > 0, v >
0, w > 0, then we also have x > 0, y > 0, z > 0. The orthogonality conditions now give

u− x = tx/a2, v − y = ty/b2, w − z = −tz/c2 (45)

for some scalar t, from which

x =
a2u

t + a2
, y =

b2v

t + b2
, z =

c2w

−t + c2
. (46)

Since x, y, z > 0, we have constraints −b2 < t < c2. Substituting (46) into (44) we obtain
a function

F (t) =
a2u2

(t + a2)2
+

b2v2

(t + b2)2
− c2w2

(−t + c2)2
− 1, (47)

whose root we need to find. Note that

lim
t→−b2+

F (t) = +∞ and lim
t→c2−

F (t) = −∞.

Taking the derivatives of F we see that

F ′(t) = − 2a2u2

(t + a2)3
− 2b2v2

(t + b2)3
− 2c2w2

(−t + c2)3
(48)

hence F ′ < 0 for all t ∈ (−b2, c2). Next,

F ′′(t) =
6a2u2

(t + a2)4
+

6b2v2

(t + b2)4
− 6c2w2

(−t + c2)4
. (49)

Again, as before, F ′′ decreases from +∞ (near −b2) to −∞ (near c2), and it is monotonic
(because F ′′′ < 0, as one can easily verify). Thus F has a unique inflection point, t∗, within
the interval (−b2, c2). Its graph looks like one of those shown in Fig. 3.

But now it is not easy to determine which case we have at hand – the one shown in
part (a) or in part (b) of Fig. 3 (because we cannot solve equation F ′′ = 0). However, one
of the two iterative procedures described in the case of hyperbolas (i.e., Newton’s method
working from the left and another one – from the right), must work.

Thus we simply can choose one of these two procedures at random and follow it hoping
that it converges. But if it fails, i.e., if an iteration lands outside the interval (−b2, c2), then
we switch to the other procedure, and it will surely converge. We note that even if we start
on the wrong side, Newton’s iteration may land on the right side and then converge.

14 N. Chernov and H. Ma

As there is a 50% chance of choosing one of the two sides correctly at random, the
current projection method is perhaps about 1.5 times slower, on average, than the previous
one (a moderate price to pay for extra complications). We emphasize that our analysis still
guarantees that the method converges to the correct projection point in all cases.

Other quadrics. We have covered three major types of quadratic surfaces in 3D. There
are two others – elliptic paraboloid and hyperboloid of two sheets, which are treated very
similarly, with small variations in each case that we leave out.

5. Conclusion

The main goal of our chapter is to put a strong argument against the customary presumption
that fitting ellipses and other quadratic curves/surfaces by minimizing geometric distances
is a prohibitively difficult task. It is no longer so! Three major breakthroughs have occurred
in the last decade:

• Ahn et al. have designed a general fitting scheme for implicit curves and surfaces that
is surprisingly simple and fast. Its most time-consuming part is the projection of data
points onto the curve/surface.

• Eberly discovered a remarkably fast and totally reliable projection algorithm for el-
lipses (which we generalize here to other conics and quadrics).

• Taubin’s algebraic fit gained the reputation of being able to provide a balanced (nearly
unbiased) initialization for the subsequent iterative procedure.

Combining these three advances together gives a complete fitting scheme for fitting
quadratic curves and surfaces of all kinds. This scheme is reliable and efficient.

Acknowledgement. N.C. was partially supported by National Science Foundation, grant
DMS-0969187.

Appendix

Here we review non-geometric (algebraic) fits that are used to provide an initial guess, i.e.,
a curve that initializes an iterative procedure solving the geometric fitting problem (4).

Suppose again that one fits an implicit curve P (x, y; Θ) = 0 to observed points (x1, y1),
. . ., (xn, yn). Perhaps the simplest non-geometric fit is the one minimizing

F1(Θ) =
n∑

i=1

[P (xi, yi; Θ)]2. (50)

To justify this method one usually notes that P (xi, yi; Θ) = 0 if and only if the point (xi, yi)
lies on the curve, and [P (xi, yi; Θ)]2 is small when the point lies near the curve. The
minimization of (50) is called algebraic fit and |P (xi, yi; Θ)| is called the corresponding
algebraic distance.

Least squares fitting 15

When the curve is defined by an algebraic equation, such as

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, (51)

then an unconstrained minimization of (50) produces the unwanted degenerate solution:
A = B = C = D = E = F = 0. To avoid it, one can impose a constraint, such as
A2 + B2 + C2 + D2 + E2 + F 2 = 1. The resulting fit would not be invariant under
rotations or translations of the data set, i.e., the resulting curve would depend on the choice
of the coordinate system, which is hardly acceptable; see [8, 19].

Better constraints (i.e., those that are invariant under translations and rotations) are A+
C = 1 (see [19]), or A2 + B2/2 + C2 = 1 (see [8]), or 4AC −B2 = 1 (see [18]). The last
constraint guarantees that the resulting curve will be an ellipse (rather than a hyperbola or
parabola).

But practical experience shows that all algebraic fits, with or without constraints, are
statistically inaccurate and biased, in one way or another. The main reason is that algebraic
distances may be substantially different from geometric distances [28].

This defect can be compensated for by using linear approximation

|P (xi, yi; Θ)|
‖∇P (xi, yi; Θ)‖ = di +O(d2

i)

where ∇P =
(
∂P/∂x, ∂P/∂y

)
denotes the gradient vector. This leads to an ‘approximate

geometric fit’, which minimizes

F2(Θ) =
n∑

i=1

[P (xi, yi; Θ)]2

‖∇P (xi, yi; Θ)‖2
. (52)

This method is called gradient weighted algebraic fit. It was applied to quadratic curves by
Sampson [24] and popularized by Taubin [26].

If the curve is defined by an algebraic equation, such as (51), then both numerator and
denominator of each fraction in (52) are homogeneous quadratic polynomials of the param-
eters. As a result,F2 is invariant under scalings of the parameter vector (A,B, C, D, E, F),
hence no additional constraints are needed anymore. The minimization of (52) produces a
more accurate fit than the simple algebraic fits (50) do; see statistical analysis in [12].

But the problem of minimizing (52) has no closed form solution and must be solved
by iterations. Various iterative schemes for the minimization of (52) have been developed
(see [16, 17, 21]); some of them have become standard in computer vision industry. They
are all too complex to be used for an initialization of the geometric fit (4) (besides, each of
them needs its own initialization to get started...). In this sense, the minimization of (52)
and that of (4) can be regarded as two independent approaches to the task of fitting curves
to data. While (4) is called Maximum Likelihood Estimation (MLE), that of (52) is called
Approximate Maximum Likelihood Estimation (AMLE); see [16, 17].

One may wonder if the AMLE (52) can be used instead of the MLE (4), as the mini-
mization of (52) is technically simpler than that of (4). Most researchers, however, agree
that the answer is NO, i.e., the minimization of (4) would produce a better fit than that of
(52); see comments in [7, p. 12]. (Though a complete statistical analysis has yet to be done.)

16 N. Chernov and H. Ma

Taubin [26] simplified (52) and converted it into a non-iterative fit that minimizes

F3(Θ) =
∑

[P (xi, yi; Θ)]2∑ ‖∇P (xi, yi; Θ)‖2
. (53)

Note that Taubin simply summed up all the numerators and all the denominators in (52)
separately.

If one fits conics defined by algebraic equation (51), then both numerator and denomi-
nator of (53) are homogeneous quadratic polynomials of the components of the parameter
vector A = (A,B,C, D,E, F)T . Thus one can rewrite (53) as

F4(A) =
ATMA
ATNA

→ min, (54)

where M and N are some 6 × 6 symmetric positive semi-definite matrices. Since F4(A)
is invariant under scalings of the vector A, one can solve (54) by minimizing F5(A) =
ATMA under the constraint ATNA = 1. Introducing a Lagrange multiplier η we can
minimize the function

F6(A, η) = ATMA− η(ATNA− 1).

Differentiating with respect to A gives the first order necessary condition

MA = ηNA, (55)

thus A must be a generalized eigenvector of the matrix pair (M,N). Moreover, premul-
tiplying (55) by A we see that ATMA = η, and because we are minimizing ATMA,
the desired vector A must correspond to the smallest (non-negative) eigenvalue η. (We
note that N here is singular; one usually eliminates F to reduce A to a 5-vector A′ =
(A,B, C, D,E)T and the 6× 6 problem (55) to a 5× 5 problem M′A′ = η′N′A′, where
the 5× 5 matrix N′ is positive definite; see details in [22].)

Solving a generalized eigenvalue problem takes just one call of a standard matrix func-
tion (such functions are included in most modern software packages, e.g., in MATLAB).
Thus Taubin’s fit is regarded as a fast non-iterative procedure. In practice the Taubin’s fit is
only marginally slower than the simple algebraic fit minimizing (50).

Its advantage is that Taubin’s fit is more balanced than any algebraic fit. It has a much
smaller bias; see statistical analysis in [22]. Its disadvantage is that it produces a conic
that may be of any kind – an ellipse, a hyperbola, or a parabola. If one fits conics of a
certain type (e.g., ellipses), then Taubin’s fit must be supplemented with another simple fit
whenever it gives the wrong curve. Experimental tests show that Taubin’s fit provides a
better initialization of iterative procedures than simple algebraic fits do [14].

References

[1] 3D Game Engine Design, 2nd ed., Morgan Kaufmann Publishers, San Francisco, CA,
2007. See also Internet article Distance from a point to an ellipse in 2D, Geometric
Tools, LLC, www.geometrictools.com

Least squares fitting 17

[2] Aigner, M. & Jüttler, B. (2005). Robust computation of foot points on implicitly de-
fined curves, In: Editors Daehlen, M. et al., Mathematical Methods for Curves and
Surfaces, Tromso 2004, Nashboro Press, pp. 1–10.

[3] Aigner, M. & Jüttler, B. (2008). Gauss-Newton type techniques for robustly fitting
implicitly defined curves and surfaces to unorganized data points, In: Shape Modeling
International, pp. 121–130.

[4] Ahn, S. J., Rauh, W. & Warnecke, H. J. (2001). Least-squares orthogonal distances
fitting of circle, sphere, ellipse, hyperbola, and parabola, Pattern Recog., 34, 2283–
2303.

[5] Ahn, S. J., Rauh, W. & Recknagel, M. (2001). Least squares orthogonal distances
fitting of implicit curves and surfaces, In: LNCS 2191, 398–405.

[6] Ahn, S. J., Rauh, W. & Cho, H. S. (2002). Orthogonal distances fitting of implicit
curves and surfaces, IEEE trans. PAMI, 24, 620–638.

[7] Ahn, S. J. (2004). Least Squares Orthogonal Distance Fitting of Curves and Surfaces
in Space, In: LNCS 3151, Springer, Berlin.

[8] Bookstein, F. L. (1979). Fitting conic sections to scattered data, Comp. Graph. Image
Proc. 9, 56–71.

[9] Chan, N. N. (1965). On circular functional relationships, J. R. Statist. Soc. B, 27, 45–
56.

[10] Cheng, C.-L. & Van Ness, J. W. (1999). Statistical Regression with Measurement Er-
ror, Arnold, London.

[11] Chernov, N., Ososkov, G. & Silin, I. (2000). Robust fitting of ellipses to non-complete
and contaminated data, Czech. J. Phys. 50, 347–354.

[12] Chernov, N. & Lesort, C. (2004). Statistical efficiency of curve fitting algorithms,
Comp. Stat. Data Anal., 47, pp. 713–728.

[13] Chernov, N. & Lesort, C. (2005). Least squares fitting of circles, J. Math. Imag. Vision
23, 239–251.

[14] Chernov, N. (2007). On the convergence of fitting algorithms in computer vision, J.
Math. Imag. Vision 27, 231–239.

[15] Chernov, N. (2010). Circular and linear regression: Fitting circles and lines by least
squares, Chapman & Hall/CRC Monographs on Statistics and Applied Probability
117.

[16] Chojnacki, W., Brooks, M. J. & van den Hengel, A. (2001). Rationalising the renor-
malisation method of Kanatani, J. Math. Imag. Vision, 14, 21–38.

[17] Chojnacki, W., Brooks, M. J., van den Hengel, A. & Gawley, D. (2005). FNS, CFNS
and HEIV: A unifying approach, J. Math. Imag. Vision, 23, 175–183.

18 N. Chernov and H. Ma

[18] Fitzgibbon, A. W., Pilu, M. & Fisher, R. B. (1999). Direct Least Squares Fitting of
Ellipses, IEEE Trans. PAMI 21, 476–480.

[19] Gander, W., Golub, G. H. & Strebel, R. (1994). Least squares fitting of circles and
ellipses, BIT, 34, 558–578.

[20] Geometric Product Specification (GPS) – Acceptance and representation test for co-
ordinate measuring machines (CMM) – Part 6: Estimation of errors in computing
Gaussian associated features. Int’l Standard ISO 10360-6. IS, Geneva, Switzerland
(2001).

[21] Kanatani, K. (1994). Statistical bias of conic fitting and renormalization, IEEE Trans.
PAMI, 16, 320–326.

[22] Kanatani, K. (2008). Statistical optimization for geometric fitting: Theoretical accu-
racy bound and high order error analysis, Int. J. Computer Vision 80, 167–188.

[23] Leedan, Y. & Meer, P. (2000). Heteroscedastic regression in computer vision: Prob-
lems with bilinear constraint, Intern. J. Comp. Vision, 37, 127–150.

[24] Sampson, P. D. (1982). Fitting conic sections to very scattered data: an iterative re-
finement of the Bookstein algorithm, Comp. Graphics Image Proc. 18, 97–108.

[25] Sturm, P., & Gargallo, P. (2007). Conic fitting using the geometric distance, Proc.
Asian Conf. Comp. Vision, Tokyo, Japan, 2, pp. 784–795.

[26] Taubin, G. (1991). Estimation of planar curves, surfaces and nonplanar space curves
defined by implicit equations, with applications to edge and range image segmenta-
tion, IEEE Trans. PAMI, 13, 1115–1138.

[27] Wijewickrema, S., Papliński, A. & Esson, Ch. (2006). Orthogonal distance fitting re-
visited, Tech. report, Clayton School Inf. Technol., Monash U., Melbourne, 2006/205.

[28] Zhang, Z. (1997). Parameter Estimation Techniques: A Tutorial with Application to
Conic Fitting, Intern. J. Image Vision Comput., 15, 59–76.

[29] http://www.math.uab.edu/ chernov/cl

