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Abstract. The technique of “renormalization” for geometric estimation
attracted much attention when it was proposed in early 1990s for hav-
ing higher accuracy than any other then known methods. Later, it was
replaced by minimization of the reprojection error. This paper points
out that renormalization can be modified so that it outperforms repro-
jection error minimization. The key fact is that renormalization directly
specifies equations to solve, just as the “estimation equation” approach
in statistics, rather than minimizing some cost. Exploiting this fact, we
do detailed error analysis of the generalized eigenvalue problem so that
the renormalization solution has zero bias up to high order error terms;
we call the resulting scheme hyper-renormalization. We apply it to el-
lipse fitting to demonstrate that it indeed surpasses reprojection error
minimization. We conclude that it is the best method available today.

1 Introduction

One of the most fundamental tasks of computer vision is to compute 2-D and
3-D shapes of objects from noisy observations by using geometric constraints.
Many problems are formulated as follows. We observe N vector data x1, ..., xN ,
whose true values x̄1, ..., x̄N are supposed to satisfy a geometric constraint in
the form

F (x; θ) = 0, (1)

where θ is an unknown parameter vector which we want to estimate. We call
this type of problem simply “geometric estimation”. In traditional domains of
statistics such as agriculture, pharmaceutics, and economics, observations are
regarded as repeated samples from a parameterized probability density model
pθ(x); the task is to estimate the parameter θ. We call this type of problem
simply “statistical estimation”, for which the minimization principle has been



a major tool: One chooses the value that minimizes a specified cost. The best
known approach is maximum likelihood (ML), which minimizes the negative log
likelihood l = −

∑N
α=1 log pθ(xα). Recently, an alternative approach is more and

more in use: One directly solves specified equations, called estimating equations
[4], in the form of g(x1, ...,xN , θ) = 0. This approach can be viewed as an
extension of the minimization principle; ML corresponds to g(x1, ...,xN ,θ) =
∇θl, known as the score. However, the estimating equations need not be the
gradient of any function, and one can modify g(x1, ...,xN , θ) as one likes so
that the resulting solution θ should have desirable properties (unbiasedness,
consistency, efficiency, etc.). In this sense, the estimating equation approach is
more general and flexible, having the possibility of providing a better solution
than the minimization principle.

In the domain of computer vision, the minimization principle, in particular
reprojection error minimization, is the norm and is also called the Gold Stan-
dard [5]. A notable exception is renormalization of Kanatani [6, 7]: Instead of
minimizing some cost, it iteratively removes bias of weighted least squares (LS).
It attracted much attention because it exhibited higher accuracy than any other
then known methods. However, questions were repeatedly raised as to what it
minimizes, perhaps out of the deep-rooted preconception that optimal estima-
tion should minimize something. One answer was given by Chojnacki et al., who
proposed in [3] an iterative scheme similar to renormalization, which they called
FNS (Fundamental Numerical Scheme), for minimizing what is now referred to
as the Sampson error [5]. They argued in [2] that renormalization can be “ratio-
nalized” if viewed as approximately minimizing the Sampson error. Leedan and
Meer [13] and Matei and Meer [14] also proposed a different iterative scheme,
which they called HEIV (Heteroscedastic Errors-in-Variables), for minimizing
the Sampson error. Kanatani and Sugaya [12] pointed out that the reprojection
error can be minimized by repeated applications of Sampson error minimization
if the Sampson error is iteratively modified so that it agrees with the reprojection
error in the end. Thus, the reprojection error minimization is accepted today as
the ultimate criterion, and renormalization is regarded as a thing in the past.

In this paper, we note that renormalization is similar to the estimating equa-
tion approach for statistical estimation in the sense that it directly specifies
equations to solve, which has the form of the generalized eigenvalue problem.
We point out that if the form of the generalized eigenvalue problem is modified
by doing high order error analysis using the perturbation technique of Kanatani
[8], renormalization can achieve higher accuracy than reprojection error mini-
mization. We call the resulting scheme hyper-renormalization.

Sec. 2 summarizes the fundamentals of geometric estimation. Sec. 3 de-
scribes the iterative reweight, the most primitive form of the non-minimization
approach. Sec. 4 reformulates Kanatani’s renormalization as an iteratively im-
provement of the Taubin method. In Sec. 5, we do a detailed error analysis of the
generalized eigenvalue problem. In Sec. 6, the procedure of hyper-renormalization
is derived as an iteratively improvement of what is called HyperLS. In In Sec. 7,
we apply it to ellipse fitting to demonstrate that it indeed outperforms repro-
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jection error minimization. In Sec. 8, we conclude that hyper-renormalization is
the best method available today.

2 Geometric Estimation

Equation (1) is a general nonlinear equation in x. In many practical problem,
we can reparameterize the problem to make F (x; θ) linear in θ (but nonlinear
in x), allowing us to write Eq. (1) as

(ξ(x),θ) = 0, (2)

where and hereafter (a, b) denotes the inner product of vectors a and b. The
vector ξ(x) is some nonlinear mapping of x from Rm to Rn, where m and n
are the dimensions of the data xα and the parameter θ, respectively. Since the
vector θ in Eq. (2) has scale indeterminacy, we normalize it to unit norm: ‖θ‖
= 1.

Example 1 (Ellipse fitting). Given a point sequence (xα, yα), α = 1, ..., N ,
we wish to fit an ellipse of the form

Ax2 + 2Bxy + Cy2 + 2(Dx + Ey) + F = 0. (3)

If we let

ξ = (x2, 2xy, y2, 2x, 2y, 1)>, θ = (A,B,C,D,E, F )>, (4)

Eq. (3) has the form of Eq. (2).

Example 2 (Fundamental matrix computation). Corresponding points
(x, y) and (x′, y′) in two images of the same 3-D scene taken from different
positions satisfy the epipolar equation [5]

(x, Fx′) = 0, x ≡ (x, y, 1)>, x′ ≡ (x′, y′, 1′)>, (5)

where F is called the fundamental matrix , from which we can compute the
camera positions and the 3-D structure of the scene [5, 7]. If we let

ξ = (xx′, xy′, x, yx′, yy′, y, x′, y′, 1)>,

θ = (F11, F12, F13, F21, F22, F23, F31, F32, F33)>, (6)

Eq. (5) has the form of Eq. (2).

We assume that each datum xα is a deviation from its true value x̄α by
independent Gaussian noise of mean 0 and covariance matrix σ2V0[xα], where
V0[xα] is a known matrix that specifies the directional dependence of the noise
and σ is an unknown constant that specifies the absolute magnitude; we call
V0[xα] the normalized covariance matrix , and σ the noise level . We simply write
ξα for ξ(xα). It can be expanded in the form

ξα = ξ̄α + ∆1ξα + ∆2ξα + · · · , (7)

3



where and hereafter bars indicate terms without noise and the symbol ∆k means
kth order noise terms O(σk). Using the Jacobian matrix of the mapping ξ(x),
we can express the first order noise term ∆1ξα as follows:

∆1ξα =
∂ξ(x)
∂x

∣∣∣∣
x=x̄α

∆xα. (8)

We define the covariance matrix of ξα by

V [ξα] = E[∆1ξα∆1ξ
>
α ] =

∂ξ(x)
∂x

∣∣∣∣
x=x̄α

E[∆xα∆x>
α ]

∂ξ(x)
∂x

∣∣∣∣>
x=x̄α

= σ2V0[ξα],

(9)

where E[ · ] denotes expectation, and we define

V0[ξα] ≡ ∂ξ(x)
∂x

∣∣∣∣
x=x̄α

V0[xα]
∂ξ(x)
∂x

∣∣∣∣>
x=x̄α

. (10)

The true values x̄α are used in this definition, but in actual computation we re-
place them by their observations xα. It has been confirmed by many experiments
that this does not affect the final result of practical problems. Also, V0[ξα] takes
only the first order error terms into account via the Jacobian matrix, but it has
been confirmed by many experiments that incorporation of higher order terms
does not affect the final result. The effect of higher order error terms becomes
dominant in different places, which we will discuss shortly.

3 Iterative Reweight

The oldest method that is not based on minimization is the following iterative
reweight:

1. Let Wα = 1, α = 1, ..., N , and θ0 = 0.
2. Compute the following matrix M :

M =
1
N

N∑
α=1

Wαξαξ>
α . (11)

3. Solve the eigenvalue problem Mθ = λθ and compute the unit eigenvector
θ for the smallest eigenvalue.

4. If θ ≈ θ0 up to sign, return θ and stop. Else, let

Wα ← 1
(θ, V0[ξα]θ)

, θ0 ← θ, (12)

and go back to Step 2.
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The motivation of this method is the weighted least squares that minimizes

1
N

N∑
α=1

Wα(ξα, θ)2 =
1
N

N∑
α=1

Wαθ>ξαξ>
α θ = (θ, Mθ). (13)

This is minimized by the unit eigenvector θ of the matrix M for the smallest
eigenvalue. As is well known in statistics, the optimal choice of the weight Wα

is the inverse of the variance of that term. Since (ξ̄α, θ) = 0, we have (ξα, θ) =
(∆1ξα, θ) + · · · , and hence the leading term of the variance is

E[(∆1ξα, θ)2] = E[θ>∆1ξα∆1ξ
>
α θ] = (θ, E[∆1ξα∆1ξ

>
α ]θ) = σ2(θ, V0[ξα]θ).

(14)

Hence, we should choose Wα = 1/(θ, V0[ξα]θ), but θ is not known. So, we do
iterations, determining the weight Wα from the value of θ in the preceding
step. Let us call the first value of θ computed with Wα = 1 simply the “initial
solution”. It minimizes

∑N
α=1(ξα, θ)2, corresponding to what is known as least

squares (LS ), algebraic distance minimization, and many other names [5]. This,
iterative reweight is an iterative improvement of the LS solution.

It appears at first sight that the above procedure minimizes

J =
1
N

N∑
α=1

(ξα, θ)
(θ, V0[ξα]θ)

, (15)

which is known today as the Sampson error [5]. However, iterative reweight
does not minimize it, because at each step we are computing the value of θ
that minimizes the numerator part for the fixed value of the denominator term
determined in the preceding step. Hence, at the time of the convergence, the
resulting solution θ is such that

1
N

N∑
α=1

(ξα, θ)2

(θ, V0[ξα]θ)
≤ 1

N

N∑
α=1

(ξα,θ′)2

(θ, V0[ξα]θ)
(16)

for any θ′, but the following does not necessarily hold:

1
N

N∑
α=1

(ξα, θ)2

(θ, V0[ξα]θ)
≤ 1

N

N∑
α=1

(ξα, θ′)2

(θ′, V0[ξα]θ′)
. (17)

The perturbation analysis in [8] tells that the covariance matrix V [θ] of the
resulting solution θ agrees with a theoretical accuracy limit, called KCR lower
bound [1, 7, 8], up to O(σ4). Hence, it is practically impossible to reduce the vari-
ance any further. However, it has been widely known that the iterative reweight
solution has a large bias [7]. For ellipse fitting, for example, it almost always
fit a smaller ellipse than the true shape. Thus, the following strategies were
introduced to improve iterative reweight:
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– Remove the bias of the solution.
– Exactly minimize the Sampson error in Eq. (15).

The former is Kanatani’s renormalization [6, 7], and the latter is the FNS of
Chojnacki et al. [3] and the HEIV of Leedan and Meer [13] and Matei and Meer
[14].

4 Renormalization

Kanatani’s renormalization [6, 7] can be described as follows:

1. Let Wα = 1, α = 1, ..., N , and θ0 = 0.
2. Compute the following matrices M and N :

M =
1
N

N∑
α=1

Wαξαξ>
α , N =

1
N

N∑
α=1

WαV0[ξα] (18)

3. Solve the generalized eigenvalue problem Mθ = λNθ and compute the unit
eigenvector θ for the eigenvalue with the smallest magnitude.

4. If θ ≈ θ0 up to sign, return θ and stop. Else, let

Wα ← 1
(θ, V0[ξα]θ)

, θ0 ← θ, (19)

and go back to Step 2.

This has a different appearance from the procedure described in [6], in which the
generalized eigenvalue problem is reduced to the standard eigenvalue problem,
but the resulting solution is the same [7]. The motivation of renormalization is
as follows. Let M̄ be the true value of the matrix M in Eq. (18) defined by the
true values ξ̄α. Since (ξ̄α, θ) = 0, we have M̄θ = 0. Hence, θ is the eigenvector
of M̄ for eigenvalue 0. Since M̄ is unknown, we estimate it. Since E[∆ξα] = 0
to a first approximation, the expectation of M is

E[M ] = E[
1
N

N∑
α=1

Wα(ξ̄α+∆ξα)(ξ̄α+∆ξα)>] = M̄ +
1
N

N∑
α=1

WαE[∆ξα∆ξ>
α ]

= M̄ +
σ2

N

N∑
α=1

WαV0[ξα] = M̄ + σ2N . (20)

Thus, M̄ = E[M ] − σ2N ≈ M − σ2N , so instead of M̄θ = 0 we solve (M −
σ2N)θ = 0, or Mθ = σ2Nθ. Assuming that σ2 is small, we regard it as the
eigenvalue with the smallest magnitude. As in the case of iterative reweight, we
iteratively update the weight Wα so that it approaches 1/(θ, V0[ξα]θ).

Note that the initial solution with Wα = 1 solves
(∑N

α=1 ξαξ>
α

)
θ =

λ
(∑N

α=1 V0[ξα]
)
θ, which is nothing but the method of Taubin [16], known to
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be very accurate algebraic method without requiring iterations. Thus, renormal-
ization is an iterative improvement of the Taubin solution. According to many
experiments, renormalization is shown to be more accurate than the Taubin
method with nearly comparable accuracy with the FNS and the HEIV. The
accuracy of renormalization is analytically evaluated in [8], showing that the
covariance matrix V [θ] of the renormalization solution θ agrees with the KCR
lower bound up to O(σ4) just as iterative reweight, but the bias is much smaller.
That is the reason for the high accuracy of renormalization.

Very small it may be, the bias is not 0, however. The error analysis in [8]
shows that the bias estimate expression involves the matrix N . Our strategy is
to optimize the matrix N in Eq. (18) to N = (1/N)

∑N
α=1 WαV0[ξα] + · · · so

that the bias is zero up to high order error terms. To do is the main theme of
this paper.

5 Error Analysis

We now analyze the error of the generalized eigenvalue problem, using the per-
turbation technique of [8]. Substituting Eq. (7) into the definition of the matrix
M in Eq. (18), we can expand it in the form

M = M̄ + ∆1M + ∆2M + · · · , (21)

where ∆1M and ∆2M are given by

∆1M =
1
N

N∑
α=1

W̄α

(
∆1ξαξ̄

>
α + ξ̄α∆1ξ

>
α

)
+

1
N

N∑
α=1

∆1W̄αξ̄αξ̄
>
α , (22)

∆2M =
1
N

N∑
α=1

W̄α

(
∆1ξα∆1ξ

>
α + ∆2ξαξ̄

>
α + ξ̄α∆2ξ

>
α

)
+

1
N

N∑
α=1

∆1Wα(∆1ξαξ̄
>
α + ξ̄α∆1ξ

>
α ) +

1
N

N∑
α=1

∆2Wαξ̄αξ̄
>
α . (23)

Let θ = θ̄ + ∆1θ + ∆2θ + · · · be the corresponding expansion of the resulting
θ. At the time of convergence, we have Wα = 1/(θ, V0[ξα]θ). Substituting the
expansion of θ, we obtain the expansion Wα = W̄α+∆1Wα+∆2Wα+ · · · , where

∆1Wα = −2W̄ 2
α(∆1θ, V0[ξα]θ̄), (24)

∆2Wα =
(∆1Wα)2

W̄α
− W̄ 2

α

(
(∆1θ, V0[ξα]∆1θ) + 2(∆2θ, V0[ξα]θ̄)

)
. (25)

(See Supplemental Material). Similarly expanding the eigenvalue λ and the ma-
trix N yet to be determined, the generalized eigenvalue problem Mθ = λNθ
has the form

(M̄ +∆1M +∆2M +· · · )(θ̄+∆1θ+∆2θ+· · · )
= (λ̄+∆1λ+∆2λ+· · · )(N̄ +∆1N +∆2N +· · · )(θ̄+∆1θ+∆2θ+· · · ). (26)
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Equating the noiseless terms on both sides, we have M̄θ̄ = λ̄Nθ̄, but since M̄θ̄
= 0, we have λ̄ = 0. Equating the first and the second order terms on both sides,
we obtain the following relationships:

M̄∆1θ + ∆1Mθ̄ = ∆1λN̄ θ̄, (27)

M̄∆2θ + ∆1M∆1θ + ∆2Mθ̄ = ∆2λN̄ θ̄. (28)

Computing the inner product of Eq. (27) and θ̄ on both sides, we have

(θ̄, M̄∆1θ) + (θ̄,∆1Mθ̄) = ∆1λ(θ̄, N̄ θ̄), (29)

but (θ̄, M̄∆1θ) = (M̄θ̄,∆1θ) = 0 and Eq. (22) implies (θ̄,∆1Mθ̄) = 0, so
∆1λ = 0. The matrix M̄ has rank n − 1, (n is the dimension of θ), θ̄ being
the null vector. Hence, if we let M̄

− be the pseudoinverse of M̄ , the product
M̄

−
M̄ equals the projection matrix P θ̄ in the direction of θ̄. It follows that by

multiplying both sides of Eq. (27) by M̄
− from left, ∆1θ is expressed as follows:

∆1θ = −M̄
−

∆1Mθ̄. (30)

Here, we have noted that since θ is normalized to unit norm, ∆1θ is orthogonal
to θ̄ so P θ̄∆1θ = ∆1θ. Substituting Eq. (30) into Eq. (28), we obtain

∆2λN̄ θ̄ = M̄∆2θ − ∆1MM̄
−

∆1Mθ̄ + ∆2Mθ̄ = M̄∆2θ + T θ̄, (31)

where we define the matrix T to be

T ≡ ∆2M − ∆1MM̄
−

∆1M . (32)

Because θ is a unit vector, it has no error in the direction of itself; we are
interested in the error orthogonal to it. So, we define the second order error of
θ to be the orthogonal component

∆⊥
2 θ ≡ P θ̄∆2θ = M̄

−
M̄∆2θ. (33)

Multiplying Eq. (31) by M̄
− on both sides from left, we obtain ∆⊥

2 θ in the
following form:

∆⊥
2 θ = M̄

−(∆2λN̄ − T )θ̄. (34)

Computing the inner product of Eq. (31) and θ̄ on both sides and noting that
(θ̄, M̄∆2θ) = 0, we obtain ∆2λ in the form

∆2λ =
(θ̄, T θ̄)
(θ̄, N̄ θ̄)

. (35)

Hence, Eq. (34) is rewritten as follows:

∆⊥
2 θ = M̄

−
( (θ̄, T θ̄)

(θ̄, N̄ θ̄)
N̄ θ̄ − T θ̄

)
. (36)
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6 Hyper-renormalization

From Eq. (30), we see that E[∆1θ] = 0: the first order bias is 0. Thus, the bias
is evaluated by the second order term E[∆⊥

2 θ]. From Eq. (36), we obtain

E[∆⊥
2 θ] = M̄

−
( (θ̄, E[T θ̄])

(θ̄, N̄ θ̄)
N̄ θ̄ − E[T θ̄]

)
, (37)

which implies that if we can choose such an N that E[T θ̄] = cN̄ θ̄ for some
constant c, we will have E[∆⊥

2 θ] = 0. Then, the bias will be O(σ4), since the ex-
pectation of odd-order error terms is zero. In order to choose such an N , we need
to evaluate the expectation E[T θ̄]. After a lengthy analysis (see Supplemental
Material), we find that E[T θ̄] = σ2N̄ θ̄ holds if we define

N̄ =
1
N

N∑
α=1

W̄α

(
V0[ξα] + 2S[ξ̄αe>

α ]
)

− 1
N2

N∑
α=1

W̄ 2
α

(
(ξ̄α, M̄

−
ξ̄α)V0[ξα] + 2S[V0[ξα]M̄−

ξ̄αξ̄
>
α ],

)
(38)

where S[ · ] denotes symmetrization (S[A] = (A + A>)/2) and the vectors eα

are defined via

E[∆2ξα] = σ2eα. (39)

This is the core contribution of this paper. From this result, we obtain the
following hyper-renormalization:

1. Let Wα = 1, α = 1, ..., N , and θ0 = 0.
2. Compute the following matrices M and N :

M =
1
N

N∑
α=1

Wαξαξ>
α , (40)

N =
1
N

N∑
α=1

Wα

(
V0[ξα] + 2S[ξαe>

α ]
)

− 1
N2

N∑
α=1

W 2
α

(
(ξα, M−

n−1ξα)V0[ξα]+2S[V0[ξα]M−
n−1ξαξ>

α ]
)
. (41)

Here, M−
n−1 is the pseudoinverse of M with truncated rank n− 1, i.e., with

the smallest eigenvalue replaced by 0 in the spectral decomposition.
3. Solve the generalized eigenvalue problem Mθ = λNθ and compute the unit

eigenvector θ for the eigenvalue with the smallest magnitude.
4. If θ ≈ θ0 up to sign, return θ and stop. Else, let

Wα ← 1
(θ, V0[ξα]θ)

, θ0 ← θ, (42)

and go back to Step 2.
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It turns out that the initial solution with Wα = 1 coincides with what is called
HyperLS [10, 11, 15], which is derived to remove the bias up to second order error
terms within the framework of algebraic methods without iterations. The expres-
sion of Eq. (41) with Wα = 1 lacks one term as compared with the corresponding
expression of HyperLS, but the same solution is produced. We omit the details,
but all the intermediate solutions θ in the hyper-renormalization iterations are
shown to be free of second oder bias. Thus, hyper-renormalization is an iterative
improvement of HyperLS . As in the case of iterative reweight and renormaliza-
tion, the covariance matrix V [θ] of the hyper-renormalization solution θ agrees
with the KCR lower bound up to O(σ4) (see Supplemental Material).

Standard linear algebra routines for solving the generalized eigenvalue prob-
lem Mθ = λNθ assume that N is positive definite, but the matrix N in Eq. (41)
has both positive and negative eigenvalues. For the Taubin method and renormal-
ization, the matrix N in Eq. (18) is positive semidefinite with a zero eigenvalue.
This, however, causes no problem, because the problem can be rewritten as

Nθ =
1
λ

Mθ. (43)

The matrix M in Eq. (40) is positive definite for noisy data, so we can use a
standard routine to compute the eigenvector θ for the eigenvalue 1/λ with the
largest absolute value. If the matrix M happens to have a zero eigenvalue, it
indicates that the data are all exact, so the unit eigenvector for the eigenvalue
0 is the exact solution.

7 Ellipse Fitting Experiment

We define 30 equidistant points on the ellipse shown in Fig. 1(a). The major and
minor axis are set to 100 and 50 pixels, respectively. We add random Gaussian
noise of mean 0 and standard deviation σ to the x and y coordinates of each point
independently and fit an ellipse to the noisy point sequence using the following
methods: 1. LS, 2. iterative reweight, 3. the Taubin method, 4. renormaliza-
tion, 5. HyperLS, 6. hyper-renormalization, 7. ML, 8. ML with hyperaccurate
correction.

For our noise, ML means reprojection error minimization, which can be com-
puted by repeated Sampson error minimization as pointed out by Kanatani and
Sugaya [12]. We used the FNS of Chojnacki et al. [3] for minimizing the Samp-
son error, but according to our experiments, the FNS solution agrees with the
ML solution up to three or four significant digits, as also observed in [12]. So,
we identified the FNS solution with the ML solution. Kanatani [9] analytically
evaluated the bias of FNS to the second order terms and subtracted it from the
FNS solution; he called this scheme hyperaccurate correction.

Figures 1(b), (c) show fitting examples for σ = 0.5; although the noise mag-
nitude is fixed, fitted ellipses are different for different noise. The true shape
is indicated by dotted lines. Iterative reweight, renormalization, and hyper-
renormalization all converged after four iterations, while FNS for ML computa-
tion required nine iterations for Fig. 1(b) and eight iterations for Fig. 1(c).

10



1

2
7

5
8

6 3 4

1

2
3

5
4 6 7 8

(a) (b) (c)

Fig. 1. (a) Thirty points on an ellipse. (b), (c) Fitted ellipses (σ = 0.5). 1. LS, 2.
iterative reweight, 3. the Taubin method, 4. renormalization, 5. HyperLS, 6. hyper-
renormalization, 7. ML, 8. ML with hyperaccurate correction. The dotted lines indicate
the true shape.

We can see that the LS and iterative reweight solutions have large bias,
producing much smaller ellipses than the true shape. The closest ellipse is given
by hyper-renormalization in Fig. 1(b) and by ML with hyperaccurate correction
in Fig. 1(c). Thus, the solution is different for different noise, so statistical tests
are necessary for a fair comparison.

Since the computed θ and its true value θ̄ are both unit vectors, we measure
their discrepancy by the orthogonal component ∆⊥θ = P θ̄θ, where P θ̄ (≡
I − θ̄θ̄

>) is the orthogonal projection matrix along θ̄ (Fig. 2(a)). We generated
10000 independent noise instances for each σ and evaluated the bias B (Fig. 2(b))
and the RMS (root-mean-square) error D (Fig. 2(c)) defined by

B =
∥∥∥ 1

10000

10000∑
a=1

∆⊥θ(a)
∥∥∥, D =

√√√√ 1
10000

10000∑
a=1

‖∆⊥θ(a)‖2, (44)

where θ(a) is the solution in the ath trial. The dotted line in Fig. 2(c) indicates
the theoretical limit, called the KCR lower bound [1, 7, 8], defined by

DKCR =
σ√
N

√
trM̄−

, (45)

where M̄
− is the pseudoinverse of the true value M̄ (of rank 5) of the matrix

M in Eqs. (11), (18), and (40), and tr stands for the trace.
The interrupted plots in Fig. 2(b) for iterative reweight, ML, and ML with

hyperaccurate correction indicate that the iterations did not converge beyond
that noise level. Our convergence criterion is ‖θ − θ0‖ < 10−6 for the current
value θ and the value θ0 in the preceding iteration; their signs are adjusted before
subtraction. If this criterion is not satisfied after 100 iterations, we stopped. For
each σ, we regarded the iterations as not convergent if any among the 10000
trials does not converge. Figure 3 shows the enlargements of Figs. 2(b), (c) for
the small σ part.

We can see from Fig. 2(b) that LS and iterative reweight have very large bias,
in contrast to which the bias of the Taubin method and renormalization is very
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Fig. 2. (a) The true value θ̄, the computed value θ, and its orthogonal component ∆⊥θ
of θ̄. (b), (c) The bias (a) and the RMS error (b) of the fitted ellipse for the standard
deviation σ of the added noise over 10000 independent trials. 1. LS, 2. iterative reweight,
3. the Taubin method, 4. renormalization, 5. HyperLS, 6. hyper-renormalization, 7. ML,
8. ML with hyperaccurate correction. The dotted line in (c) indicates the KCR lower
bound.
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Fig. 3. (a) Enlargement of Fig. 2(b). (b) Enlargement of Fig. 2(c).

small. The bias of HyperLS and hyper-renormalization is still smaller and even
smaller than ML. Since the leading covariance is common to iterative reweight,
renormalization, and hyper-renormalization, the RMS reflects the magnitude of
the bias as shown in Fig. 2(c). Because the hyper-renormalization solution does
not have bias up to high order error terms, it has nearly the same accuracy
as ML, or reprojection error minimization. A close examination of the small σ
part (Fig. 3(b)) reveals that hyper-renormalization outperforms ML. The high-
est accuracy is achieved, although the difference is very small, by Kanatani’s
hyperaccurate correction of ML [9]. However, it first requires the ML solution,
and the FNS iterations for its computation may not converge above a certain
noise level, as shown in Figs. 2(b), (c). On the other hand, hyper-renormalization
is very robust to noise. This is because the initial solution is HyperLS, which
is itself highly accurate already as shown in Figs. 2 and 3. For this reason, we
conclude that it is the best method for practical computations.

Figure 4(a) is an edge image of a scene with a circular object. We fitted an
ellipse to the 160 edge points indicated in red, using various methods. Figure 4(b)
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Fig. 4. (a) An edge image of a scene with a circular object. An ellipse is fitted to the
160 edge points indicated in red. (b) Fitted ellipses superimposed on the original image.
The occluded part is artificially composed for visual ease. 1. LS, 2. iterative reweight,
3. the Taubin method, 4. renormalization, 5. HyperLS, 6. hyper-renormalization, 7.
ML, 8. ML with hyperaccurate correction.

shows the fitted ellipses superimposed on the original image, where the occluded
part is also artificially composed for visual ease. In this case, iterative reweight
converged after four iterations, and renormalization and hyper-renormalization
converged after three iterations, while FNS for ML computation required six
iterations. We can see that LS and iterative reweight produce much smaller
ellipses than the true shape as in Fig. 1(b), (c). All other fits are very close to
the true ellipse, and ML gives the best fit in this particular instance.

8 Conclusions

We have reformulated iterative reweight and renormalization as geometric esti-
mation techniques not based on the minimization principle and optimized the
matrix N that appears in the renormalization computation so that the resulting
solution has no bias up to the second order noise terms. We called the resulting
scheme “hyper-renormalization” and applied it to ellipse fitting (see Supplemen-
tal Material for fundamental matrix computation). We observed:

1. Iterative reweight is an iterative improvement of LS. The leading covariance
of the solution agrees with the KCR lower bound, but the bias is very large,
so the accuracy is low.

2. Renormalization is an iterative improvement of the Taubin method. The
leading covariance of the solution agrees with the KCR lower bound, and
the bias is very small, so the accuracy is high.

3. Hyper-renormalization is an iterative improvement of HyperLS. The leading
covariance of the solution agrees with the KCR lower bound with no bias up
to high order error terms. Its accuracy outperforms ML (reprojection error
minimization).

4. Although the difference is very small, ML with hyperaccurate correction
exhibits the highest accuracy, but the iterations for its computation may

13



not converge in the presence of large noise, while hyper-renormalization is
robust to noise.

We conclude that hyper-renormalization is the best method for practical com-
putations.
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A Expansion of the weights Wα

In order to evaluate ∆1Wα and ∆2Wα in Eqs. (22) and (23), we write Wα =
1/(θ, V0[ξα]θ) as Wα(θ, V0[ξα]θ) = 1 and substitute the expansions of Wα and
θ:

(W̄α+∆1Wα+∆2Wα+· · · )
(
(θ̄+∆1θ+∆2θ+· · · , V0[ξα](θ̄+∆1θ+∆2θ+· · · )

)
= 1. (46)

Equating the noiseless terms on both sides, we obtain W̄α(θ̄, V0[ξα]θ̄) = 1. Equat-
ing the first order terms on both sides, we obtain

∆1Wα(θ̄, V0[ξα]θ̄) + W̄α(∆1θ, V0[ξα]θ̄) + W̄α(θ̄, V0[ξα]∆1θ̄) = 0, (47)

from which we obtain

∆1Wα = −2W̄α(∆1θ, V0[ξα]θ̄)
(θ̄, V0[ξα]θ̄)

= −2W̄ 2
α(∆1θ, V0[ξα]θ̄). (48)

Equating the second order terms on both sides of Eq. (46), we obtain

∆2Wα(θ̄, V0[ξα]θ̄) + ∆1Wα

(
(∆1θ, V0[ξα]θ̄) + (θ̄V0[ξα],∆1θ)

)
+W̄α

(
(∆1θ, V0[ξα]∆1θ) + (∆2θ, V0[ξα]θ̄) + (θ̄, V0[ξα]∆2θ)

)
= 0, (49)

from which we obtain

∆2Wα = − 1
(θ̄, V0[ξα]θ̄)

(
2∆1Wα(∆1θ, V0[ξα]θ̄) + W̄α

(
(∆1θ, V0[ξα]∆1θ)

+2(∆2θ, V0[ξα]θ̄)
))

= −W̄α

(
2∆1Wα

(
−∆1Wα

2W̄ 2
α

)
+ W̄α

(
(∆1θ, V0[ξα]∆1θ) + 2(∆2θ, V0[ξα]θ̄)

))
=

(∆1Wα)2

W̄α
− W̄ 2

α

(
(∆1θ, V0[ξα]∆1θ) + 2(∆2θ, V0[ξα]θ̄)

)
. (50)

Thus, we obtain Eqs. (24) and (25).
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B Derivation of Hyper-renormalization

We evaluate the expectation of T θ̄ = ∆2Mθ̄−∆1MM̄
−

∆1Mθ̄ and derive the
hyper-renormalization procedure in several steps.

B.1 Evaluation of E[∆2Mθ̄]

From Eq. (22) and (ξ̄α, θ̄) = 0, we can express ∆2Mθ̄ in the following form:

∆2Mθ̄ =
1
N

N∑
α=1

W̄α

(
∆1ξα∆1ξ

>
α + ∆2ξαξ̄

>
α + ξ̄α∆2ξ

>
α

)
θ̄

+
1
N

N∑
α=1

∆1Wα(∆1ξαξ̄
>
α + ξ̄α∆1ξ

>
α )θ̄ +

1
N

N∑
α=1

∆2Wαξ̄αξ̄
>
α θ̄

=
1
N

N∑
α=1

W̄α((∆1ξα, θ̄)∆1ξα + (∆2ξα, θ̄)ξ̄α)

+
1
N

N∑
α=1

∆1Wα(∆1ξα, θ̄)ξ̄α. (51)

Hence, E[∆2Mθ̄] is

E[∆2Mθ̄] =
1
N

N∑
α=1

W̄α

(
E[∆1ξα∆1ξ

>
α ]θ̄ + (E[∆2ξα], θ̄)ξ̄α

)
+

1
N

N∑
α=1

(E[∆1Wα∆1ξα], θ̄)ξ̄α

=
σ2

N

N∑
α=1

W̄α

(
V0[ξα]θ̄+(eα, θ̄)ξ̄α

)
+

1
N

N∑
α=1

(E[∆1Wα∆1ξα], θ̄)ξ̄α. (52)

We now consider the expectation of ∆1Wα∆1ξα. From Eqs. (22), (24), (30), we
obtain the following expressions:

∆1Wα = −2W̄ 2
α(∆1θ, V0[ξα]θ̄) = 2W̄ 2

α(M̄−
∆1Mθ̄, V0[ξα]θ̄)

= 2W̄ 2
α(M̄−

( 1
N

N∑
β=1

W̄β

(
∆1ξβ ξ̄

>
β +ξ̄β∆1ξ

>
β

)
+

1
N

N∑
β=1

∆1W̄β ξ̄β ξ̄
>
β

)
θ̄, V0[ξα]θ̄)

=
2
N

N∑
β=1

W̄ 2
αW̄β(∆1ξβ , θ̄)(M̄−

ξ̄β , V0[ξα]θ̄)

=
2
N

N∑
β=1

W̄ 2
αW̄β(ξ̄β , M̄

−
V0[ξα]θ̄)(∆1ξβ , θ̄), (53)
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E[∆1Wα∆1ξα] = E[
2
N

N∑
β=1

W̄ 2
αW̄β(ξ̄β , M̄

−
V0[ξα]θ̄)(∆1ξβ , θ̄)∆1ξα]

=
2
N

N∑
β=1

W̄ 2
αW̄β(ξ̄β , M̄

−
V0[ξα]θ̄)E[∆1ξα∆1ξ

>
β ]θ̄

=
2
N

N∑
β=1

W̄ 2
αW̄β(ξ̄β , M̄

−
V0[ξα]θ̄)σ2δαβV0[ξα]θ̄

=
2σ2

N
W̄ 3

α(ξ̄α, M̄
−

V0[ξα]θ̄)V0[ξα]θ̄, (54)

1
N

N∑
α=1

(E[∆1Wα∆1ξα], θ̄)ξ̄α =
1
N

N∑
α=1

(
2σ2

N
W̄ 3

α(ξ̄α, M̄
−

V0[ξα]θ̄)V0[ξα]θ̄, θ̄)ξ̄α

=
2σ2

N2

N∑
α=1

W̄ 3
α(ξ̄α, M̄

−
V0[ξα]θ̄)(θ̄, V0[ξα]θ̄)ξ̄α

=
2σ2

N2

N∑
α=1

W̄ 2
α(ξ̄α, M̄

−
V0[ξα]θ̄)ξ̄α. (55)

Here, we have noted that error in ξα is independent for different α and hence
E[∆1ξα∆1ξ

>
β ] = δαβV0[ξα], where δαβ is the Kronecker delta. From the above

expressions, we can write E[∆2Mθ̄] as follows:

E[∆2Mθ̄] =
σ2

N

N∑
α=1

W̄α

(
V0[ξα]θ̄+(eα, θ̄)ξ̄α

)
+

2σ2

N2

N∑
α=1

W̄ 2
α(ξ̄α, M̄

−
V0[ξα]θ̄)ξ̄α.

(56)

B.2 Evaluation of E[∆1MM̄
−

∆1Mθ̄]

We next consider the expectation of ∆1MM̄
−

∆1Mθ̄. From Eq. (22), we can
write

∆1Mθ̄ =
1
N

N∑
α=1

W̄α

(
∆1ξαξ̄

>
α + ξ̄α∆1ξ

>
α

)
θ̄ +

1
N

N∑
α=1

∆1W̄αξ̄αξ̄
>
α θ̄

=
1
N

N∑
α=1

W̄α(∆1ξα, θ̄)ξ̄α, (57)

∆1MM̄
−

∆1Mθ̄ = ∆1MM̄
− 1

N

N∑
α=1

W̄α(∆1ξα, θ̄)ξ̄α

=
( 1
N

N∑
β=1

W̄β

(
∆1ξβ ξ̄

>
β +ξ̄β∆1ξ

>
β

)
+

1
N

N∑
β=1

∆1W̄β ξ̄β ξ̄
>
β

)
M̄

− 1
N

N∑
α=1

W̄α(∆1ξα, θ̄)ξ̄α
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=
1

N2

N∑
α,β=1

W̄αW̄β

(
∆1ξβ ξ̄

>
β + ξ̄β∆1ξ

>
β

)
M̄

−(∆1ξα, θ̄)ξ̄α

+
1

N2

N∑
α,β=1

W̄α∆1W̄β ξ̄β ξ̄
>
β M̄

−(∆1ξα, θ̄)ξ̄α

=
1

N2

N∑
α,β=1

W̄αW̄β(∆1ξα, θ̄)
(
∆1ξβ ξ̄

>
β + ξ̄β∆1ξ

>
β

)
M̄

−
ξ̄α

+
1

N2

N∑
α,β=1

W̄α∆1W̄β(∆1ξα, θ̄)ξ̄β ξ̄
>
β M̄

−
ξ̄α

=
1

N2

N∑
α,β=1

W̄αW̄β(∆1ξα, θ̄)(ξ̄β , M̄
−

ξ̄α)∆1ξβ (Let this term be t1)

+
1

N2

N∑
α,β=1

W̄αW̄β(∆1ξα, θ̄)(∆1ξβ , M̄
−

ξ̄α)ξ̄β (Let this term be t2)

+
1

N2

N∑
α,β=1

W̄α∆1W̄β(∆1ξα, θ̄)(ξ̄β , M̄
−

ξ̄α)ξ̄β . (Let this term be t3)

(58)

Consider the expectation of each term. The expectation of the first term t1 is

E[t1] =
1

N2

N∑
α,β=1

W̄αW̄β(ξ̄β , M̄
−

ξ̄α)E[∆1ξβ∆1ξ
>
α ]θ̄

=
1

N2

N∑
α,β=1

W̄αW̄β(ξ̄β , M̄
−

ξ̄α)σ2δαβV0[ξα]θ̄

=
σ2

N2

N∑
α=1

W̄ 2
α(ξ̄α,M̄

−
ξ̄α)V0[ξα]θ̄. (59)

The expectation of the second term t2 is

E[t2] =
1

N2

N∑
α,β=1

W̄αW̄β(θ̄, E[∆1ξα∆1ξ
>
β ]M̄−

ξ̄α)ξ̄β

=
1

N2

N∑
α,β=1

W̄αW̄β(θ̄, σ2δαβV0[ξα]M̄−
ξ̄α)ξ̄β

=
σ2

N2

N∑
α=1

W̄ 2
α(θ̄, V0[ξα]M̄−

ξ̄α)ξ̄α =
σ2

N2

N∑
α=1

W̄ 2
α(ξ̄α, M̄

−
V0[ξα]θ̄)ξ̄α. (60)

In order to evaluate the expectation of the last term t3, we note that we obtain
from Eqs. (53) and (54) the following expressions:
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∆1Wβ =
2
N

N∑
γ=1

W̄ 2
βW̄γ(∆1ξγ , θ̄)(M̄−

ξ̄γ , V0[ξβ ]θ̄)

=
2
N

N∑
γ=1

W̄ 2
βW̄γ(ξ̄γ , M̄

−
V0[ξβ ]θ̄)(∆1ξγ , θ̄), (61)

E[∆1Wβ∆1ξα] = E[
2
N

N∑
γ=1

W̄ 2
βW̄γ(ξ̄γ , M̄

−
V0[ξβ ]θ̄)(∆1ξγ , θ̄)∆1ξα]

=
2
N

N∑
γ=1

W̄ 2
βW̄γ(ξ̄γ , M̄

−
V0[ξβ ]θ̄)E[∆1ξα∆1ξ

>
γ ]θ̄

=
2
N

N∑
γ=1

W̄ 2
βW̄γ(ξ̄γ , M̄

−
V0[ξβ ]θ̄)σ2δαγV0[ξα]θ̄

=
2σ2

N
W̄ 2

βW̄α(ξ̄α,M̄
−

V0[ξβ ]θ̄)V0[ξα]θ̄, (62)

(E[∆1W̄β∆1ξα], θ̄) = (
2σ2

N
W̄ 2

βW̄α(ξ̄α, M̄
−

V0[ξβ ]θ̄)V0[ξα]θ̄, θ̄)

=
2σ2

N
W̄ 2

βW̄α(ξ̄α,M̄
−

V0[ξβ ]θ̄)(θ̄, V0[ξα]θ̄)

=
2σ2

N
W̄ 2

β (ξ̄α, M̄
−

V0[ξβ ]θ̄). (63)

Hence, the expectation of t3 is

E[t3] =
1

N2

N∑
α,β=1

W̄α

(2σ2

N
W̄ 2

β (ξ̄α, M̄
−

V0[ξβ ]θ̄)
)
(ξ̄β , M̄

−
ξ̄α)ξ̄β

=
2σ2

N3

N∑
α,β=1

W̄αW̄ 2
β (ξ̄β , M̄

−
ξ̄α)(ξ̄α, M̄

−
V0[ξβ ]θ̄)ξ̄β

=
2σ2

N3

N∑
α,β=1

W̄αW̄ 2
β ξ̄

>
β M̄

−
ξ̄αξ̄

>
α M̄

−
V0[ξβ ]θ̄ξ̄β

=
2σ2

N2

N∑
β=1

W̄ 2
β ξ̄

>
β M̄

−
( 1

N

N∑
α=1

W̄αξ̄αξ̄
>
α

)
M̄

−
V0[ξβ ]θ̄ξ̄β

=
2σ2

N2

N∑
β=1

W̄ 2
β ξ̄

>
β M̄

−
M̄M̄

−
V0[ξβ ]θ̄ξ̄β =

2σ2

N2

N∑
β=1

W̄ 2
β ξ̄

>
β M̄

−
V0[ξβ ]θ̄ξ̄β

=
2σ2

N2

N∑
β=1

W̄ 2
β (ξ̄β , M̄

−
V0[ξβ ]θ̄)ξ̄β . (64)
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From the above results, we can write the expectation of ∆1MM̄
−

∆1Mθ̄ as
follows:

E[∆1MM̄
−

∆1Mθ̄] =
σ2

N2

N∑
α=1

W̄ 2
α(ξ̄α,M̄

−
ξ̄α)V0[ξα]θ̄

+
3σ2

N

N∑
α=1

W̄ 2
α(ξ̄α, M̄

−
V0[ξα]θ̄)ξ̄α. (65)

B.3 Hyper-renormalization

From the above results, the expectation of T θ̄ is

E[T θ̄]

=
σ2

N

N∑
α=1

W̄α

(
V0[ξα]θ̄ + (eα, θ̄)ξ̄α

)
− σ2

N2

N∑
α=1

W̄ 2
α(ξ̄α, M̄

−
ξ̄α)V0[ξα]θ̄

− σ2

N2

N∑
α=1

W̄ 2
α(ξ̄α, M̄

−
V0[ξα]θ̄)ξ̄α

=
σ2

N

N∑
α=1

W̄α

(
V0[ξα]θ̄ + ξ̄αe>

α θ̄
)
− σ2

N2

N∑
α=1

W̄ 2
α(ξ̄α, M̄

−
ξ̄α)V0[ξα]θ̄

− σ2

N2

N∑
α=1

W̄ 2
αξ̄αξ̄

>
α M̄

−
V0[ξα]θ̄

=
σ2

N

N∑
α=1

W̄α

(
V0[ξα]θ̄ + (ξ̄αe>

α + eαξ̄
>
α )θ̄

)
− σ2

N2

N∑
α=1

W̄ 2
α(ξ̄α, M̄

−
ξ̄α)V0[ξα]θ̄

− σ2

N2

N∑
α=1

W̄ 2
α

(
ξ̄αξ̄

>
α M̄

−
V0[ξα] + V0[ξα]M̄−

ξ̄αξ̄
>
α

)
θ̄, (66)

where eα is defined via Eq. (39). Note that since the matrix N̄ in the generalized
eigenvalue problem should be symmetric, we made use of the identity (ξ̄, θ) = 0
and added extra terms that are zero so that a symmetric matrix results. Thus,
with the matrix N̄ defined by Eq. (38), the above expression is written as E[T θ̄]
= σ2N̄ θ̄. It follows that if N is defined by Eq. (41), its noiseless value N̄ satisfies
E[T θ̄] = σ2N̄ θ̄.
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C Evaluation of the Covariance Matrix of the Solution

Iterative reweight, renormalization, and hyper-renormalization all solve the gen-
eralized eigenvalue problem Mθ = λNθ, where N is the unit matrix I for
iterative reweight, the matrix in Eq. (18) for renormalization, and the matrix in
Eq. (41) for hyper-renormalization, while M is common (Eqs. (11), (18), and
(40)). If we closely examine the analysis in Sec. 5, we obtain Eq. (30) irrespective
of the definition of N . Hence, the covariance of the solution θ is written up to
O(σ4) as follows:

V [θ] = E[∆θ∆θ>]

= E[
( 1

N

N∑
α=1

W̄α(∆ξα, θ̄)M̄−
ξ̄α

)( 1
N

N∑
β=1

W̄β(∆ξβ , θ̄)M̄−
ξ̄β

)>
]

=
1

N2

N∑
α,β=1

W̄αW̄βE[(∆ξα, θ̄)(∆ξβ , θ̄)]M̄−
ξ̄αξ̄

>
β M̄

−

=
1

N2

N∑
α,β=1

W̄αW̄β(θ̄, E[∆ξα∆ξ>
β ]θ̄)M̄−

ξ̄αξ̄
>
β M̄

−

=
1

N2

N∑
α,β=1

W̄αW̄β(θ̄, σ2δαβV0[ξα]θ̄)M̄−
ξ̄αξ̄

>
β M̄

−

=
σ2

N2

N∑
α=1

W̄ 2
α(θ̄, V0[ξα]θ̄)M̄−

ξ̄αξ̄
>
α M̄

− =
σ2

N
M̄

−
( 1

N

N∑
α=1

W̄αξ̄αξ̄
>
α

)
M̄

−

=
σ2

N
M̄

−
M̄M̄

− =
σ2

N
M̄

−
, (67)

where we have noted that error in ξα is independent for different α and hence
E[∆1ξα∆1ξ

>
β ] = δαβV0[ξα], δαβ being the Kronecker delta. We have also used

the identity for pseudoinverse: M̄
−

M̄M̄
− = M̄

−.
from the above results, we see that the leading term of the covariance matrix

of the solution is the same for iterative reweight, renormalization, and hyper-
renormalization, independent of N . The last term of Eq. (67) coincides with
the accuracy limit called the KCR lower bound [1, 7, 8], meaning that the solu-
tion of iterative reweight, renormalization, and hyper-renormalization all achieve
the KCR lower bound in the leading order. The trace of Eq. (67) is trV [θ] =
trE[∆θ∆θ>] = E[‖∆θ‖2], whose square root gives the bound ton the RMS error
in Eq. (45).
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D Fundamental Matrix Computation Experiment

Figure 5 shows two synthetic images of a cylindrical grid placed in the scene.
The image size is assumed to be 600 × 600 pixels with focal length 600 pixels
for both. We added Gaussian noise of mean 0 and standard deviation σ pixels
the x and y coordinates of each grid point independently and computed the
fundamental matrix. The fundamental matrix F is constrained to det F = 0 [5],
and there exist three approaches to enforce it: 1) A posteriori correction. The
fundamental matrix is first computed without considering the constraint and is
modified a posteriori so as to satisfy it in an optimal manner. 2) Internal access.
The fundamental matrix is parameterized so that the constraint is identically
satisfied and is optimized in the (“internal”) parameter space. 3) External access.
We do iterations in the (“external”) 9-D space of the fundamental matrix in such
a way that an optimal solution that satisfies the constraint automatically results.
Here, we adopt the a posteriori correction approach and compare the accuracy
of computation before that correction, using the following methods: 1. LS, 2.
iterative reweight, 3. the Taubin method, 4. renormalization, 5. HyperLS, 6.
hyper-renormalization, 7. ML, 8. ML with hyperaccurate correction.

Then, we computed the bias B and the RMS error D defined by Eq. (44),
where θ is the 9-D vector as defined in Eq. (6). The KCR lower bound is given
by Eq. (45), where the matrix M̄ has rank 8 for the fundamental matrix compu-
tation. The computed bias and the RMS error are plotted in Fig. 2 together with
the KCR lower bound. As in the case of ellipse fitting, LS and iterative reweight
have large bias, resulting in large RMS error. As we see in Fig. 6(a), ML has
considerable bias, but it is mostly removed by hyperaccurate correction, result-
ing in nearly the same bias as hyper-renormalization. As we see in Fig. 2(b), the
RMS error of all methods except LS and iterative reweight is already very close
to the KCR lower bound, so the effect of bias reduction is very small. A close
examination reveals, however, that the highest accuracy is exhibited by hyper-
renormalization and ML with hyperaccurate correction, just as in the case of
ellipse fitting.
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Fig. 5. Two synthetic images of a cylindrical grid.
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Fig. 6. The bias (a) and the RMS error (b) of the computed fundamental matrix for
the standard deviation σ of the added noise for 10000 independent trials. 1. LS, 2.
iterative reweight, 3. the Taubin method, 4. renormalization, 5. HyperLS, 6. hyper-
renormalization, 7. ML, 8. ML with hyperaccurate correction. The dotted line in (c)
indicates the KCR lower bound.
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