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Abstract

We study the problem of fitting circles to scattered data. Unlike many other studies,
we assume that the noise is (strongly) correlated; we adopt a particular model where
correlations decay exponentially with the distance between data points. Our main
results are formulas for the maximum likelihood estimates and their covariance ma-
trix. Our study is motivated by (and applied to) arcs collected during archeological
field work.
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1 Introduction

Fitting circles to imperfect (noisy or distorted) images is a common task in
pattern recognition (Pei and Horng (1996)), computer vision (Atieg and Wat-
son (2004)), industry (quality control) (Landau (1987)), high energy physics
(Chernov and Ososkov (1984); Karimäki (1991)), medical sciences (Bigger-
staff (1972)), archeology (DeBoer (1980); Freeman (1977); Halǐr and Flusser
(1998); Halǐr and Menard (1996); Plog (1985); Thom (1955); Whalen (1998)),
robotics (Zhang et al. (2006)), and many other areas of human practice.

Theoretical and statistical analysis of the problem has been done by Chan
(1965); Berman and Culpin (1986); Berman (1989); Thomas and Chan (1989);
Chan and Thomas (1995); Kanatani (1998); Nievergelt (2002); Yin and Wang
(2004); Chan et al. (2005); Chernov and Lesort (2005); Zelniker and Clarkson
(2006); and others. In all these works the observed points were assumed to
have independent normal distribution (specified below). Practical algorithms
for fitting circles to data were proposed in the above papers, and also by
Landau (1987); Späth (1996), see a survey by Chernov and Lesort (2005).
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Our paper is motivated by a common archaeological problem of estimating
the diameter of a potsherd from a field expedition. The original diameter at
specific point along the profile of a broken pot – such as the outer rim or base
– is restored by fitting a circle to a sherd.

Typically, archaeologists refer to a diameter chart to estimate the diameter
of sherds, but the accuracy of this method is poor; see DeBoer (1980); Plog
(1985); Whalen (1998). When tested, this chart-fitting technique has been
found to produce a standard error of 5% to 10% of the estimate; see Hagstrum
and Hildebrand (1983), (Pot and de Groot, 1989, pp. 34–36), and (Whalen,
1998, Table 1). Moreover, individuals do not always read the charts consis-
tently. Even with relatively well-preserved sherds, the average readings from
different examiners during fieldwork have been documented to vary by as much
as 5% to 10% of the estimate; see DeBoer (1980), (Plog et al., 1978, pp. 413–
415), and Plog (1985). Thus, the methods presently employed in most archae-
ological fieldwork limit the many analytical techniques which rely on diameter
estimates of potsherds. We develop a new mathematical model and practical
algorithms that overcome the limitations of the techniques currently in use.

In general, the ideal contour which one fits to observed data is defined by an
equation

P (x, y;Θ) = 0, (1)

where P is a polynomial in x and y and Θ = [θ1, . . . , θk]
T is a vector of

coefficients (unknown parameters) to be estimated. For example, a circle is
defined by

(x− a)2 + (y − b)2 −R2 = 0, (2)

hence Θ = (a, b, R) is a 3D parameter vector. This work focuses on circles,
but our methods can be extended to other curves as well.

The imperfect image is represented by a set of points (x1, y1), . . . , (xn, yn)
obtained by scanning or otherwise digitizing the observed curve. One then
finds the curve satisfying (1) that provides the best fit to these points, usually
by minimizing the sum of squares of the distances to the data points

F0(Θ) =
n∑

i=1

d2
i , (3)

where di denotes the geometric (orthogonal) distance from (xi, yi) to the curve
(1). This method is known as the geometric fit, or least squares fit (LSF).

In theoretical studies, one usually adopts a statistical model where each (xi, yi)
is a noisy observation of some true (or idealized) point (x∗i , y

∗
i ), i.e.

xi = x∗i + δi, yi = y∗i + εi, i = 1, . . . , n, (4)

where (δ1, ε1), . . . , (δn, εn) are small random vectors (disturbances). The true
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points (x∗i , y
∗
i ) are supposed to lie on a ‘true (or idealized) curve’, i.e. satisfy

P (x∗i , y
∗
i ;Θ

∗) = 0, i = 1, . . . , n, (5)

where Θ∗ is the vector of true (unknown) parameters.

In virtually all studies the disturbances (δ1, ε1), . . . , (δn, εn) are assumed to
be independent random vectors with zero mean. It is also often assumed that
each (δi, εi) is a normal (Gaussian) vector with some covariance matrix Ci.
The simplest choice is Ci = σ2I, in which case all errors εi and δi are normal
random variables with zero mean and a common variance σ2. In that case the
geometric fit minimizing (3) is mathematically equivalent to the maximum
likelihood estimation (MLE); see e.g. Chan (1965).

In this paper we challenge and modify the assumption that disturbances are
independent. That assumption may be appropriate when the noise is due to
purely technical reasons, such as imperfect scanning, imprecise recording, etc.
There are, however, different causes of disturbances which make them strongly
dependent.

For example, a manufactured circular object like a disk or pot may in fact have
small bumps or cavities in its profile. Such defects are common on ancient
potsherds coated with burial accretions and damaged by use, discard, and
burial processes. Moreover, some objects that appear generally round may
in reality be slightly distorted. A wheel-thrown pot will always exhibit some
warping at various places in its walls due to imperfect manufacturing or uneven
shrinkage during drying and firing.

In a common situation from high energy physics, the trajectory of an elemen-
tary particle in a constant magnetic field must be circular, but the curvature of
the particle’s track may vary slightly due to inhomogeneities of the magnetic
field.

In these cases deviations of data points (x1, y1), . . . , (xn, yn) from the ideal
circle may occur in unison: a long string of nearby points may lie outside
the ideal circle, while another string elsewhere along the circumference may
lie inside it. Consequently, the disturbances become strongly correlated; more
precisely, the correlation is strong between nearby points but weakens between
distant points.

Correlations may also be introduced in the process of digitizing. In the ar-
chaeological field data presented below, sherd profiles are traced on a sheet of
graph paper which is later scanned and transformed into an array of pixels
(data points). Profiles may be traced with a pencil directly from the sherd
placed on the paper, but when this is impossible the profile is obtained indi-
rectly by means of a profile gauge. In both situations the point of the pencil
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inevitably strays slightly from the true shape of the object, deflecting a string
of points inside or outside the true circle.

Fig. 1. A magnified view of a line drawn by pencil along the edge of a sherd (grey
pixels) and the best-fitting circle (dark thin arc). Arrows point out places where
pixels stray mostly inside the arc or mostly outside the arc.

Fig. 1 shows part of the digitized pencil line from an archaeological field study
and its best-fitting circle. The pencil line sometimes strays inside the fitted
circle and sometimes outside it, creating fairly long deflections.

Despite all the high potential for correlations between disturbances in arcs
from various applications, there are no commonly adopted statistical models
of this effect. The topic remains virtually unexplored.

We will show that in the presence of correlations the least squares fit remains
adequate, i.e. the best point estimates of the parameters of the fitted curve
are the same with or without correlations. However, correlations between dis-
turbances strongly affect standard deviations of the estimates – and, hence,
the corresponding confidence intervals.

A model that takes correlations into account has potentially broad applica-
tions for archaeological research. Having an estimate of the confidence interval
of a fitted diameter allows a variety of improvements to classification systems
for individual potsherds as well as more sophisticated tests of excavated as-
semblages.

We present a statistical model that incorporates strong correlations between
data points. The strength of correlations is controlled by one parameter which
can easily be estimated from the data. We also derive the respective maximum
likelihood estimates (MLE) of the model parameters and obtain formulas for
their covariance matrix. Our formulas happen to be surprisingly simple and
easy to implement. We illustrate their application with simulated and archae-
ological data.

2 General correlation model

Each disturbance vector (δi, εi), i = 1, . . . , n, has a normal (radial) component
di and a tangential component ei. The important one is di, which represents the
(signed) distance from the data point (xi, yi) to the curve (to the leading order
of magnitude). In Fig. 2 the tangential component ei is practically irrelevant.

In fact some statisticians assume that the disturbance vector (δi, εi) is al-
ways orthogonal to the true curve, i.e. the noise occurs only in the radial
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Fig. 2. A true (idealized) point (x∗, y∗) and the corresponding observed point (x, y);
the radial component d and the tangential component e of the disturbance vector
(x− x∗, y − y∗) .

direction, which eliminates tangential displacements altogether. Berman and
Culpin (1986) call this a radial model, and we adopt it here.

Now for each i = 1, . . . , n we denote by

di = di(a, b, R) =
√

(xi − a)2 + (yi − b)2 −R

the (signed) distances from the data point (xi, yi) to the circle with parameters
(a, b, R). We assume that E(di) = 0 and denote by

V = E(DDT )

the covariance matrix of the vector D = (d1, . . . , dn)T ; the components of V
are vij = E(didj).

Assume for a moment that V is known. The likelihood function is

f(d1, . . . , dn) =
1

[(2π)n detV]1/2
exp

[
−1

2
DTV−1D

]
,

so the maximum likelihood estimates of a, b, R are obtained by minimizing

F1(a, b, R) = DTV−1D. (6)

In the standard model with no correlations, we have V = σ2I, and then
minimizing (6) is equivalent to minimizing (3); this brings us back to the least
squares fit.

Next we compute the covariance matrix of the maximum likelihood estimates.
By using standard Taylor series approximation

di =
√

(xi − a)2 + (yi − b)2 −R

=
√

(xi − a∗ − δa)2 + (yi − b∗ − δb)2 −R∗ − δR

≈ d̄i − ui δa− vi δb− δR, (7)

where d̄i =
√

(xi − a∗)2 + (yi − b∗)2 − R∗ designates the distance to the true
circle, and we denote

ui = (x∗i − a∗)/R∗ and vi = (y∗i − b∗)/R∗.

Observe that ui = cos ϕi and vi = sin ϕi, where ϕi is the angular coordinate
of the true point (x∗i , y

∗
i ) on the true circle, as is clear from the following:

x∗i = a∗ + R∗ cos ϕi, y∗i = b∗ + R∗ sin ϕi. (8)
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In matrix form, (7) can be written as

D = D̄−U δΘ,

where

U =


u1 v1 1
...

...
...

un vn 1

 and δΘ =


δa

δb

δR

 .

Now (6) takes form

F1 = D̄TV−1D̄− 2 δΘT UTV−1D̄ + δΘT UTV−1U δΘ

and its minimum is attained at

δΘ = (UTV−1U)−1UTV−1D̄

Since E(D̄) = 0, it follows that E(δΘ) = 0 so that our estimates are unbiased
(to the leading order). Their covariance matrix is

Cov(Θ) = E(δΘ δΘT )

= (UTV−1U)−1UTV−1E(D̄D̄T )V−1U(UTV−1U)−1

= (UTV−1U)−1, (9)

because E(D̄D̄T ) = V. Again, in the standard model with no correlations we
have V = σ2I, and we recover the well-known formula, see e.g. Chernov and
Lesort (2004); Kanatani (1998):

Cov(Θ) = σ2(UTU)−1. (10)

We see that the objective function (6) for computing maximum likelihood
estimates and the corresponding covariance matrix formula (9) involve the
inverse matrix V−1 of the covariances of disturbances. Our next goal is to
adopt a model in which V−1 is tractable.

Remark. In practice the minimization of (6) may be difficult, depending on
the structure of the matrix V−1 (see the next section). Then one may still use
the ordinary least squares fit (3). In that case the objective function (3) takes
form

F0 = D̄T D̄− 2 δΘT UT D̄ + δΘT UTU δΘ,

its minimum is attained at

δΘ = (UTU)−1UT D̄,
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and the covariance matrix is now given by

Cov(Θ) = (UTU)−1UTVU(UTU)−1. (11)

3 Simple structure of correlations

A specific assumption about the covariance matrix V makes practical calcu-
lations feasible.

First we assume that the array of the data points is ordered along the circum-
ference; i.e. their angular coordinates ϕi, see (8), are sorted either in ascending
or descending order. This is easily performed after fitting a circle to unsorted
data. Now the value |i− j| roughly represents the distance between the points
(x∗i , y

∗
i ) and (x∗j , y

∗
j ).

Because the correlations must be stronger between nearby points and weaker
between distant points, we assume that they decay exponentially with dis-
tance; i.e. the components of V satisfy

vij = σ2ρ|i−j| (12)

for some ρ < 1. Here σ2 is a common variance of every deviation di and ρ|i−j|

is the correlation between di and dj. The parameter ρ controls the strength
of correlations: they are strong for ρ close to 1, weak for ρ near 0, and vanish
completely if ρ = 0, in which case (12) becomes vii = σ2 and vij = 0 for i 6= j.

Remark. We can also justify our assumption (12) theoretically as follows.
Suppose the noise vectors (δi, εi) are dependent and form a Markov chain, i.e.
each observed point (xi, yi) depends on the previous one (xi−1, yi−1) but not
on the earlier ones (xi−m, yi−m), m ≥ 2. Then the covariance matrix satisfies
(12), see Feller (1971), page 97. Our Markovness assumption is natural when
points are drawn by a pencil, as the pencil tip moves continuously from one
data point to the next.
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Now the inverse of V specified by (12) is a tridiagonal matrix:

V−1 =
σ−2

1− ρ2



1 −ρ 0 0 . . . 0

−ρ 1 + ρ2 −ρ 0 0

0 −ρ 1 + ρ2 −ρ
. . . 0

0 0 −ρ 1 + ρ2 0
...

. . . . . .
...

0 . . . 0 −ρ 1 + ρ2 −ρ

0 . . . 0 0 −ρ 1



.

Assume for a moment that ρ is known. Then the minimization of (6), which
produces the maximum likelihood estimates, is achieved by minimizing

F2 =
n∑

i=1

d2
i − 2ρ

1+ρ2

n−1∑
i=1

didi+1 (13)

(we somewhat simplified the actual expression by modifying it near the ends,
i.e. at i = 1 and i = n). The first sum in (13) is the classical objective function
(3), while the second sum represents the correction due to correlations. Note
that 2ρ

1+ρ2 < 1.

The correction term in (13) essentially reduces the contribution of neighboring
pairs for which didi+1 > 0 (i.e. both points lie on one side of the fitted circle)
and amplifies the contribution of pairs for which didi+1 < 0 (points lie on the
opposite sides of the fitted circle). In other words, the correction term in (13)
suppresses the influence of strings of consecutive points lying on one side of
the fitted circle. These strings are likely to be caused by strong correlations
and thus do not represent the actual location of the true circle.

In practice, however, the second sum in (13) is unlikely to dramatically change
the fitted circle. On the data samples collected during archaeological field
work, the differences between the two fits (3) and (13) are negligible. Below
we prove that both fits have the same accuracy (the same covariance matrix),
to the leading order.

Next we turn to the calculation of the covariance matrix (9). First we derive
a simplified formula for the matrix σ2UTV−1U. The bottom right component
of this matrix is approximately (1 − ρ)2/(1 − ρ2) = (1 − ρ)/(1 + ρ). The top
left component is approximately

1

1− ρ2

∑
i

[
(1 + ρ2)u2

i − 2ρuiui+1

]
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(here we again somewhat simplified the actual expression near the ends, i.e.
at i = 0 and i = n). Now as the points i and i + 1 are adjacent, we clearly
have ui ≈ ui+1, so we can safely approximate the above expression by

1 + ρ2 − 2ρ

1− ρ2

∑
i

u2
i =

1− ρ

1 + ρ

∑
i

u2
i .

Repeating this procedure for each component of the matrix UTV−1U we arrive
at

σ2 UTV−1U ≈ 1−ρ
1+ρ

UTU. (14)

As a result,

Cov(Θ) ≈ 1+ρ
1−ρ

σ2(UTU)−1 = 1+ρ
1−ρ

Cov0(Θ), (15)

where Cov0(Θ) is the covariance matrix in the absence of correlations given
by (10). Hence the presence of correlations magnify the covariance matrix by
a factor of (1 + ρ)/(1− ρ). When correlations are not weak (i.e. ρ is not near
0), this factor is significant and cannot be ignored.

Remark. If one uses the least squares estimation minimizing (3), then the
covariance matrix is given by (11), instead of (9). In that case, since vij =
σ2ρ|i−j| and again (ui, vi) ≈ (uj, vj) for small 1 |i− j|, we have

UTVU ≈ σ2(1 + 2ρ + 2ρ2 + · · · )UTU

= 1+ρ
1−ρ

σ2UTU. (16)

Combining this with (11) we arrive at the same final formula (15). Thus the
accuracy of both methods – the maximum likelihood (6) and the ordinary
least squares (3) – is identical, as far as the approximation (15) goes.

4 Estimation of ρ

In order to use the formulas (13) and (15) in practice we need to estimate ρ
from data. Here we do just that.

First, the standard estimate of σ2 is

estimate(σ2) =
1

n− 3

n∑
i=1

d2
i . (17)

1 In our tests on archaeological field data (cf. Section 5) we typically observed
n ∼ 10, 000 data points along an arc of ∼ 20o and ρ ∼ 0.995, hence correlations
remain significant for |i− j| ∼ 500, which is roughly equivalent to |ϕi − ϕj | ∼ 0.01;
thus indeed we have (ui, vi) ≈ (uj , vj).
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Similarly, the estimate of the one-step correlation term would be

estimate(σ2ρ) =
1

n− 4

n−1∑
i=1

didi+1.

These two formulas may already be combined to estimate ρ, but we can im-
prove the result by including higher-step correlations as well. For the k-step
correlation term we have

estimate(σ2ρk) =
1

n− 3− k

n−k∑
i=1

didi+k. (18)

Adding up these estimates gives

estimate
(
σ2/(1− ρ)

)
=

∑
k≥0

1

n− 3− k

n−k∑
i=1

didi+k. (19)

In practice we should not include terms with large k’s for two reasons. First,
correlations between distant points become weak, which makes the contribu-
tion from large k’s negligible overall. Second, while theoretically the correla-
tions remain positive for every k ≥ 1 (recall that they are assumed to be σ2ρk),
their estimates (18) for large k’s may be negative, and in fact this happens in
dangerous proportions (see below).

Indeed, fitting a circle by least squares (3) results in the end with (cf. Chernov
and Lesort (2005)) ∑

i

di = 0 (20)

(recall that di are the signed distances, see (7), which are positive for points
outside the circle and negative for those inside it). Squaring (20) gives

n∑
i=1

d2
i + 2

∑
k≥1

n−k∑
i=1

didi+k = 0. (21)

This shows not only that some k-step estimates given by (18) are negative,
but they must be large enough to cancel all positive estimates, in the sense of
(21). For this reason the right hand side of (19), with all k’s included, is likely
to be negative!

Taking all these facts into consideration we propose a practical solution of
increasing k until the right hand side grows, and then stopping, i.e.,

estimate
(
σ2/(1− ρ)

)
=

m∑
k=0

1

n− 3− k

n−k∑
i=1

didi+k, (22)

where

m + 1 = min

{
k :

n−k∑
i=1

didi+k < 0

}
.
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Lastly one can combine (17) and (22) as follows:

estimate(ρ) = 1−
∑n

i=1
1

n−3
d2

i∑m
k=0

1
n−3−k

∑n−k
i=1 didi+k

. (23)

5 Experimental tests

Simulated data. To test our formulas on simulated data we first need to gen-
erate a sequence of random numbers d1, d2, . . . with a normal distribution, zero
mean, and covariances satisfying our model assumptions, i.e. Cov(di, di+k) =
σ2ρk.

This can be done by setting d1 = σz1 and then computing d2, d3, . . . sequen-
tially by the rule

dn = ρdn−1 + σ0zn,

where z1, z2, . . . are independent and identically distributed normal random
variables with zero mean, unit variance, and σ2

0 = (1− ρ2)σ2. It is easy to see
that the sequence obtained this way has all the desired properties; see also
Feller (1971), page 97.

Then we can fix a true circle (a∗, b∗, R∗) (in our tests we choose (0, 0, 1)) and
a monotonic sequence of angular coordinates ϕ1, . . . , ϕn (we choose n = 1000
and angles equally spaced between 0 and ϕmax). We generate a set of data
points by

xi = a∗ + (R∗ + di) cos ϕi, yi = b∗ + (R∗ + di) sin ϕi.

Then we can fit a circle by the least squares (3) or the maximum likelihood
(13), which give practically the same results, and estimate ρ by (23) (although
in our tests we employed the more efficient Taubin fit; see the remark in the
end of Section 2).

In our tests we set σ = 0.01 (to make average disturbances small compared to
the radius R∗ = 1), we tried ϕmax = π (semi-circle) and ϕmax = π/2 (quarter
of a circle), and we varied ρ from 0 to 0.95; for each value of ρ we generated 106

random samples and computed the mean value and standard deviation of the
resulting estimates of ρ. The results are recorded in Table 1. It demonstrates
that our formula (23) for estimating ρ is quite accurate (though it tends to
slightly underestimate ρ for ρ ≥ 0.5).

Real world data. We tested our approach on digitized arcs from archaeo-
logical fieldwork. The arcs are fragments of wheelmade and molded circular
architectural terracottas whose original diameters are unknown. Using a profile
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mean ± st.dev.

ρ 180o arc 90o arc

0.0 0.020 ± 0.033 0.020 ± 0.033

0.1 0.112 ± 0.046 0.111 ± 0.046

0.2 0.207 ± 0.050 0.208 ± 0.051

0.3 0.304 ± 0.053 0.304 ± 0.053

0.4 0.400 ± 0.053 0.401 ± 0.053

0.5 0.497 ± 0.052 0.497 ± 0.052

0.6 0.593 ± 0.050 0.593 ± 0.049

0.7 0.689 ± 0.045 0.690 ± 0.045

0.8 0.786 ± 0.037 0.786 ± 0.038

0.9 0.882 ± 0.026 0.883 ± 0.026

0.95 0.931 ± 0.018 0.931 ± 0.018
Table 1
Simulated data.

gauge, the profiles are transferred to graph paper, scanned, and transformed
into an array of black and white pixels with a threshold filter. The data points
are the x and y coordinates of black pixels measured in centimeters. The arcs
usually consist of 5,000 to 20,000 points and subtend angles ranging from 5o

to 270o. A typical digitized arc is shown on Fig. 3.

Fig. 3. A typical arc drawn by pencil with a profile gauge from a circular cover tile.

Tests on real data must be done differently, because there is no “theoretical”
value of ρ to which to compare our estimate. Instead, we can estimate the
standard deviation of the parameters (a, b, R) empirically. We begin by fitting
a circle to the full arc; then we erase a small portion of the arc, refit the circle
to the remaining image, and examine the change in the estimated radius R.

This approach is analogous to the standard bootstrapping method, but there
is an important difference. We do not just remove 5% or 10% of the sample
randomly, as this would not change the overall size or shape of the arc. Instead,
we erase 5% of the pencil-drawn arc either from one end or from both ends
of the arc. In this way we actually see how the fitted circle depends on the
size of the sherd. In effect, we evaluate fluctuations of the radius estimates
obtained from various parts of the original round object (the potsherd), and
that is what matters in practice.

Table 2 shows the results obtained for several arcs drawn from actual sherds
coded by 11a, 22a, etc. Its columns include the estimated radius R (in cen-
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code object R (cm) ∆R (cm) σR,1 σR,0 ρ

11a wheelmade antefix 13.8 0.017 0.075 0.004 0.993

22a molded cover tile 18.5 0.352 0.206 0.008 0.997

36a ” 13.6 0.126 0.076 0.005 0.992

37a ” 15.7 0.071 0.084 0.002 0.999

55a ” 18.8 0.215 0.365 0.011 0.998

79a ” 18.8 0.160 0.173 0.006 0.997

87a wheelmade acroterion 38.8 0.163 0.144 0.009 0.992

88a ” 15.6 0.601 0.415 0.035 0.986

90a ” 24.5 0.210 0.605 0.052 0.985

108a ” 66.1 0.602 0.681 0.035 0.995
Table 2
Real data.

timeters); the change in R (denoted by ∆R) after erasing 5% of the arc on
each end; the standard deviation of the estimate of the radius, σR,1, computed
via (15); the ‘ordinary’ standard deviation (10), σR,0, which does not take
correlations into account; and the estimate of the correlation parameter ρ.

It is clear that the ordinary formula (10) in most cases grossly underestimates
the “empirical” standard deviation of the radius estimate. On the other hand,
our formula (15) agrees with the empirical value ∆R, in the sense that the
latter falls into its 95% confidence interval

|∆R| ≤ 2σR,1

in all the tested cases. Our estimate of ρ is always very high indicating the
presence of strong correlations in the data.

Lastly, we verified the validity of our assumption (12) by using real data.
Figure 4 shows our estimate of σ2ρk, given by (18), versus k = 1, . . . , 1200,
on a logarithmic scale. The linear profile of the plot confirms our assumption
that the correlations decay exponentially with k.

Fig. 4. Our estimate of σ2ρk, versus k, for the real arc 79a.

6 Conclusions

We propose a new model for fitting geometric curves (and specifically, circles)
to images with highly correlated noise. Our model allows us to evaluate cor-
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rectly the standard deviation of parameter estimators and construct proper
confidence intervals for unknown parameters. The classical models which have
been adopted in the literature to date assume that noise is uncorrelated. Even
though this results in accurate point estimates of unknown parameters, it
provides incorrect standard deviations and misleading confidence intervals.

Our results find immediate applications in the archeological research where one
estimates the original diameter of potsherds and fragments of other ancient
circular objects; adequate confidence intervals for the diameters are essential
for identification and classification of such objects.

The fragments analyzed here are from large vessels and wheelmade or molded
circular architectural terracottas, which are decorated tiles from sixth-century
B.C. roofs. The estimation of the confidence interval improves the ability to
distinguish arcs belonging to separate groups. In the case of the rounded tiles,
significant variation in the diameter differentiates separate roofing systems
from one another.

The method is broadly applicable to the analysis of archaeological ceramics as
well – where classification is a fundamental problem. Standardized measure-
ments that are most descriptive of a vessel type include the full height and
the diameters at the rim, base, and maximum; see Roux (2003). With sherds,
only the diameter can be determined in most cases. Because the low signif-
icance of the fit and inter-examiner bias prevent fine distinctions, however,
classifications which rely on arcs fitted to a diameter chart are only able to
separate pots of grossly different proportions. More sophisticated tests classify
vessels by ratios such as height to rim aperture, and some studies have unwit-
tingly incorporated a significant estimation error by applying these methods
to sherds; see (Millet, 1979, P. 37), (Polak, 2000, pp. 74–137), and Poblome
(1999).

Other methods for analyzing groups of potsherds from excavations may be
improved by our model. A variety of techniques have been developed to es-
timate vessel volume from the diameter of sherds, yet none has included the
confidence interval of the diameter estimate (see, e.g., Blinkhorn (1999); Eric-
son and de Atley (1976); Hagstrum and Hildebrand (1983); Mounier (1987);
Pot and de Groot (1989); Whalen (1998)). One useful measure is the coeffi-
cient of variation for standardized pot dimensions, such as rim diameter, which
can indicate the intensity of production and the specialization of potters who
created a group of vessels (see Ph. J. Arnold (1991), (Ph. J. Arnold, 2000,
pp. 111–113), Arnold and Nieves (1992), (Blackman et al., 1993, pp. 71–76)
(Frankel, 1988, pp. 42–47), Longacre et al. (1988), (Rice, 1996, pp. 176–182),
Roux (2003), Stark (1995), and (Blackman et al., 1993, pp. 38–40)). However,
the interpretation of variation in potsherds has been limited by the inherent
measurement error of the diameter chart, which obscures the underlying varia-
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tion in the pot diameters; see Benco (1988); Blackman et al. (1993); Hagstrum
(1986). Furthermore, the method proposed here may be adapted to systems
for automated classification and reconstruction of vessel types from three-
dimensional scanning of sherds; see Gilboa et al. (2004); di Gironimo et al.
(2004); Hagstrum and Hildebrand (1990).
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