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1 Introduction

The circle and ellipse fitting problems are getting quite important in contem-
porary experimental physics due to the wide use of the RICH (Ring Imaging
CHerenkov) detectors as the main instrument for the particle identification. Che-
renkov radiation photons produced by charged particles transversing the RICH’s
sensitive volume (radiator) are then focused onto a detector and converted to elec-
tronic avalanches to be read out via multi-wires proportional chamber or other
two-dimensional array of many thousand photosensitive sells (pads). During an
event a number of Cherenkov photons produced by a detected particle falls on the
pad plane and dependently on the particle incident angle forms rings or ellipses.
Besides sometime a part of photons formed these ellipses are not detected beeing
on the edge of a sensitive area or due to internal reflection from the detector surface
(see for example [1, 2].

Thus in this paper we consider the problem of reconstructing the ellipse para-
meters from measurements of some part of an ellipse in presence of contaminating
points. On the first glance the statistical problem of robust ellipse fitting looks as
a simple generalization of the circular fitting, where an essential experience is ac-
cumulated in physical and other applications [3, 4, 9, 6, 5]. However some serious
obstacles should be poited out that make the ellipse fitting problem much harder
than circle fitting one from both, analytical and statistical points of view: (1) Unlike
circles ellipses are not invariant to rotations, so all five basic ellipse parameters (its
principal half-axes a and b, center co-ordinates z., y. and the angle o of its main
axis direction) must be searched. It makes the problem quite non-linear. (2) Consid-
ering an arbitrary ellipse in arbitrary axes one should use as its equation a general
equation of the second order curve, but without the special ellipse constraint one
could obtain some other conic section, for instance, hyperbola. (3) In order to ob-
tain the best, most exact fit one should minimize the functional constructed from
geometrical distances of given points to the searched ellips. That should inevitably
increase the non-linearity of the problem. (4) As it was pointed above, in our par-
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ticular application measured data can be incomplete and are contaminated by noise
and points of other, close ellipses, therefore a special robust technique application
(see, for instance [9]) is inavoidable.

2 Algebraic fitting

We have to fit an ellipse to the given set of measurements (z;,;),i = 1,n. The
ellipse equation in its canonical form 1s

Shift the center to (¢, y.) and rotation on the angle a give the general equation of
the second order curve

Q(x,y) = Ax? + Bey + Cy* + Dx + Ey + F = 0, (1)

The special ellipse constraint (4AC—B?) > 0 is needed. Well known algebraic ellipse fit,
i.e. minimizing of

L(A,B,C,D,E,F)="3" Q(a:, )’ (2)
i=1

has quite a rich history (see surveys in [6, 5]). Its obvious disadvantage is that
the value of |Q(xs,y;)| does not represent the distance from the point (z;,y;) to
the ellipse. That leads to many unpleasant diffuculties, in particular, in cases of
non-complete and contaminated measurements [4].

3 Kepler’s ellipse definition

It is clear now that the same problem should arise in the case of the algebraic
ellipse fit by minimizing (2).We prefer Kepler’s ellipse definition as a locus formed
by points for each the sum of its distances from two fixed point (focuses (z¢1,ys1)
and (x72,yr2)) is a constant:

di + ds = 2a, (3)

where dy = \/(z —2p1)? + (y —ys1)? d2 = \/(x — 22)" + (y — yp2)”.
Denoting p; = di + d2 — 2a
we have the problem to minimize

n
L(xflﬁ Y1, Tr2, Yr2, Cl) = szz = minxfl,yfl,xﬁ,yfg,a (4)
i=1

This approach is non-linear and involves us into an iterative minimization proce-
dure, but it has some advantages.

— It would give us namely an ellipse without applying any constraints.
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— Parameters are invariant to any shifts and rotations, besides it is easy to derive
from them five basic ellipse parameters a, b, z., y., @ needed for physicists.

— All these parameters are of the same order of magnitude what is important
for choosing steps in parameter space during iterations.

As for non-linearity, we are going even to aggravate it due to two more require-
ments:

- to overcome data contamination by robust fitting;

- to obtain the most accurate parameter estimations by accomplishing the best
geometric fit.

Our first attempt to carry out the weighted robust fit in the following iterative
algorithm minimizing the weighted analog of (4):

n

L(xflayflaxf%yf?aa):Zw(pi)pzza (5)
i=1

with the optimal functional weights [7]

1

1+ (p/const)? (6)

w(p)

If one differentiates (5) by parameters and equals derivatives to zero, one obtaines
a simple iterative scheme (m is the iteration number):

A = (Swig™ )60,

m m—1 m—1

yﬁtl) = (Zwiyzgg ))/G(l )’

m 1 m—1

= (D" G, @
0 = (w6,

alm = (O wi(d Y 4 d ) 2 w),

where
™ =1 (@Y = 2l Y,
o =14 (A" = 2alm )Y,
GT_l = Z?:l wiggm_l)’ GT_l = Z?:l wiggm_l)’

m—1 m—1 m—1

AV = e ) - )

(d(zm_l) is obtained similarly).

Initial values foJl), ygtol), J:E%), ygtoz), al®) are obtained either by setting ggo) = ggo) =
1 or from physical background, which is as usual expected from out-of-RICH TPC
measurements.

This algorithm was implemented in CTT. Some of results of its application are
presented in fig.1 and fig.2. It works in cases of non-complete and contaminated
data, but its efficiency depends too much on the initial parameter values, besides

on this way we could not meet the best fit requirement.
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(a) (b)

Fig. 1. Robust fit of the Kepler’s equation. Complete ellipse, contaminated data. (a)
o =0.1, 7 iterations (b) o =1, 120 iterations

(a)

Fig. 2. Robust fit of the Kepler’s equation. Non-complete (one-half of the ellipse arc) and
contaminated data. (a) o = 0.1 (of bin-size), good initial parameter values, (b) 6 =1
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4 Robust geometric fitting

Geometrical fit. Under the assumption that all the experimental points are quite
close to our ellipse (3) with the equation

K(i; 251,91, Tp2,Yp2,a) = pi = 0
the distance from the point (z;, ¥;) to the ellipse is approximately equal to
D; = |K(4....)|/|lgrad K (i; ....)]], (8)

where ||gradK (i;....)|| is the length of the gradient vector of the function K(7;....)
at the point (z;, ;) or on the ellipse near that point. Now, instead of (4) for the
best fit we need to minimize

L(zp1,ys1, w0, Ypa,0) = Y p7 /|lgrad K (i; ...) || (9)
i=1

However, because of the data contamination we have to use one of robust methods.
We choose the summed Gaussian weights approach [9].

n D2

_

— 202 ;

- z :6 * jmlnxfl,yfl,xﬁ,yﬁ,a (10)
i=1

e

with D; from (8) and a suitably chosen oy,. The fast drop of the double negative
exponent for big D); guarantees that our basic assumption is accomplished. The

expansion of L

: L2 NS D
L=-nt) 5-1/2) H+. (11)
i=1 i=1

shows that for small D; L can be interpreted as x2 for conventional unweighted
least square method.

5 FUMIVI and its applications

Unfortunately, the structure of this functional (10) is really disgusting. Tt is non-
convex, has many local minima sometimes at the end of a curved valley. Therefore,
its matrix of the second derivatives by parameters 1s not everywhere positively
defined.

An experience with handling such functionals in the simpler problem of robust
circle fitting [9] shows that one of the most equipped famous MINUIT minimizig
program appeared to be too time consuming.

However the new minimization program
FUMIVI (FUnction MInimization by Valley Investigation) was recently developed
by one of authors [13, 14] especially to overcome such type of problems.

The main FUMIVI features are:
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— Minimization of arbitrary regular functions with the arbitrary structure.
— Constraints of an arbitrary structure can be applied.

— In the case of the known functional structure the simplified matrix of the
second derivatives by parameters is used with a linear expansion of the func-
tional argument as well as the quadratic expansion of the functional itself. It
gives the essentional decreasing of the calculation amount. The quality of the
above expansions is controlled automatically by the FUMIVI algorithm.

— The FUMIVT is using the quadratic approximation of the minimized function
in order to minimize it on an auxilary box in the parameter space that lim-
its parameter steps. It is remarkable that it is possible also for non-positive
quadratic functions.

— Special means are provided in FUMIVI to speed up considerably a deccent
along curved multidimentional valleys in parameter space.

Thus FUMIVI gives us an unique complex of resources to solve a wide circle of
complicated minimization problems, in particular, our robust fitting of ellipses is a
suitable object for it.

The FORTRAN-77 version of FUMIVI was used (although a simplified C't+

version is also available [13, 14].

6 Simulation results and concluding remarks

We use Monte-Carlo simulations to test more in details the accuracy and effi-
ciency of proposed methods and the dependences of their results on such factors
as (i) the sample contamination, (ii) measurement uncertainties, (iii) a quality of
initial values of parameters.

The measured data points were simulated as follows. n points were distributed
along an ellipse according to the Poisson law with normally distributed A(0, o9)
deviations from the ellipse.

A contamination was simulated by N.,,: points spread uniformly in the area
surrounding the ellipse. N¢o,; was used in percents of the number n (0%, 50%,
100%). We used the pad-size as the basic unit, so the typical ellipse diameter was
chosen orienting to COMPASS preliminary data as 30. For non-comlete ellipses n
points were distributed randomly along one-half of the ellipse angle arc.

One essential factor should be stressed saying about robust weight methods. The
width of the weight function, i.e. coefficient o, in (10) must decrease stepwisely in
full accordance with the famous simulated annealing approach [11] There is also a
deep similarity of our robust weighted method with the elastic arm or deformable
template approach (see, for instance [12]). Dependently on the initial approximation
of parameters the value of o,, must be choosen big enough to allow to capture the
majority of ellipse points. Then after the iteration convergence o, must be taken
much smaller to allow to remove noise points etc until o, would become of the
same order of magnitude as the scatter o of the ellipse points.
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Fig. 3. Fitting results for complete ellipse. Upper curve presents a dependence of para-
meter RMS (magniﬁed by 100) on the contamination level N.on:. Lower curve depicted
the average number of FBEA iterations on all three stages of the elastic algorithm.

Thus an FUMIVI-based elastic algorithm (FBEA) was proposed. It calls the
FUMIVI program modified to use the summed Gaussian weights method (10) three
times with o, equal correspondingly to 100¢, 309 and oy. We choose the following
characteristics of the fitting results: RMS of restored parameters, the total number
of iterations on all three stages of our elastic algorithm and the FBEA efficiency, i.e.
relative number of events which parameter estimations were within the unit sphere
around the simulated values. Results showing the dependence of the first two of
these criteria on the contamination level N, for g = 0.3 and good inial parameter
values are depicted in fig.3. The upper curve presents parameter RMS (magnified
by 100) versus Ncont. Vertical bars show the RMS range for all five parameters
a, b, xc,ye, . Lower curve depicted the average number of FBEA iterations on all
three stages of elastic algorithm reflecting its speed. The FBEA efficiency was on
the satisfactory level 98.5-99% decreasing to 97% for Neon: = 100%. The same level
of accuracy we obtained also for non-complete ellipse, although the efficiency fell
down to 92-93%.

We tested also the FBEA stability to the growth of the point scattering around
the ellipse. As expected, it leads to a linear growth of parameter RMS, but already
for oy = 0.4 the iteration number increased drastically and the efficiency fell down

to 90%.

Czech. J. Phys. 49 (1999) A 7



G.Ososkov et al.

A remarkable fact was that the FBEA kept converging to the right solution
(known due to Monte-Carlo simulations) in 92% of events even for randomly chosen
initial values of ellipse parameters. However, it took sometime up to 220 iterations,
besides we could qualify some of solutions as wrong only because of knowing the
right one, what would be excluded in the real life.

Relative slowness of the FBEA in comparison to the robust version of the al-
gebraic fit, or to the straightforward iterations (7) or, at least, to the simplified
FUMIVI fit without including the gradient brings one to an idea of a combined
method, in which some of these faster methods 1s used on the first two of the
simulated annealing stages. The obtained parameter values are used then on the
concluding stage for the final fit. We tested some of these combinations. They are
much faster sometimes, but the important observation was that for the level of
contamination higher than 50% it leads to inadmissible high persentage of cases
when iterations converge to one of local minima and stuck in it.

Thus for cases of a heavy contaminated samples we would recommend the FBEA
method as a very reliable and accurate. There are stil some reserves to speed it
up. We obtained already the factor four in speed by optimizing the program and,
especially, by rewritting the matrix inverse subroutine including in it special index
operations.

Authors thank Yu.Golev for performing C*+ programming.
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