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Abstract The Local Ergodic Theorem (also known as the ‘Fundamental Theorem’) gives
sufficient conditions under which a phase point has an open neighborhood that belongs
(mod 0) to one ergodic component. This theorem is a key ingredient of many proofs of
ergodicity for billiards and, more generally, for smooth hyperbolic maps with singulari-
ties. However, the proof of that theorem relies upon a delicate assumption (Chernov-Sinai
Ansatz), which is difficult to check for some physically relevant models, including gases of
hard balls. Here we give a proof of the Local Ergodic Theorem for two dimensional billiards
without using the Ansatz.

Keywords Hard balls · Boltzmann-Sinai hypothesis · Semi-dispersing billiards ·
Ergodicity

1 Introduction

In this work we make a step toward a complete solution (yet to be achieved) of the celebrated
Boltzmann-Sinai ergodic hypothesis. The latter asserts [16] that every system of n ≥ 2 hard
balls on a torus of dimension d ≥ 2 is ergodic (provided the trivial first integrals are elim-
inated). This model reduces to the motion of a billiard particle in a d(n − 1)-dimensional
torus bouncing off n(n−1)/2 cylindrical obstacles (the billiard particle hits a cylinder when-
ever two balls collide). Billiards with cylindrical walls belong to a more general category
of semi-dispersing billiards, where a particle moves in a container with concave (but not
necessarily strictly concave) boundaries.

We remark that in the case n = 2 the cylinders actually become spheres, i.e. any system
of 2 hard balls reduces to a billiard particle in a torus with a spherical obstacle. Such billiards
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belong to a more special class of dispersing billiards, where a particle moves in a container
with strictly concave walls.

Dispersing billiards are always completely hyperbolic and ergodic [17], but for semi-
dispersing billiards this may not be true. For example, a billiard in a 3-torus with a sin-
gle cylindrical wall has zero Lyapunov exponents and is not ergodic; on the other hand, 2
transversal cylindrical walls within a 3-torus ensure hyperbolicity and ergodicity [6]. For
the systems of n ≥ 3 hard balls, one has to carefully explore the geometry of the cylindrical
walls in order to derive hyperbolicity and ergodicity.

There are two complications in the study of hard balls (or more generally, semi-dispersing
billiards). One is caused by the singularities of the dynamics—these happen during simul-
taneous multiple collisions of ≥3 balls and during grazing (tangential) collisions. In the
phase space, singular points make submanifolds of codimension one. The other complica-
tion is caused by non-hyperbolicity (i.e. the existence of zero Lyapunov exponents) at some
phase points. Such points make various structures, ranging from smooth submanifolds to
Cantor-like subsets of the phase space.

Powerful techniques have been developed to handle these two complications separately
(singularities and non-hyperbolicity), but the combination of the two still presents an un-
manageable situation. More precisely, if non-hyperbolic sets and singularities intersect in a
subset of positive [2d(n − 1) − 2]-dimensional measure, then modern proofs of ergodicity
stall. On the other hand, such substantial overlaps between singularities and non-hyperbolic
sets appear very unlikely (physically); they are regarded as ‘conspiracy’.

To bypass this scenario in an early work, Ya. Sinai and N. Chernov [17] assumed that
almost every point on the singularity manifolds (with respect to the intrinsic Lebesgue mea-
sure) was completely hyperbolic. Under this assumption (now referred to as Chernov-Sinai
Ansatz) they proved the so-called Local Ergodic Theorem (also called ‘Fundamental The-
orem’), which later became instrumental in the proofs of ergodicity for various billiards
[1, 7, 10]. It gives sufficient (and easily verifiable) conditions under which a phase point has
an open neighborhood which belongs (mod 0) to one ergodic component.

A. Krámli, N. Simányi and D. Szász built upon the results of [17] and established the
ergodicity for systems of n = 3 hard balls in any dimension [8] and for n = 4 hard balls
in dimension d ≥ 3 [9]; in particular they verified Chernov-Sinai Ansatz in these cases.
However, their techniques could not be extended to n ≥ 5. The situation called for novel
approaches.

A partial breakthrough was made by Simányi and Szász when they invoked ideas of alge-
braic geometry to rule out various ‘conspiracies’ (at least for generic systems of hard balls),
which were in the way of proving hyperbolicity and ergodicity. Precisely, they assumed that
the balls had arbitrary masses m1, . . . ,mn (but the same radius r) and proved [15] complete
hyperbolicity at a.e. phase point for generic vectors of ‘external parameters’ (m1, . . . ,mn, r);
the latter needed to avoid some exceptional submanifolds of codimension one in R

n+1,
which remained unspecified and unknown. Later Simány used [12, 13] the same approach to
prove Chernov-Sinai Ansatz and ergodicity for generic systems of hard balls (in the above
sense). He also established hyperbolicity for systems of hard balls of arbitrary masses [11].

Thus the Boltzmann-Sinai ergodic hypothesis is now proved for typical, or generic,
systems of hard balls. This seems to be a comforting settlement in both topological and
measure-theoretic senses, but it falls short of solving physically relevant problems, as there
is no way to check whether any particular system of hard balls is ergodic or not. Most no-
tably, for the system of balls with all equal masses (which lies in the foundation of statistical
mechanics) the ergodicity remains open.
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In an attempt to extend his results to ALL gases of hard balls (without exceptions),
Simanyi developed [14] a new approach based on purely dynamical (rather than algebro-
geometric) ideas; this allowed him to derive ergodicity from Chernov-Sinai Ansatz for all
hard ball systems. Thus the Boltzmann-Sinai hypothesis is now solved conditionally, mod-
ulo the Ansatz. It remains to prove Ansatz, or alternatively, derive Local Ergodic Theorem
without Ansatz. (As a side remark, it is ironic that Ansatz, which originally seemed to be just
a convenient and temporary technical assumption, now remains the only unresolved issue in
the whole picture.)

Here we make another step toward a final solution of the classical ergodic hypothesis:
we derive Local Ergodic Theorem without Ansatz for arbitrary semi-dispersing billiards in
dimension two. Our method does not yet apply to higher dimensions, but we are working on
this.

2 Statement of the Result

A planar (two-dimensional) billiard is a dynamical system where a point q moves freely
with unit velocity v, ‖v‖ = 1, in a bounded connected domain Q ⊂ R

2 or Q ⊂ Tor2 and
reflects off its boundary ∂Q by the rule

v+ = v− − 2〈n(q), v−〉n(q) (1)

where v+ and v− denote the postcollisional and precollisional velocities, n(q) is the inward
unit normal vector to ∂Q at the collision point q ∈ ∂Q, and 〈·, ·〉 is the scalar product in R

2.
As usual, ∂Q is a finite union of C3 compact curves that can only intersect at common

endpoints (which make corners of the table Q). Whenever the particle hits a corner point q ∈
∂Q, there are two normal vectors to ∂Q, thus the rule (1) gives two possible continuations
(two branches) of the billiard trajectory. Of course, this is an exceptional event (a singularity,
see below).

A billiard table Q is semi-dispersing if every smooth component of ∂Q is convex (but not
necessarily strictly convex) inward. We also suppose that the set of inflection points q ∈ ∂Q

(where the curvature of ∂Q vanishes) is a finite union of straight line segments (flat sides
of Q) and some isolated points. A simple example is a polygon with one or several convex
ovals removed from its interior. In semi-dispersing billiards, collisions cannot accumulate
[4, 18], i.e. within any finite time period the particle experiences finitely many collisions,
hence its trajectory is always well defined (though it might be multiply defined, due to corner
points).

The phase space of the billiard system is a compact three dimensional manifold � =
Q×S1, and the billiard flow �t : � → � preserves a uniform measure μ on �. The collision
space

M = {(q, v) ∈ � : q ∈ ∂Q, 〈v,n(q)〉 ≥ 0}
consists of all postcollisional velocity vectors at reflection points. We define the first colli-
sion time τ(x) = min{t > 0 : �t(x) ∈ M} and the (first) collision map T (x) = �τ(x)+0(x)

that maps � onto M; its restriction to M is called the billiard map (or collision map).
Canonical coordinates on M are r and ϕ, where r is the arc length parameter on ∂Q and
ϕ ∈ [−π/2,π/2] is the angle between v and n(q). The map T : M → M preserves the
smooth measure dν = cosϕdrdϕ.

For every x = (q, v) ∈ � we put −x = (q,−v); similarly for every x = (q, v+) ∈ M we
put −x = (q,−v−), where v+ and v− are related by (1).
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If Q ⊂ Tor2, we may have an unpleasant case of ‘infinite horizon’, where supx τ (x) = ∞.
In that case we enlarge M to make the horizon finite [17]. Suppose Tor2 is obtained by
identifying the opposite sides of the boundary of a rectangle K ; then we add the set ∂K ×S1

to M. In other words, every time the particle crosses ∂K , we record a ‘collision’, though
the particle keeps moving straight with the same velocity (we call ∂K a transparent wall).
Now it is clear that supx τ (x) < ∞.

The billiard flow �t is a suspension flow over the base map T : M → M under the
ceiling function τ ; it is ergodic if and only if T is.

The flow �t and the map T are singular (non-differentiable) whenever the particle hits
a corner of Q or makes a grazing (tangential) collision with ∂Q, i.e. whenever the next
collision point belongs to S0 = {(q, v) ∈ � : 〈v,n(q)〉 = 0 or q ∈ 	∗}, where 	∗ denotes
the set of corner points (observe that ϕ = ±π/2 at grazing collisions). The singularity set
S1 = T −1(S0) of T is a finite union of smooth compact curves in M (it is exactly to ensure its
finiteness why we added the transparent wall to M). Similarly, for each n �= 0 the singularity
set Sn = T −n(S0) (which is part of the singularity set of the iterate T n) is a finite union of
smooth compact curves in M.

In semi-dispersing billiards, the set Sn consists of increasing curves for n < 0 and of
decreasing curves for n > 0; thus singularity curves always intersect each other transversally
at some time in their lives. Points x ∈ M whose trajectories are singular in both future
and past (the so called ‘double-singularities’) make a countable set, which can be easily
neglected in the studies of ergodic properties of T . Accordingly, the singularities of the
flow �t are a countable union of hypersurfaces in �, and future singularities intersect past
singularities transversally.

Next we describe hyperbolic properties of �t and T . A local orthogonal manifold
(LOM), also called wave front, denoted by 
 ⊂ �, is a smooth oriented curve γ ⊂ Q

equipped with a family of unit normal vectors (note that there are exactly two such families).
The �t -image of a LOM is a finite union of LOMs (sometimes having common endpoints)
in �.

If the map T is smooth on 
 ⊂ � then, slightly abusing notation, we call 
c = T (
) ∈
M a LOM as well. Given a LOM 
c ⊂ M, we call 
 ⊂ � the corresponding flow-sync
LOM (the latter is not unique of course).

We distinguish divergent, convergent, and flat LOMs, as determined by the curvature of
its carrier γ ⊂ Q. In semi-dispersing billiards, future images of divergent LOMs are always
divergent and their sizes keep growing in time; this is the cause of hyperbolicity. On the
other hand, images of flat LOMs remain flat as long as they collide with flat sides of Q; but
they become divergent immediately after a collision with a curved side of Q.

We assume that ∂Q has non-zero curvature in at least one point; otherwise Q is a polygon
and there are no hyperbolic points. Billiards in generic polygons are ergodic [5] (though it
is hard to construct explicit examples [19]), but they are never hyperbolic.

For x ∈ � and a < b, a trajectory segment �[a,b](x) of the point x is said to be sufficient
if there is a collision at some time a < t < b with a curved side of Q (the curvature of ∂Q

must be different from zero at the collision point); if the segment �[a,b](x) passes through
singular points and branches out, then every branch must hit a curved side of Q. A point
x ∈ � is sufficient in the future (past) if its semitrajectory �[0,∞)(x) (resp., �(−∞,0](x)) is
sufficient. If a nonsingular point x ∈ M is sufficient (future or past), then in a vicinity Ux

of x almost every point y ∈ Ux is hyperbolic (this follows from the Poincaré theorem); thus
sufficiency guarantees (local) hyperbolicity.
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Chernov-Sinai Ansatz Almost every point x ∈ S1 (with respect to the one-dimensional
Lebesgue measure on S1) is past sufficient or, equivalently, almost every point x ∈ S−1 is
future sufficient.

Here is our main result:

Theorem 1 Let x0 ∈ M be a point whose entire trajectory �(−∞,∞)(x) passes through at
most one singularity and is sufficient. Then there exists an open neighborhood U0 of x0 that
belongs (mod 0) to one ergodic component of the map T .

We note that the base neighborhood U0 = U0(x0) in this theorem is a ball-like open
neighborhood U0 of x0 consisting of sufficient points for which

(i) U0 is a subset of the neighborhood Uε1(x0) of x0 featuring Theorem 3.6 in [7], where
0 < ε1 < 1 is any fixed number, and

(ii) U0 admits a family

Gδ = {
Gδ

i

∣∣i = 1,2, . . . , I (δ)
}

(0 < δ < δ0)

of regular coverings with a small enough threshold δ0 > 0 as explained in [7].

All the existing proofs of the Local Ergodic Theorem [7, 17] assume the Ansatz, and we
relax that assumption.

Given a particular 2d semi-dispersing billiard, one can verify its ergodicity by show-
ing that the set of sufficient points is connected and has full measure. We note, however,
that it is unknown if every semi-dispersing billiard (excluding polygons) is ergodic (or even
completely hyperbolic), and our result will not solve this open problem, because we cannot
yet control the measure of insufficient points. Proving that a.e. phase point in any semi-
dispersing billiard is sufficient amounts to showing that in every polygonal billiard a.e. tra-
jectory is dense, but this is an old (and notoriously hard) open problem.

An interesting result in this direction was obtained in [3]: it was shown that billiards
in any polygon where a ‘bump’ or a pocket is attached at every vertex are hyperbolic and
ergodic. But in that case the verification of Ansatz was trivial, as every non-sufficient trajec-
tory was periodic.

3 Proof of the Result

We begin with a helpful geometric fact that gives a sufficient condition under which two
nearby phase points (points in Q equipped with unit velocity vectors) belong to one diver-
gent local orthogonal manifold.

Lemma 1 Let (q1, v1), (q2, v2) ∈ R
2 × R

2, ‖vi‖ = 1, ‖q1 − q2‖ < ε0, ‖v1 − v2‖ < ε0,
〈q1 − q2, v1 − v2〉 ≥ 0, with some fixed constant ε0 � 1. We claim that there are reals
τ1, τ2 ∈ R, |τi | < 10000ε0, such that the phase points (q1 + τ1v1, v1) and (q2 + τ2v2, v2)

can be included in a divergent LOM 
 ⊂ R
2 × S1.

Proof We assume the strict inequality 〈q1 −q2, v1 −v2〉 > 0. The general result then follows
by simply passing to the limit.

Let O be the point of intersection of the lines l1 = {q1 + tv1|t ∈ R} and l2 = {q2 + tv2|
t ∈ R}. We may and shall assume that O ∈ R

2 is the origin of the plane R
2. Let q1 = t1v1,
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q2 = t2v2. The assumed inequality says that 〈q1 − q2, v1 − v2〉 = (t1 + t2)(1 − 〈v1, v2〉) > 0,
thus t1 + t2 > 0, so by symmetry we may assume that t1 > 0. We distinguish between two
cases:

Case 1: t1 ≥ 5000ε0. We take q2 + τ2v2 = t1v2, i.e. τ1 = 0 and τ2 = t1 − t2. Clearly, both
(q1, v1) and (q2 + τ2v2, v2) are elements of the (outer unit normal field of) the circle 


defined by the equation ‖x‖ = t1.
Case 2: 0 < t1 < 5000ε0. We take q1 + τ1v1 = 5000ε0v1, q2 + τ2v2 = 5000ε0v2, i. e.

τ1 = 5000ε0 − t1, τ2 = 5000ε0 − t2. The (unit normal bundle of the) circle 
 containing
(q1 + τ1v1, v1) and (q2 + τ2v2, v2) is now defined by the equation ‖x‖ = 5000ε0 in R

2. �

Next we turn to the proof of Local Ergodic Theorem (without using Ansatz). We follow
the lines and notation of [7] that presents one of the clearest and most complete proofs of that
theorem. For the given sufficient point x0 we consider a small enough open neighborhood
U0 = U0(x0) of x0, as described right after Theorem 1.

Given a divergent LOM 
 ⊂ � with a carrier γ ⊂ Q, we use the metric on it generated
by the distance along the curve γ , and denote by ‖ · ‖ the corresponding norm in its tangent
space T 
. For LOMs 
 ⊂ M we use the norm and metric on the corresponding flow-sync
LOM’s in � (constructed right at the given point x ∈ 
).

For any x ∈ 
 ⊂ M denote by Dn
x,
 the Jacobian of the map T n restricted to 
 at x, in

the above norm. If 
 is a divergent LOM (in our terminology the word “divergent” always
means “not necessarily strictly divergent”, and a similar convention applies to convergent
LOMs), then Dn

x,
 ≥ 1 for every n ≥ 1. Denote

κn,0(x) = inf



Dn
−T nx,


where the infimum is taken over all divergent LOMs through −T nx; this quantity is the
minimal expansion of divergent LOMs on their way from −T nx back to −x (we note that
the inf is actually attained at the flat LOM, cf. [2]). Given δ > 0 we denote

κn,δ(x) = inf



inf
y∈


Dn
y,


where the infimum is taken over all divergent LOMs 
 through −T nx such that T n is
smooth on 
 and dist(−x, ∂T n
) ≤ δ (of course, for any LOM 
, the boundary ∂
 consists
of the two endpoints of that LOM). We observe that 1 ≤ κn,δ(x) ≤ κn,0(x), and both κn,0(x)

and κn,δ(x) are non-decreasing functions of n.
For x ∈ M we denote

ztub(x) = sup



{dist(x, ∂
) : T is smooth on 
}

where the supremum is taken over all flat LOMs 
 ⊂ intM through x; this is the so-called
radius of the maximal tubular neighborhood of the billiard link joining x with T x.

Note that ztub(−T x) = ztub(x).
We denote by 
u(x) and 
s(x) the unstable and stable manifolds through x; the former

is a divergent LOM and the latter a convergent one. We also put rα(x) =dist(x, ∂
α(x)) for
α = u, s. It is known [7, Lemma 5.4] that for every semi-dispersing billiard table Q there
exists a constant c3 > 0 (using the notation of [7]) such that if

x ∈ U g = U g(δ) = {y ∈ M : ∀n > 0 ztub(−T ny) ≥ (κn,c3δ(y))−1c3δ}
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then rs(x) ≥ c3δ. Thus the points of U g (‘good set’) have stable manifolds of order δ. A sim-
ilar property holds for unstable manifolds. The set of points with shorter stable manifolds
(‘bad set’) must be carefully analyzed. We put

U b = U b(δ) = U0 \ U g =
⋃

n≥1

U b
n ,

U b
n = U b

n (δ) = {y ∈ U b : ztub(−T ny) < (κn,c3δ(y))−1c3δ}.
A crucial fact in the proof of Local Ergodic Theorem is the following tail bound: for any
function F(δ) → ∞ as δ → 0 the set

U b
ω = U b

ω(δ) =
⋃

n>F(δ)

U b
n (δ)

has measure

ν(U b
ω) = o(δ). (2)

In fact, the derivation of the Local Ergodic Theorem from the tail bound does not require
the Ansatz, so we will not repeat it here, see [7, Sect. 5]. In what follows, we prove the tail
bound.

First we need a few additional constructions. Denote

Û b
n (δ) = {

x ∈ U0

∣∣∃ a divergent LOM 
,−T nx ∈ ∂
,∂
 ∩ S0 = ∅,

T n and T −1 are smooth on int
,T −1
 is also divergent,

T −1 is not smooth at the endpoint x ′ ∈ ∂
 other than − T nx,

dist(−T nx, x ′) ≤ κn,c3δ(x)−1c3δ, and − T nx ′ ∈ U0

}
.

For any x ∈ Û b
n (δ) = Û b

n and 
 as above, we denote

z (T nx,
) = dist(−T nx, x ′)
∣∣x ′ ∈ ∂
,x ′ �= −T nx,

T −1 is not smooth at x ′ (≤ κn,c3δ(x)−1c3δ
)
. (3)

We note that ztub(T
nx) ≤ z(T nx,
).

For any point x ∈ Û b
n as above, we choose a phase point xε1 = −�ε1(T nx) with a suitably

selected ε1, 0 < ε1 < τ(T nx).
Note. From now on we will be recycling the notation ε1 that appeared earlier in the closed

formula in Theorem 1. We think that this action should not be the source of any confusion.
For an additional condition on how to select ε1, see below. For any 
 featuring the

definition of Û b
n (δ) and (3) let 
̂ denote the flow-sync version of 
 containing the point

xε1 = (qε1 , vε1) = −�ε1(T nx), see Fig. 1. Now x1 = (q1, v1) ∈ ∂
̂ is the projection (by the
flow) of the point x ′ ∈ ∂
 defined above, with the property

dist(−T nx, x ′) = z(T nx,
).

The other endpoint of the curve 
̂ is xε1 = (qε1 , vε1), see Fig. 1.
While selecting the time ε1 above, we try to make it sure that x1 be a post-singularity

phase point, i.e. T (−x1) ∈ S0 and T x1 �∈ S0.
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Fig. 1 Illustration to Lemma 2

Here we first consider the case when such a synchronization of 
̂ is possible. After that,
right before exposing (6), we explain how to modify the following argument if the required
synchronization is not feasible.

Consider the line segment

H = {
q

(
�t(q, vε1)

) ∣∣(q, vε1) ∈ S0,0 < t < τ(q, vε1)
}

in the domain Q, see Fig. 1. (Note that the point q1 does not belong to H, since v1 �= vε1

for any strictly convex 
̂.) The configuration component q3 ∈ H of the phase point x3 =
(q3, vε1) is defined as the orthogonal projection of qε1 onto the line H. According to this
definition, the line segment

{
λqε1 + (1 − λ)q3

∣∣0 ≤ λ ≤ 1
}

(4)

is perpendicular to H at q3.

Lemma 2 The scalar product condition of Lemma 1 holds true for the pair of phase points
(x3, x1) and (x3, xε1), i.e.

〈q1 − q3, v1 − vε1〉 ≥ 0

〈qε1 − q3, vε1 − vε1〉 ≥ 0,

see also Fig. 1.

Proof Denote the point of intersection of the line segment H and the carrier of the LOM

̂ by q̃3 (the existence of the intersection follows from simple billiard geometric consid-
erations) and the outer unit normal vector to 
̂ at q̃3 by v3, see Fig. 1. Then, by the con-
vexity of 
̂, q3 = q̃3 + ηvε1 with some small scalar η > 0, 〈q1 − q̃3, v3 − vε1〉 ≥ 0, and
〈q1 − q̃3, v1 − v3〉 ≥ 0. Thus we obtain the chain of inequalities

〈q1 − q3, v1 − vε1〉 = 〈q1 − q̃3, v1 − vε1〉 + η〈vε1 , vε1 − v1〉
≥ 〈q1 − q̃3, v1 − vε1〉 = 〈q1 − q̃3, v1 − v3〉 + 〈q1 − q̃3, v3 − vε1〉 ≥ 0,

finishing the proof of the lemma. �

Next, consider the two-dimensional “tube” (actually, a strip)

T = q
({

�tw
∣∣w ∈ 
̂,0 ≤ t ≤ τn+1(w)

})
, (5)
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Fig. 2 Illustration to the
argument below

where q(x) denotes the natural projection of � onto Q, and τn+1(w) is the time of the
(n+1)st collision on the forward orbit of w. Recall that T n+1 is smooth on 
̂ (where T n+1w

is defined as �τn+1(w)(w)), the endpoints of −T n+1(
̂) belong to the base neighborhood U0

by the construction of 
̂, and the curves T n+1(
̂) are monotonic in the canonical (r,φ) (arc-
length, angle of reflection) coordinates, thus all the “landing points” −�τn+1(w)w = −T n+1w

(w ∈ 
̂) are in the base neighborhood U0, hence these points w are all sufficient (recall our
definition of U0).

Lemma 3 The footpoint q3 = q(x3) belongs to the strip T .

Proof Drop a perpendicular line l from q3 to the supporting curve q(
̂) of 
̂. It follows
from the convexity of 
̂ that the intersection point q4 of l and q(
̂) lies on the arch con-
necting qε1 and q̃3, and x3 = �η(q4, v4) with some small η > 0 and x4 = (q4, v4) ∈ 
̂. �

According to Lemma 1, some small time shifts of the phase points x3 and x1 ∈ ∂
̂ are
contained by a divergent LOM, thus they are not mapped to the same foot point by any
positive iterate of the flow, as long as that iterate is smooth on the mentioned LOM. (In
other words, the billiard flow, being semi-dispersive, lacks focal points.)

The same statement can be made regarding the pair of phase points (x3, xε1). Therefore,
the orbit segment q(�[0,τn+1(x3)]x3) of x3 does not intersect the boundary of the strip T of (5),
so the orbit segment q(�[0,τn+1(x3)]x3) cannot escape from T . As a consequence, its endpoint
�τn+1(x3)x3 = T n+1x3 lies in U0, hence the point x3 is future sufficient.

As we said earlier, there is the possibility that the required synchronization of 
̂ (with a
small enough ε1 > 0, so that x1 becomes a post-singular phase point) is not feasible. This
phenomenon can only happen if the collision of T nx takes place very close to a corner of
the configuration space Q, and very soon after this collision the orbit segment [T nx,T n+1x]
flies near a tangency, so that no matter how small ε1 > 0 one chooses, the endpoint x1 of 
̂

(other than xε1 ) is always a pre-tangency phase point, see Fig. 2. In this case the proof can
proceed with such a 
̂ and x1 as follows:

The forward orbit of the pre-tangency phase point x1 = (q1, v1) touches ∂Q at q∗. Let
H be the tangent line to ∂Q near q∗ that is parallel to the velocity vε1 of xε1 (analogously
to the previous case), and let again q3 be the perpendicular projection of qε1 onto H, and
x3 = (q3, vε1), see Fig. 2. It is clear from the picture that the forward orbit of x3 enters
the strip T soon after time zero. Furthermore, this forward orbit is bound to stay in T
until it reaches U0 by the same reasoning as before: Both pairs (x3, xε1) and (x3, x1) can be
embedded in a divergent LOM by Lemma 1, thus the footpoints q(Stx3) of Stx3 (t > 0, Stx3

is in the closure of the strip T ) cannot be equal to any of the footpoints q(Sτxε1) or q(Sτx1)
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(τ > 0), so the forward orbit of x3 is unable to escape from the strip T . Since reaching the
neighborhood U0 with its forward orbit, the phase point x3 proves to be future sufficient.

According to the previous constructions, the relevant set for the “upgraded” version of
Local Ergodic Theorem is defined as follows:

Ũ b
n (δ) =

{
x ∈ U0

∣
∣∃ε1,0 < ε1 < τ(T nx),∃ a past sufficient point

y ∈ int�,Ty ∈ S0, v(y) = v(T nx) = v (�ε1(T nx)) ,

�q = q(y) − q (�ε1(T nx)) ⊥ v(T nx), ||�q|| ≤ κn,c3δ(x)−1c3δ
}
,

Ũ b
n,m = Ũ b

n,m(δ) =
{
x ∈ Ũ b

n

∣∣�m ≤ κn,c3δ(x) < �m+1
}

,

(6)

see the definition of the corresponding set U b
n,m before Lemma 6.3 in [7].

Note. For any point x ∈ Û b
n the existence of a suitable point y (required by (6)) is shown

by taking y = −x3 = (q3,−vε1). Hence Û b
n ⊂ Ũ b

n .
Now, with the above constructions, we are ready to complete the proof of the tail

bound (2). It goes along the same lines as in [7, Sect. 6], but at several points the argument
needs modifications in order to avoid using the Ansatz. We describe these modifications in
detail.

1. First of all, in construction of local stable manifolds [7, Lemma 5.4], we can restrict
ourselves to the (limits of the) inverse images 
t

0(y) = �−t (
t
t (y)) of strictly concave, local

orthogonal manifolds 
t
t (y) containing the phase point �ty = yt . Indeed, if necessary, the

partially flat, concave, local orthogonal manifolds 
t
t (y) may be slightly curved to make

them strictly concave. These arbitrarily small perturbations of the manifolds 
t
t (y), obvi-

ously, produce no effect on the limiting process and the overall proof of the Local Ergodic
Theorem.

2. The “n-step bad set” Unb = U b
n (δ) defined above can be replaced with our new Û b

n =
Û b

n (δ), for what it makes a phase point y ∈ U0 “n-step bad”, i.e. z(T ny) < κn,c3δ(y)−1c3δ, is
not that this inequality holds true, rather the fact that the construction of the stable manifold
at the phase point y breaks down at the (n+ 1)-st iteration of the billiard map, due to hitting
a nearby singularity, just as precisely described in the definition of the set Û b

n above. We note
that, due to this change, the sets U b = ⋃∞

n=1 U b
n and U g = U0 \U b will change, accordingly.

3. Now, in the tail bound (2), the measures of the sets Û b
n and Û b

ω = ⋃
n>F(δ) Û

b
n must be

estimated from above. Furthermore, these sets may be replaced by the larger sets Ũ b
n of (6)

and Ũ b
ω = ⋃

n>F(δ) Ũ
b
n .

4. The centerpiece estimate in the proof of the tail bound [7, Section 6] is that for any
given m ∈ N the ν measure of the set

⋃

n≥Nη

T nŨ b
n,m ⊂ (

S1 \ Kη

)[c3δ]
(7)

(featuring (6.10) in [7]) is bounded above by cηδ if δ is small enough, where the constant
cη > 0 can be made arbitrarily small by choosing the parameter η > 0 small enough. Here
the compact subset Kη of the singularity manifold S1 almost exhausts S1, that is,

mS1

(
S1 \ Kη

)
< η, (8)

where A[c3δ] denotes the open (c3δ)-neighborhood of a subset A ⊂ S1 inside M, mS1 is
the Lebesgue measure on S1, and Nη ↗ ∞ (as η → 0) is some threshold function. We note
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that, both in the original proof of the Fundamental Theorem and in the current one, the
set Kη consists of sufficient points only, and—in the original proof—exhausting S1 in the
sense of (8) was made possible by the Ansatz! On the other hand, in the current scenario,
lacking the Ansatz, we can only say that Kη ⊂ Suff(S1), where Suff(S1) denotes the set of
all sufficient points of S1, and

mS1

(
Suff (S1) \ Kη

)
< η.

We denote the set Suff(S1) \ Kη by Bη .
5. Keeping in mind definition (6) of the sets Ũ b

n , some open, tubular neighborhood V0 of
S1 in M has a uniquely defined foliation

� : S1 × (−ε0, ε0)
∼=−→ V0

with the properties that the section �(S1 × {0}) is equal to S1 (more precisely, �(y,0) =
y for all y ∈ S1), and on the one-dimensional foliae (curves) �({y0} × (−ε0, ε0)) (here
y0 ∈ S1) the phase points have a constant velocity vector

v (�(y0, s)) = v (�(y0,0)) = v(y0) (9)

for |s| < ε0, and the curve �(y0, s) has a time-sync version

γ0(s) = �τ(s) (�(y0, s))

(where 0 < τ(s) < τ(�(y0, s)) and |s| < ε0) such that the carrier q(γ0(s)) ⊂ Q is linear and
orthogonal to the flow-invariant hull

{
q (�τ (y0))

∣∣0 < τ < τ(y0)
}
,

and ‖ d
ds

q(γ0(s))‖ = 1 for all y0 ∈ S1 and |s| < ε0. (So s is an arc-length parameter.) Fur-
thermore, according to (6), the crucial set

⋃

N≥Nη

T nŨ b
n,m

in (7) is a subset of

�
(
Bη × [−c3δ, c3δ]

)

with mS1(Bη) < η, so we have that

ν

( ⋃

N≥Nη

T nŨ b
n,m

)
≤ c2c3ηδ

with an absolute constant c2 > 0. The existence of such a constant c2 is attributed to the facts
that

(a) the flow invariant measure μ is uniform on �, i.e. dμ = const · dqdθ , where θ is the
angular coordinate of the unit velocity vector;

(b) the T -invariant measure ν on M is the projection of μ onto M via the flow;
(c) the above curves γ0(t) are uniformly transversal to the forward invariant hull

⋃
t>0�

t(S0)

of the singularity manifold S0.
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As a matter of fact, this constant c2 is exactly the same as the constant appearing in [17,
Lemma 2], and the proof of its existence goes along the same lines, see also [7, Lemma 4.10].

Since the multiplier c2c3η of δ can be made arbitrarily small by choosing the number
η > 0 small enough, we finish the proof of the tail bound without having used the Ansatz.
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