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Abstract The Local Ergodic Theorem (also known as the ‘Fundamental Theorem’) gives

19 sufficient conditions under which a phase point has an open neighborhood that belongs
20 (mod 0) to one ergodic component. This theorem is a key ingredient of many proofs of
21 ergodicity for billiards and, more generally, for smooth hyperbolic maps with singulari-
22

ties. However, the proof of that theorem relies upon a delicate assumption (Chernov-Sinai
23 Ansatz), which is difficult to check for some physically relevant models, including gases of
24 hard balls. Here we give a proof of the Local Ergodic Theorem for two dimensional billiards
25 without using the Ansatz.

26
27 Keywords Hard balls - Boltzmann-Sinai hypothesis - Semi-dispersing billiards -
28 Ergodicity
29
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1 Introduction
32
22 In this work we make a step toward a complete solution (yet to be achieved) of the celebrated

Boltzmann-Sinai ergodic hypothesis. The latter asserts [16] that every system of n > 2 hard
35 . . . . . . . .
% balls on a torus of dimension d > 2 is ergodic (provided the trivial first integrals are elim-
a7 inated). This model reduces to the motion of a billiard particle in a d(n — 1)-dimensional
gg  lOTUS bouncing off n(n — 1)/2 cylindrical obstacles (the billiard particle hits a cylinder when-
g VI two balls collide). Billiards with cylindrical walls belong to a more general category
20 of semi-dispersing billiards, where a particle moves in a container with concave (but not
» necessarily strictly concave) boundaries.
4 We remark that in the case n = 2 the cylinders actually become spheres, i.e. any system
43 of 2 hard balls reduces to a billiard particle in a torus with a spherical obstacle. Such billiards
44
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belong to a more special class of dispersing billiards, where a particle moves in a container
with strictly concave walls.

Dispersing billiards are always completely hyperbolic and ergodic [17], but for semi-
dispersing billiards this may not be true. For example, a billiard in a 3-torus with a sin-
gle cylindrical wall has zero Lyapunov exponents and is not ergodic; on the other hand, 2
transversal cylindrical walls within a 3-torus ensure hyperbolicity and ergodicity [6]. For
the systems of n > 3 hard balls, one has to carefully explore the geometry of the cylindrical
walls in order to derive hyperbolicity and ergodicity.

There are two complications in the study of hard balls (or more generally, semi-dispersing
billiards). One is caused by the singularities of the dynamics—these happen during simul-
taneous multiple collisions of >3 balls and during grazing (tangential) collisions. In the
phase space, singular points make submanifolds of codimension one. The other complica-
tion is caused by non-hyperbolicity (i.e. the existence of zero Lyapunov exponents) at some
phase points. Such points make various structures, ranging from smooth submanifolds to
Cantor-like subsets of the phase space.

Powerful techniques have been developed to handle these two complications separately
(singularities and non-hyperbolicity), but the combination of the two still presents an un-
manageable situation. More precisely, if non-hyperbolic sets and singularities intersect in a
subset of positive [2d(n — 1) — 2]-dimensional measure, then modern proofs of ergodicity
stall. On the other hand, such substantial overlaps between singularities and non-hyperbolic
sets appear very unlikely (physically); they are regarded as ‘conspiracy’.

To bypass this scenario in an early work, Ya. Sinai and N. Chernov [17] assumed that
almost every point on the singularity manifolds (with respect to the intrinsic Lebesgue mea-
sure) was completely hyperbolic. Under this assumption (now referred to as Chernov-Sinai
Ansatz) they proved the so-called Local Ergodic Theorem (also called ‘Fundamental The-
orem’), which later became instrumental in the proofs of ergodicity for various billiards
[1,7,10]. It gives sufficient (and easily verifiable) conditions under which a phase point has
an open neighborhood which belongs (mod 0) to one ergodic component.

A. Kramli, N. Siményi and D. Szdsz built upon the results of [17] and established the
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80
gy  ergodicity for systems of n =3 hard balls in any dimension [8] and for n = 4 hard balls
go  in dimension d > 3 [9]; in particular they verified Chernov-Sinai Ansatz in these cases.
g3  However, their techniques could not be extended to n > 5. The situation called for novel
g4  approaches.

85 A partial breakthrough was made by Simanyi and Szasz when they invoked ideas of alge-
gs  braic geometry to rule out various ‘conspiracies’ (at least for generic systems of hard balls),
g7 which were in the way of proving hyperbolicity and ergodicity. Precisely, they assumed that
gs the balls had arbitrary masses my, ..., m, (but the same radius ) and proved [15] complete
89  hyperbolicity at a.e. phase point for generic vectors of ‘external parameters’ (m, ..., m,,r);
90 the latter needed to avoid some exceptional submanifolds of codimension one in R+
91 which remained unspecified and unknown. Later Sim4ny used [12, 13] the same approach to
92 prove Chernov-Sinai Ansatz and ergodicity for generic systems of hard balls (in the above
93 sense). He also established hyperbolicity for systems of hard balls of arbitrary masses [11].
94 Thus the Boltzmann-Sinai ergodic hypothesis is now proved for typical, or generic,
95  systems of hard balls. This seems to be a comforting settlement in both topological and
9  measure-theoretic senses, but it falls short of solving physically relevant problems, as there
97 is no way to check whether any particular system of hard balls is ergodic or not. Most no-
9 tably, for the system of balls with all equal masses (which lies in the foundation of statistical
99 mechanics) the ergodicity remains open.

100
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In an attempt to extend his results to ALL gases of hard balls (without exceptions),
Simanyi developed [14] a new approach based on purely dynamical (rather than algebro-
geometric) ideas; this allowed him to derive ergodicity from Chernov-Sinai Ansatz for all
hard ball systems. Thus the Boltzmann-Sinai hypothesis is now solved conditionally, mod-
ulo the Ansatz. It remains to prove Ansatz, or alternatively, derive Local Ergodic Theorem
without Ansatz. (As a side remark, it is ironic that Ansatz, which originally seemed to be just
a convenient and temporary technical assumption, now remains the only unresolved issue in
the whole picture.)

Here we make another step toward a final solution of the classical ergodic hypothesis:
we derive Local Ergodic Theorem without Ansatz for arbitrary semi-dispersing billiards in
dimension two. Our method does not yet apply to higher dimensions, but we are working on
this.

v PROOF

o
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2 Statement of the Result
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A planar (two-dimensional) billiard is a dynamical system where a point ¢ moves freely
with unit velocity v, ||v]| = 1, in a bounded connected domain Q c R? or Q C Tor? and

~

118
419  reflects off its boundary 9 Q by the rule

120

o vt =07 = 2(n(g). v)n(g) )
22 \where v* and v~ denote the postcollisional and precollisional velocities, n(q) is the inward
23 unit normal vector to 9 Q at the collision point ¢ € dQ, and (-, -) is the scalar product in R,
124 As usual, dQ is a finite union of C* compact curves that can only intersect at common
125 endpoints (which make corners of the table ). Whenever the particle hits a corner point g €
126 dQ, there are two normal vectors to d Q, thus the rule (1) gives two possible continuations
27 (two branches) of the billiard trajectory. Of course, this is an exceptional event (a singularity,
128 see below).

129 A billiard table Q is semi-dispersing if every smooth component of d Q is convex (but not
180 pecessarily strictly convex) inward. We also suppose that the set of inflection points g € 9 Q
181 (where the curvature of 9 Q vanishes) is a finite union of straight line segments (flat sides
182 of Q) and some isolated points. A simple example is a polygon with one or several convex
188 ovals removed from its interior. In semi-dispersing billiards, collisions cannot accumulate
134 1[4, 18], i.e. within any finite time period the particle experiences finitely many collisions,
135 hence its trajectory is always well defined (though it might be multiply defined, due to corner
136 points).

187 The phase space of the billiard system is a compact three dimensional manifold Q =
138 0 x S', and the billiard flow ®': Q@ — Q preserves a uniform measure 4 on . The collision
139 space

140

141 M={(g,v) €R:q€dQ,(v,n(g)) =0}

142

consists of all postcollisional velocity vectors at reflection points. We define the first colli-
143 sion time 7(x) = min{r > 0: ®'(x) € M} and the (first) collision map T (x) = ®T+9(x)
144 that maps Q2 onto M; its restriction to M is called the billiard map (or collision map).
145 Canonical coordinates on M are r and ¢, where r is the arc length parameter on dQ and
146 ¢ € [-m/2,7/2] is the angle between v and n(g). The map T: M — M preserves the
147 smooth measure dv = cos pdrdg.

148 For every x = (g, v) € Q we put —x = (g, —v); similarly for every x = (¢, v") € M we
149 put —x = (¢, —v~), where vt and v~ are related by (1).
150
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If Q C Tor?, we may have an unpleasant case of ‘infinite horizon’, where sup, 7 (x) = oc.
In that case we enlarge M to make the horizon finite [17]. Suppose Tor? is obtained by
identifying the opposite sides of the boundary of a rectangle K ; then we add the set 3K x S!
to M. In other words, every time the particle crosses 0K, we record a ‘collision’, though
the particle keeps moving straight with the same velocity (we call dK a transparent wall).
Now it is clear that sup, 7(x) < 0o.

The billiard flow @' is a suspension flow over the base map 7: M — M under the
ceiling function t; it is ergodic if and only if T is.

The flow &' and the map T are singular (non-differentiable) whenever the particle hits
a corner of Q or makes a grazing (tangential) collision with dQ, i.e. whenever the next
collision point belongs to Sy = {(g,v) € Q2 : (v,n(q)) =0org € I'*}, where I'* denotes
the set of corner points (observe that ¢ = £ /2 at grazing collisions). The singularity set
S1 =T~'(Sy) of T is a finite union of smooth compact curves in M (it is exactly to ensure its
finiteness why we added the transparent wall to M). Similarly, for each n # 0 the singularity
set S, = T7"(Sp) (which is part of the singularity set of the iterate 7") is a finite union of
smooth compact curves in M.
168 In semi-dispersing billiards, the set S, consists of increasing curves for n < 0 and of
169 decreasing curves for n > 0; thus singularity curves always intersect each other transversally
170 at some time in their lives. Points x € M whose trajectories are singular in both future
171 and past (the so called ‘double-singularities’) make a countable set, which can be easily
172 neglected in the studies of ergodic properties of 7. Accordingly, the singularities of the
173 flow @' are a countable union of hypersurfaces in €2, and future singularities intersect past
174 singularities transversally.
175 Next we describe hyperbolic properties of @ and 7. A local orthogonal manifold
176 (LOM), also called wave front, denoted by X C €2, is a smooth oriented curve y C Q
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177 equipped with a family of unit normal vectors (note that there are exactly two such families).
78 The ®'-image of a LOM is a finite union of LOMs (sometimes having common endpoints)
7 inQ.

180 If the map T is smooth on X C 2 then, slightly abusing notation, we call ¥ =T (X) €
:z; M a LOM as well. Given a LOM X¢ C M, we call £ C Q the corresponding flow-sync
183 LOM (the latter is not unique of course).

184 We distinguish divergent, convergent, and flat LOMs, as determined by the curvature of
185 its carrier y C Q. In semi-dispersing billiards, future images of divergent LOMs are always
g divergent and their sizes keep growing in time; this is the cause of hyperbolicity. On the
;g7 Other hand, images of flat LOMS remain flat as long as they collide with flat sides of O but
1ss  they become divergent immediately after a collision with a curved side of Q.

189 We assume that d Q has non-zero curvature in at least one point; otherwise Q is a polygon
490  and there are no hyperbolic points. Billiards in generic polygons are ergodic [5] (though it
191 1s hard to construct explicit examples [19]), but they are never hyperbolic.
192 For x € Q and a < b, a trajectory segment ®[“1(x) of the point x is said to be sufficient
193 if there is a collision at some time a < t < b with a curved side of Q (the curvature of 0 Q
194 must be different from zero at the collision point); if the segment ®!*!(x) passes through
195 singular points and branches out, then every branch must hit a curved side of Q. A point
196 x € Q is sufficient in the future (past) if its semitrajectory ®!%° (x) (resp., @ (x)) is
197 sufficient. If a nonsingular point x € M is sufficient (future or past), then in a vicinity U,
198 of x almost every point y € U, is hyperbolic (this follows from the Poincaré theorem); thus
199 sufficiency guarantees (local) hyperbolicity.
200
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Chernov-Sinai Ansatz  Almost every point x € S (with respect to the one-dimensional
Lebesgue measure on ) is past sufficient or, equivalently, almost every point x € S_; is
future sufficient.

Here is our main result:

o g A W N

Theorem 1 Let xy € M be a point whose entire trajectory ®=°°)(x) passes through at
most one singularity and is sufficient. Then there exists an open neighborhood Uy of xq that
belongs (mod 0) to one ergodic component of the map T .

o ©

We note that the base neighborhood Uy = Uy(xy) in this theorem is a ball-like open
neighborhood Uj of x( consisting of sufficient points for which

N =

(i) Uy is a subset of the neighborhood U, (x¢) of xo featuring Theorem 3.6 in [7], where
0 < &, < 1is any fixed number, and

w

AUTHOR'S PROQF

4
5 (ii) U admits a family
6
7 @={Gi=12,....10)} (O<8<d)
:2 of regular coverings with a small enough threshold §, > 0 as explained in [7].
220 All the existing proofs of the Local Ergodic Theorem [7, 17] assume the Ansatz, and we
221 relax that assumption.
222 Given a particular 2d semi-dispersing billiard, one can verify its ergodicity by show-

223 ing that the set of sufficient points is connected and has full measure. We note, however,
224 that it is unknown if every semi-dispersing billiard (excluding polygons) is ergodic (or even
225 completely hyperbolic), and our result will not solve this open problem, because we cannot
226 yet control the measure of insufficient points. Proving that a.e. phase point in any semi-
227 dispersing billiard is sufficient amounts to showing that in every polygonal billiard a.e. tra-
228 jectory is dense, but this is an old (and notoriously hard) open problem.

229 An interesting result in this direction was obtained in [3]: it was shown that billiards
230  in any polygon where a ‘bump’ or a pocket is attached at every vertex are hyperbolic and
231 ergodic. But in that case the verification of Ansatz was trivial, as every non-sufficient trajec-
232 tory was periodic.

233

234

235 3 Proof of the Result

236

N

237 We begin with a helpful geometric fact that gives a sufficient condition under which two
238 pearby phase points (points in Q equipped with unit velocity vectors) belong to one diver-
239 gent local orthogonal manifold.

240

241 Lemma 1 Let (q1,v1), (q2,v2) € R x R?, |lv;| = 1, llg1 — g2l < €0, llvr — vl < &,
242 (qy — q2,v; — v2) = 0, with some fixed constant g9 <K 1. We claim that there are reals
243 1,15 € R, |1;] < 10000¢q, such that the phase points (q, + T\v1, v1) and (g2 + T2, V2)
244 can be included in a divergent LOM ¥ C R? x S!.

245

246 Proof We assume the strict inequality (¢, — ¢2, vi — v2) > 0. The general result then follows
247 by simply passing to the limit.

248 Let O be the point of intersection of the lines [} = {q; + tvi|t € R} and I, = {g> + tv;|
249t ¢ R}. We may and shall assume that O € R? is the origin of the plane R2. Let ¢; = t,v;,
250
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g> = hv,. The assumed inequality says that (g; — g2, vi — v2) = (1] + ) (1 — (vy, v2)) > 0,
thus #; + #, > 0, so by symmetry we may assume that #; > 0. We distinguish between two
cases:

Case I: t; > 5000g,. We take g + 1,0, =111y, 1i.e. 7y =0 and 1, =1; — 1,. Clearly, both
(g1,v1) and (g + Tpv2, v7) are elements of the (outer unit normal field of) the circle X
defined by the equation x| =1,.

Case 2: 0 < nh < 500080 We take q1 + v = 5000801)], q2 + v, = 5000801)2, i. e.
71 = 500089 — 11, T» = 5000gp — t,. The (unit normal bundle of the) circle ¥ containing
(g1 + T1v1, v1) and (g2 + Tov2, v2) is now defined by the equation ||x|| = 5000s, in R%. O

o N O o & O N

- O

Next we turn to the proof of Local Ergodic Theorem (without using Ansatz). We follow
the lines and notation of [7] that presents one of the clearest and most complete proofs of that
theorem. For the given sufficient point x, we consider a small enough open neighborhood
Uy = Uy(xp) of xg, as described right after Theorem 1.

Given a divergent LOM X C Q with a carrier y C Q, we use the metric on it generated
by the distance along the curve y, and denote by || - || the corresponding norm in its tangent
space 7 X. For LOMs £ C M we use the norm and metric on the corresponding flow-sync

o g B~ W N
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%8 LOM’s in 2 (constructed right at the given point x € X).

269 For any x € ¥ C M denote by D¢ 5. the Jacobian of the map T restricted to X at x, in
70 the above norm. If ¥ is a divergent LOM (in our terminology the word “divergent” always
21 means “not necessarily strictly divergent”, and a similar convention applies to convergent
zz LOMs), then DY 5 > 1 for every n > 1. Denote

2 Kn,0(x) =inf D" ., 5

275 x '

276

77 where the infimum is taken over all divergent LOMSs through —7"x; this quantity is the
78 minimal expansion of divergent LOMs on their way from —7"x back to —x (we note that
279 the inf is actually attained at the flat LOM, cf. [2]). Given § > 0 we denote

- s =ighinf DY 5

282

og3  where the infimum is taken over all divergent LOMs X through —7"x such that 7" is
284  smoothon X and dist(—x, 37" X) < § (of course, for any LOM X, the boundary 9 ¥ consists
2g5  of the two endpoints of that LOM). We observe that 1 < «,, 5(x) <k, 0(x), and both k, o(x)
286 and k, s(x) are non-decreasing functions of n.

287 For x € M we denote

288

289 Zwb(x) = sup{dist(x, dX): T is smooth on =}
T

290

291 where the supremum is taken over all flat LOMs ¥ C int/M through x; this is the so-called
292 radius of the maximal tubular neighborhood of the billiard link joining x with Tx.

293 Note that zyp,(—Tx) = Zgp (X).

294 We denote by X“(x) and *(x) the unstable and stable manifolds through x; the former
295 s a divergent LOM and the latter a convergent one. We also put 7% (x) =dist(x, 3 X%(x)) for
296 g =u,s. It is known [7, Lemma 5.4] that for every semi-dispersing billiard table Q there

297 exists a constant c3 > 0 (using the notation of [7]) such that if

298

299 xeUs=UB) ={yeM: ¥n>0 zuw(=T"y) > (Kncys(¥) 'c38}
300
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then 7°(x) > c38. Thus the points of U# (‘good set’) have stable manifolds of order §. A sim-
ilar property holds for unstable manifolds. The set of points with shorter stable manifolds
(‘bad set’) must be carefully analyzed. We put

a & W N

Ub =0 =U,\Ut=|_JUp.

n>1

UP =UP8) =1{y € UP: zun(=T"y) < (Kn.cs(»)) "' c38).

(o]

©

A crucial fact in the proof of Local Ergodic Theorem is the following tail bound: for any
function F(8) — oo as § — 0 the set

- O

AUTHOR'S PROQF

: vi=ut®)= | J Ure
n>F(5)
4
5 has measure
6
7 V(UD) = 0(8). 2)

318 1In fact, the derivation of the Local Ergodic Theorem from the tail bound does not require
319 the Ansatz, so we will not repeat it here, see [7, Sect. 5]. In what follows, we prove the tail
820 bound.

821 First we need a few additional constructions. Denote

322

a2 UP(8) = {x € Up|3 adivergent LOM X, =T"x € 9,08 NS = 4,

324

305 T" and T~" are smooth on intX, 7' X is also divergent,

826 T~! is not smooth at the endpoint x’ € % other than — T"x,

327

328 dist(—T"x,x") S kyeps(x) 7 38, and — T"x" € Up}.

329 R R

ss0  Forany x € UP(8) = UP and ¥ as above, we denote

331

- Z2(T"x, %) =dist(—T"x,x")|x € 9T, x' # —T"x,

22431 T7"is not smooth at x' (< kyy.55(x) " '¢38) . 3)
335 We note that zu, (7"x) < z(T"x, X).

336 For any point x € U? as above, we choose a phase point x;, = —®° (T"x) with a suitably
337 selected 1, 0 < &1 < T(T"x).

338 Note. From now on we will be recycling the notation &, that appeared earlier in the closed
339 formula in Theorem 1. We think that this action should not be the source of any confusion.

340 For an additional condition on how to select &, see below. For any ¥ featuring the
841 definition of U"(8) and (3) let ¥ denote the flow-sync version of X containing the point
3i2 Xe, =(qe,» V) = =D (T"x), see Fig. 1. Now x; = (q1, v1) € 9% is the projection (by the
242 flow) of the point x’ € 9% defined above, with the property

345 dist(—=T"x, x) = z(T"x, X).

346

347 The other endpoint of the curve % is Xe; = (ge,» Ve, ), see Fig. 1.

348 While selecting the time ¢; above, we try to make it sure that x; be a post-singularity
349 phase point, i.e. T(—x;) € Sp and Tx; € Sp.

350
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Fig. 1 Illustration to Lemma 2

iy

Tey = (Gey, Vey)

o N O o & O N

o

N =

Here we first consider the case when such a synchronization of 3 is possible. After that,
right before exposing (6), we explain how to modify the following argument if the required
synchronization is not feasible.

Consider the line segment

o g~ @
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H={q (P (q.v:)) |(q.ve)) €S0,0 <t <7(q,v.))}

368
%69 in the domain Q, see Fig. 1. (Note that the point ¢; does not belong to H, since v; # v,
870 for any strictly convex 3.) The configuration component gz € H of the phase point x3 =
s (g3, vg,) is defined as the orthogonal projection of ¢,, onto the line H. According to this
372 definition, the line segment

373

374 {Age, + (1 —M)g30 <1 <1} )
375

a76  is perpendicular to H at g;.

377

a7 Lemma 2 The scalar product condition of Lemma 1 holds true for the pair of phase points
379 (x3,x1) and (x3, X)), i.e.

380

381 (41 —q3, V1 _Uel) ZO

382

383

384  see also Fig. 1.
385

386 Proof Denote the point of intersection of the line segment 7{ and the carrier of the LOM
37 3 by g (the existence of the intersection follows from simple billiard geometric consid-
388  erations) and the outer unit normal vector to T at g3 by v, see Fig. 1. Then, by the con-
389  vexity of f], q3 = ¢3 + nve, with some small scalar n > 0, (g1 — g3, v3 — v¢,) > 0, and
390 (g1 — g3, v1 — v3) = 0. Thus we obtain the chain of inequalities

(Ge; — g3, Ve, — V) =0,

391
392 (q] — 43, V1 — U€1> = (ql - 637 v — v€1) + n(qu Ve — Ul)

zzj > (g1 —q3,v1 — V) ={q1 — @3, v1 —v3) + (g1 — G3,v3 — V¢,) =0,
395 finishing the proof of the lemma. ]
396

397 Next, consider the two-dimensional “tube” (actually, a strip)

398

399 T=q({@’w}wef),OStSr,l+1(w)l), 5)
400

@ Springer

Journal ID: 10955, Article ID: 9927, Date: 2010-03-24, Proof No: 1



«JOSS 10955 layout: Small Condensed v.1.2  reference style: mathphys file: joss9927.tex (Alapsin) aid: 9927  doctopic: OriginalPaper ~class: spr-small-v1.1 v.2010/01/12  Prn:2010/01/26; 11:30  p. 9/12»

Upgrading the Local Ergodic Theorem for Planar Semi-dispersing

Fig. 2 [Illustration to the
argument below

o A W N =

o ©

w N =

where ¢g(x) denotes the natural projection of €2 onto Q, and 7,41(w) is the time of the
(n+ D)st collision on the forward orbit of w. Recall that 7"*! is smooth on b3 (where T" 1w

S

AU]’HOR’§ PROQF

5  is defined as @™+ ™) (w)) the endpoints of — Tlerl (E) belong to the base neighborhood U
6 by the construction of Z and the curves 7" +! (E) are monotonic in the canonical (r, ¢) (arc-
7 length, angle of reflection) coordinates, thus all the “landing points” — @™+ @y = —T"+ly
418 (we f)) are in the base neighborhood Uj, hence these points w are all sufficient (recall our
419 definition of Uj).
420
421 Lemma 3 The footpoint g3 = q(x3) belongs to the strip T .
422

423 Proof Drop a perpendicular line / from g3 to the supporting curve q(E) of . It follows
424 from the convexity of 3 that the intersection point g4 of / and q(E) lies on the arch con-
425 necting ¢, and g3, and x3 = ®7(g4, v4) with some small n > 0 and x4 = (g4, v4) € O
426

n

427 According to Lemma 1, some small time shifts of the phase points x3 and x; € 3% are
428 contained by a divergent LOM, thus they are not mapped to the same foot point by any
429 positive iterate of the flow, as long as that iterate is smooth on the mentioned LOM. (In
430 other words, the billiard flow, being semi-dispersive, lacks focal points.)

431 The same statement can be made regarding the pair of phase points (x3, x,,). Therefore,
432 the orbit segment g (&% %+13)x3) of x3 does not intersect the boundary of the strip 7 of (5),
433 50 the orbit segment g (0 w+1 @3 x3) cannot escape from 7. As a consequence, its endpoint
434 @) x; = T x4 lies in Up, hence the point x3 is future sufficient.

435 As we said earlier, there is the possibility that the required synchronization of 3 (with a
436 small enough &; > 0, so that x; becomes a post-singular phase point) is not feasible. This
437 phenomenon can only happen if the collision of 7"x takes place very close to a corner of
438 the configuration space Q, and very soon after this collision the orbit segment [T"x, T"*'x]
439 flies near a tangency, so that no matter how small &; > 0 one chooses, the endpoint x; of 3
440 (other than x,, ) is always a pre-tangency phase point, see Fig. 2. In this case the proof can
441 proceed with such a 3 and x; as follows:

442 The forward orbit of the pre-tangency phase point x; = (g1, v;) touches 3Q at g,. Let
443 'H be the tangent line to dQ near g, that is parallel to the velocity v,, of x,, (analogously
444 to the previous case), and let again g3 be the perpendicular projection of g,, onto H, and
445 x3 = (g3, ), see Fig. 2. It is clear from the picture that the forward orbit of x3 enters
446 the strip 7 soon after time zero. Furthermore, this forward orbit is bound to stay in 7°
447 until it reaches U by the same reasoning as before: Both pairs (x3, x,,) and (x3, x;) can be
448 embedded in a divergent LOM by Lemma 1, thus the footpoints ¢ (S*x3) of S'x3 (t > 0, S"x3

449 s in the closure of the strip 7') cannot be equal to any of the footpoints g (S*x,,) or ¢(S7x;)
450
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(t > 0), so the forward orbit of x5 is unable to escape from the strip 7. Since reaching the
neighborhood U with its forward orbit, the phase point x3 proves to be future sufficient.

According to the previous constructions, the relevant set for the “upgraded” version of
Local Ergodic Theorem is defined as follows:

o g A W N

Unb(a) = {x € U()’ELE‘], 0 <&y < 7(T"x), 3 a past sufficient point

J

yeint@, Ty € S, v(y) = v(T"x) = v (P (T"x)),

©

(©)

o

Aq=q(y) = q (&1 (T"2) Lo(T"), [|Agl] < Ky (0) 38,

N =

U,l,"m = U,ll"m(ﬁ) = {x € l~]}1’|A’” < ks (X) < A’”“] ,

w

see the definition of the corresponding set Uy, before Lemma 6.3 in [7].

S

Note. For any point x € 0}1’ the existence of a suitable point y (required by (6)) is shown
by taking y = —x3 = (g3, —v,, ). Hence 0,? - U},’

[& NN

AUTHOR’'S PROOQF

7 Now, with the above constructions, we are ready to complete the proof of the tail
468 bound (2). It goes along the same lines as in [7, Sect. 6], but at several points the argument
469  needs modifications in order to avoid using the Ansatz. We describe these modifications in
470 detail.

471 1. First of all, in construction of local stable manifolds [7, Lemma 5.4], we can restrict
472 ourselves to the (limits of the) inverse images X (y) = ® /(X! (y)) of strictly concave, local
473 orthogonal manifolds X!(y) containing the phase point &'y = y,. Indeed, if necessary, the
474 partially flat, concave, local orthogonal manifolds X!(y) may be slightly curved to make

475 them strictly concave. These arbitrarily small perturbations of the manifolds X! (y), obvi-
476 ously, produce no effect on the limiting process and the overall proof of the Local Ergodic
477 Theorem.

478 2. The “n-step bad set” U, b = UP(8) defined above can be replaced with our new lA/,E’ =
479 LA/};((S), for what it makes a phase point y € Uy “n-step bad”, i.e. z(T"y) < K,,_c35(y)*'638, is
480  not that this inequality holds true, rather the fact that the construction of the stable manifold
481 at the phase point y breaks down at the (n 4 1)-st iteration of the billiard map, due to hitting
482 anearby singularity, just as precisely described in the definition of the set l},‘f above. We note
483 that, due to this change, the sets U® = Uz, Uf,’ and U = U, \ U will change, accordingly.
484 3. Now, in the tail bound (2), the measures of the sets UP and U5 = [, (s, UF must be

485 estimated from above. Furthermore, these sets may be replaced by the larger sets 0,5’ of (6)
486 and U(E = Un> F(8) Ur}tj

487 4. The centerpiece estimate in the proof of the tail bound [7, Section 6] is that for any
488 given m € N the v measure of the set
489

~ B
490 U TnU,?,m - (81 \Kﬂ)[m 1 )
491 n=Ny
492

493 (featuring (6.10) in [7]) is bounded above by c,d if § is small enough, where the constant
404  Cp > 0 can be made arbitrarily small by choosing the parameter n > 0 small enough. Here
405  the compact subset K, of the singularity manifold S; almost exhausts Sj, that is,

mg, (S1\ K,) <, ®)

498 where A% denotes the open (c36)-neighborhood of a subset A C S; inside M, mg, is

49 the Lebesgue measure on S;, and N, / oo (as 7 — 0) is some threshold function. We note
500

496
497
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that, both in the original proof of the Fundamental Theorem and in the current one, the
set K, consists of sufficient points only, and—in the original proof—exhausting S; in the
sense of (8) was made possible by the Ansatz! On the other hand, in the current scenario,
lacking the Ansatz, we can only say that K, C Suff(S;), where Suff(S;) denotes the set of
all sufficient points of S;, and

o g A W N

mg, (Suff (S)\ K,)) <.

We denote the set Suff(S;) \ K, by B,,.
5. Keeping in mind definition (6) of the sets U}l’, some open, tubular neighborhood V;, of
S) in M has a uniquely defined foliation

w N = O ©

W: S x (—e, &) = Vo

S

with the properties that the section W (S; x {0}) is equal to S; (more precisely, W (y, 0) =

AUTHOR'S PROQF

5
s y forall y € Sy), and on the one-dimensional foliae (curves) W({yo} x (—¢o, €0)) (here
7 Yo € Sy) the phase points have a constant velocity vector

518

1o v (¥ (30, 5)) = v (¥ (30.0)) = v(30) ©)

:z? for |s| < &9, and the curve W (yy, s) has a time-sync version

522 Yo(s) = @7 (W (yp, 5))

523

52

4 (where 0 < t(s) < (W (yo, s)) and |s| < &g) such that the carrier ¢ (y,(s)) C Q is linear and
525 orthogonal to the flow-invariant hull
526

527 {q@ o) [0<t <100},

528
509 and || %q(yo(s))n =1 for all yp € S| and [s| < €. (So s is an arc-length parameter.) Fur-
530 thermore, according to (6), the crucial set

532 U Tn ﬁrllj,m
533 NzNy

534
535
536 W (B, x [—c38, c36])
537
538

539
nyrb

540 v( U T Un’m> <cc3nd

541 N=Ny

542

543

544

in (7) is a subset of

with mg, (B,) <n, so we have that

with an absolute constant ¢, > 0. The existence of such a constant ¢, is attributed to the facts
that

545 (a) the flow invariant measure w is uniform on €, i.e. du = const - dgd@, where 0 is the
546 angular coordinate of the unit velocity vector;

547 (b) the T-invariant measure v on M is the projection of u onto M via the flow;

548 (c) the above curves y,(r) are uniformly transversal to the forward invariant hull |_,_,®"(So)

549 of the singularity manifold S;.
550
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As a matter of fact, this constant ¢, is exactly the same as the constant appearing in [17,
Lemma 2], and the proof of its existence goes along the same lines, see also [7, Lemma 4.10].
Since the multiplier c,c3n of § can be made arbitrarily small by choosing the number
n > 0 small enough, we finish the proof of the tail bound without having used the Ansatz.

N O g~ WD
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