
Phi-functions for 2D objects formed by line
segments and circular arcs

N. Chernov1, Yu. Stoyan2, T. Romanova2, and A. Pankratov2

January 30, 2012

Abstract

We study the cutting and packing (C&P) problems in two dimen-
sions by using phi-functions. Our phi-functions describe the layout
of given objects; they allow us to construct a mathematical model
in which C&P problems become constrained optimization problems.
Here we define (for the first time) a complete class of basic phi-
functions which allow us to derive phi-functions for all 2D objects that
are formed by linear segments and circular arcs. Our phi-functions
support translations and rotations of objects. In order to deal with
restrictions on minimal or maximal distances between objects, we also
propose adjusted phi-functions. Our phi-functions are expressed by
simple linear and quadratic formulas without radicals. The use of
radical-free phi-functions allows us to increase efficiency of optimiza-
tion algorithms. We include several model examples.

Keywords: Cutting and packing; Mathematical modeling; Optimal place-
ment; Phi-functions

1 Introduction

We study the cutting and packing (C&P) problems. Its basic goal is to place
given objects into a container in an optimal manner. For example, in garment

1Department of Mathematics, University of Alabama at Birmingham, AL 35294;
2Department of Mathematical Modeling, Institute for Mechanical Engineering Prob-

lems of the National Academy of Sciences of Ukraine, Kharkov, Ukraine;
Email: chernov@math.uab.edu; sherom@kharkov.ua

1

industry one cuts figures of specified shapes from a strip of textile, and one
naturally wants to minimize waste. Similar tasks arise in metal cutting,
furniture making, glass industry, shoe manufacturing, etc. In shipping works
one commonly needs to place given objects into a container of a smallest
size or volume to reduce the space used or increase the number of objects
transported.

The C&P problem can be formally stated as follows: place a set of given
objects A1, . . . , An into a container Ω so that a certain objective function
(measuring the “quality” of placement) will reach its extreme value.

In some applications (as in garment industry) objects must be specifi-
cally oriented respecting the structure of the textile, i.e., they can only be
translated without turnings (or only slightly rotated within given limits).
In other applications objects can be freely rotated. Some applications in-
volve additional restrictions on the minimal or maximal distances between
certain objects or from objects to the walls of the container Ω (one example
is packing of radioactive waste).

While most researchers use heuristics for solving C&P problems, some
develop systematic approaches based on mathematical modeling and gen-
eral optimization procedures.; see, e.g., [3, 7, 10]. We refer the reader to
recent tutorials [1, 18] presenting the history of the C&P problem and basic
techniques for its solution.

Standard existing algorithms are restricted to 2D objects of polygonal
shapes; other shapes are simply approximated by polygons (a notable ex-
ception is [4] which also treats circular objects). The most popular and
most frequently cited tools in the modern literature on the C&P problem
are Minkowski sum [11] and the so called No-Fit Polygon [1], which works
with polygons only and does not support rotations. Rotations of polygons
were considered in [8, 9], and in a very recent paper [5] the concept of No-Fit
Polygon was extended to objects bounded by circular arcs.

In this paper we develop tools that handle any 2D objects whose boundary
is formed by linear segments and/or circular arcs (the latter may be convex
or concave). All objects we had to deal with in real applications, without
exception, belong to this category. Our tools support free translations and
rotations of objects and can respect any restrictions on the distances between
objects.

We describe the layout of objects relative to each other by the so-called
phi-functions. For any placement of two objects Ai and Aj on the plane R2,
the corresponding phi-function ΦAiAj shows how far these objects are from

2

each other, whether they touch each other, or whether they overlap (in the
latter case it shows how large the overlap is). Phi-functions were introduced
in [2, 15, 16] and fully described in our recent survey [6]. Phi-functions are
also used for solving 3D packing problems [14] and covering problems [13].

The arguments of the phi-function ΦAiAj are the translation and rotation
parameters of the objects Ai and Aj; those parameters specify the exact
position and orientation of the objects in the xy plane (or in the xyz space).
All these parameters together, for all the given objects, constitute the solution
space. Solving the cutting and packing problem then consists of minimization
of a certain objective function defined on the solution space.

Thus the solution of the C&P problem reduces to minimization of an ob-
jective function on a certain (multidimensional) space, which can be done by
mathematical programming. A detailed description of the solution strategy
is given in [6]. We emphasize that the minimization is performed with respect
to all of the underlying variables, i.e., all the objects can move and rotate
simultaneously. In this respect our approach differs from many others that
optimize the position of one object at a time. Illustrations and animated
demonstrations of the performance of our methods can be found on our web
page [19].

The solution space consists of all admissible (non-overlapping) positions
of our objects, which correspond to inequalities ΦAiAj ≥ 0 for all i 6= j. Our
phi-functions ΦAiAj are defined by a combination of minima and maxima of
various basic functions that represent mutual position of various elements of
the underlying objects (their edges, their corner points, etc.) As a result,
the solution space is described by a complicated tree in which each terminal
node consists of a system of inequalities involving translation and rotation
parameters of certain objects. This description is very complex, and one of
our goals is to simplify it.

The above mentioned inequalities may be expressed via distances between
various points, segments, and arcs on the boundaries of our objects. The
resulting formulas often involve square roots, which may cause unpleasant
complications – formulas describing the solution space develops singularities,
and the minimization process becomes prohibitively slow.

To remedy the situation, we redefine the phi-functions so that the solution
space will be described by simpler formulas without radicals (thus avoiding
related singularities), This speeds up the optimization process. By our rules,
phi-functions only need to satisfy certain flexible requirements, they are not
rigidly determined by the shapes of the given objects. In fact, one can often

3

define phi-functions for fairly complicated objects by simple formulas that
avoid square roots and other irrational functions.

This strategy was employed in our previous works [6], but here we imple-
ment it to an utmost extent. We will show that for any objects bounded by
linear segments and circular arcs phi-functions can be defined by algebraic
formulas without radicals. This is the principal goal of our paper. It was an-
nounced in [6] without much details. Here we give explicit practical formulas
for computing the phi-functions in all possible cases. Our radical-free phi-
functions also incorporate additional constraints on the distances between
objects (see Section 4).

We demonstrate the efficiency of our new phi-functions by model exam-
ples. For the description of the solution space via phi-functions we refer the
reader to [6]. For further details of local optimization algorithms used in our
programs we refer the reader to [17].

2 Phi-functions and decomposition of objects

Recall that a 2D object is a subset A ⊂ R2; it is usually specified by some
equations or inequalities in the canonical coordinates x, y. Placing the object
in R2 means moving it without changing its shape or size. Rigid motions in
R2 consist of rotations and translations. If we rotate A by angle θA (say,
clockwise) and translate it by vector νA = (νAx, νAy), then the resulting set
(placed object) can be described by equation

(1) A(νA, θA) = RθA
A + νA,

where

Rθ =

[
cos θ sin θ

− sin θ cos θ

]

denotes the standard rotation matrix. We call νA and θA the placement
parameters for the object A.

Now let A,B ⊂ R2 be two objects. We denote the corresponding placed
objects by A′ = A(νA, θA) and B′ = B(νB, θB). The phi-function

Φ = ΦAB = ΦAB(νA, θA, νB, θB),

describes the mutual position (“interaction”) of the pair of sets A′ and B′.

4

It must satisfy three basic requirements:

(2)





Φ > 0 if A′ ∩B′ = ∅
Φ = 0 if int(A′) ∩ int(B′) = ∅ & ∂A′ ∩ ∂B′ 6= ∅
Φ < 0 if int(A′) ∩ int(B′) 6= ∅

Here int(A′) denotes the interior of A′ and ∂A′ the boundary (frontier) of
A′. We always assume that our objects are canonically closed sets, i.e., each
object is the closure of its interior. Also, the boundary ∂A′ should not have
self-intersections [2, 6].

Note that ΦAB is a function of six real variables νAx, νAy, θA, νBx, νBy, θB.
An important requirement is that ΦAB be continuous in all these six variables
[6]. We will also assume that ΦAB is “symmetric” in the sense that

ΦAB(νA, θA, νB, θB) = ΦBA(νB, θB, νA, θA)

and translation invariant, i.e., for any vector ν

ΦAB(νA, θA, νB, θB) = ΦAB(νA + ν, θA, νB + ν, θB).

Our phi-functions are also rotation invariant in a natural sense. In our for-
mulas, the superscripts of Φ will always refer to given objects, while the
arguments of Φ (the placement parameters) will be often omitted for brevity.

The general meaning of (2) is that when the placed objects are disjoint,
i.e., a positive distance apart, then Φ > 0. When those objects just touch
each other (on their boundaries), but do not overlap, then Φ = 0. When
they overlap, then Φ < 0.

We emphasize that the exact value of the phi-function is not subject to
any rigid constraints. If two placed objects A′ and B′ are disjoint, then Φ
should just roughly approximate the distance between them. If they overlap,
then the absolute value |Φ| should just roughly measure the extent of overlap.
This flexibility allows us to construct relatively simple phi-functions for rather
complex objects, which is the main goal of our paper.

For example, let C1 and C2 be two circles (disks) of radii r1 and r2,
respectively, defined by

Ci = {(x, y) : x2 + y2 ≤ r2
i }.

Now by translating C1 and C2 through some vectors ν1 and ν2 we get two
placed circles C ′

1 and C ′
2 with centers (ν1x, ν1y) and (ν2x, ν2y), respectively,

5

and the same radii r1 and r2 (rotations are redundant for circles). Now the
distance between C ′

1 and C ′
2 is d = max{φ, 0}, where

φ =
√

(ν1x − ν2x)2 + (ν1y − ν2y)2 − (r1 + r2).

Note that φ > 0 if the circles are disjoint and φ < 0 if they overlap, thus we
could set ΦC1C2 = φ. But we define ΦC1C2 differently:

(3) ΦC1C2 = (ν1x − ν2x)
2 + (ν1y − ν2y)

2 − (r1 + r2)
2.

Note that the sign of ΦC1C2 coincides with that of φ (and ΦC1C2 = 0 whenever
φ = 0). But the formula (3) allows us to avoid radicals, thus improving the
performance of our optimization algorithms.

Next suppose

A = A1 ∪ · · · ∪ Ap and B = B1 ∪ · · · ∪Bq

are two objects, each of which is a union of some smaller (and simpler)
components Ai and Bj, respectively. Those do not have to be disjoint, i.e.,
some Ai’s may overlap, and so may some of the Bj’s. When the object A
is rotated and translated, all its parts are rotated by the same angle and
translated through the same vector, so the placement parameters for A and
for all its parts Ai are the same. This applies to B and its parts, too.

Now we can define

(4) ΦAB = min
1≤i≤p

min
1≤j≤q

ΦAiBj .

This simple fact can be verified by direct inspection, see also [2, 6].
In this paper we consider objects whose boundary is formed by linear

segments and/or circular arcs (the latter may be convex or concave); see an
example in Fig. 1. Such objects can be partitioned into simpler components
of four basic types: (a) convex polygons, (b) circular segments, (c) “hats”,
and (d) “horns”; see Fig. 2.

A convex polygon is an intersection of m ≥ 3 half-planes. More generally,
an intersection of m ≥ 1 half-planes will be called a generalized convex
polygon, or phi-polygon. It may be a regular (bounded) polygon, or an
unbounded region, such as a region between two rays (half-lines) emanating
from a common vertex (see illustrations in [2]).

6

D

D

V

H

Figure 1: A partition of an object into 15 basic objects: 8 convex polygons,
3 circular segments (marked by D), 3 hats (marked by H) and one horn
(marked by V).

A circular segment is a region bounded by a circular arc (smaller than a
semicircle) and the respective chord. One can also describe a circular segment
as the convex hull of a circular arc. A hat is formed by a circular arc (smaller
than a semicircle) and two tangent lines at its endpoints (Fig. 2c). A horn is
made by two circular arcs (one convex and one concave) that are tangent to
each other at the point of contact and a line crossing both arcs and tangent
to the concave one (Fig. 2d). We will denote these four types by K, D, H,
and V , as in Fig. 2.

Fig. 1 shows a division of an object into basic sub-objects. It consists of
8 convex polygons, 3 circular segments, 3 hats and one horn.

Decomposition of a given object into basic sub-objects can be done by a
computer algorithm based on the following steps:

1. Locate “beaks”, i.e., points on the boundary of A where two arcs (one
concave and one convex) terminate with a common tangent line. At
each beak, cut off a small piece that is shaped as a horn (by a line tan-
gent to the concave arc). After the detachment of horns, the resulting
object will have no beaks.

7

(a) (b)

(c) (d)

K

D

H V

Figure 2: Basic objects: (a) convex polygon K, (b) circular segment D, (c)
hat H, and (d) horn V .

2. Locate all concave arcs and carve out hats so that each concave arc will
be replaced with a polygonal line. After the detachment of hats, the
resulting object will have no concave arcs.

3. Locate all convex arcs and cut off circular segments so that each convex
arc will be replaced with one or more chords. After the detachment of
segments, the resulting object will have no convex arcs.

4. If the resulting phi-polygon is convex, keep it. If not, decompose it into
two or more convex ones.

We note that if the given object A is simple enough, it may not be nec-
essary to divide it into basic objects. For example, if A is a circle (or a
ring), there is no need to cut it artificially into some polygons and circular
segments, as phi-functions for circles (and rings) are quite simple; see (3) and
other formulas below, as well as [2, 15, 16].

Next, recall that our basic goal is to place given objects A1, . . . , An into
a container Ω with respect to a given objective. To ensure that the placed
objects Ai(νAi

, θAi
) do not overlap, we can just verify that ΦAiAj ≥ 0 for

8

all i 6= j. To ensure that Ai(νAi
, θAi

) ⊂ Ω, we verify that ΦAiΩ
∗ ≥ 0 where

Ω∗ = cl(R2 \Ω) is the closure of the complement to the container Ω. This is
a part of our optimization algorithm; see [6].

The necessity of treating Ω∗ = cl(R2\Ω) as a (rather special) object leads
us to considering unbounded objects, too. Given a bounded object B, we
denote by B∗ = cl(R2 \ B) the unbounded complementary object. If B∗ is
delimited by line segments and circular arcs, then it can be decomposed into
basic objects of the same four types, except one or more basic objects are
unbounded phi-polygons as described above.

3 Basic phi-functions

Due to the decomposition principle (4) our problem reduces the construction
of phi-functions for all pairs of basic objects. As there are four types of basic
objects, there are a total of 4 +

(
4
2

)
= 10 possible pairs of types of basic

objects to treat. These will form a complete class of basic phi-functions.

Two convex polygons. A convex polygon is an intersection of several half-
planes. A half-plane can be defined by αx + βy + γ ≤ 0 so it is completely
specified by three parameters (α, β, γ). Without loss of generality we assume
in what follows that α2 + β2 = 1. A convex polygon (phi-polygon) K that is
the intersection of m half-planes can be specified by

K =
(
(α1, β1, γ1), . . . , (αm, βm, γm)

)
.

Alternatively, K can be specified by a sequence of vertices

K =
(
(x1, y1), . . . , (xm, ym)

)

listed in the counterclockwise direction. If the polygon K is moved (rotated
and translated), its parameters αi, βi, γi and xi, yi can be recomputed in terms
of the rotation angle θK and translation vector νK , according to (1). Thus
the placement parameters of K can be incorporated into αi, βi, γi and xi, yi.

Now let K be a convex m-gon and K ′ another convex m′-gon whose
parameters we denote by (α′i, β

′
i, γ

′
i) and whose vertices by (x′i, y

′
i) for 1 ≤ i ≤

m′. Denote

uij = αix
′
j + βiy

′
j + γi and vji = α′ixj + β′iyj + γ′i.

9

Now we define the “polygon-polygon” phi-function as

(5) ΦKK′
= max{ max

1≤i≤m
min

1≤j≤m′
uij, max

1≤j≤m′
min

1≤i≤m
vji}.

see [6] for a detailed analysis of this formula. We note that ΦKK′
does

not involve quadratic functions. It is defined by linear expressions only if
rotational angles are not used.

In particular, if P is a half-plane defined by αx + βy + γ ≤ 0 and K ′ a
polygon with vertices (x′i, y

′
i), then (5) takes a much simpler form

(6) ΦPK′
= min

1≤j≤m′
αx′j + βy′j + γ.

Convex polygon and circle. Let K be a convex polygon with sides Ei and
vertices (xi, yi) for 1 ≤ i ≤ m. Let αix + βiy + γi = 0 be the equation of the
line containing the side Ei. We assume that α2

i + β2
i = 1 and the vertices

and sides are numbered counterclockwise and the ith side joins the ith and
(i + 1)st vertices (if i = m, then we set i + 1 = 1). Let C be a circle with
center (xC , yC) and radius rC . Then we define

(7) ΦKC = max
1≤i≤m

max{χi, ψi}, ψi = min{ωi, µi},

where χi = αixC + βiyC + γi − rC (see Fig. 3, left), ωi = (xi − xC)2 + (yi −
yC)2− r2

C (see Fig. 3, right), and µi = (αi−1−αi)(yi− yC)− (βi−1− βi)(xi−
xC) + rC(αi−1βi − αiβi−1) (see Fig. 3, right). See [6] for more details.

In particular, if P is a half-plane αx + βy + γ ≤ 0 and C a circle with
center (xC , yC) and radius rC , then (7) takes a much simpler form

(8) ΦPC = αxC + βyC + γ − rC .

Convex polygon and circular segment. Let K be again a convex poly-
gon. Let D be a circular segment D = C ∩ T , where C is a circle and T a
triangle made by the chord (the base of the segment) and the two tangents
drawn at its endpoints. Now we define

(9) ΦKD = max
{
ΦKC , ΦKT

}
,

where ΦKC was defined by (7) and ΦKT by (5).

10

C

K

p
i

C

K

r

Ei

ω =0
i

µ =0
i

χ =0
i

χ =0

χ =0

i-1

i

Figure 3: A convex polygon and a circle.

Two circular segments. Let D = C ∩ T and D′ = C ′ ∩ T ′ be two circular
segments. We define

ΦDD′ = max
{
ΦCC′ , ΦTC′ , ΦT ′C , ΦTT ′},

where ΦCC′ was defined by (3), ΦTC′ and ΦT ′C by (7), and ΦTT ′ by (5).
This takes care of all possible pairs of convex basic objects, i.e., types

(a) and (b). It remains to deal with concave objects, i.e., ‘hats’ and ‘horns’.
We first consider a simple object with a concave arc – the complement to a
circle. This case is practically important because in many applications one
places objects into a circular container.

Convex objects inside a circular container. Let C∗ denote the (closure of the)
complement to a circle C with center (xC , yC) and radius rC . Now let C ′ be
a circular object with center (xC′ , yC′) and radius rC′ ≤ rC that we want to
place inside the circle C. Then we define

(10) ΦC∗C = (rC − rC′)
2 − (xC − xC′)

2 − (yC − yC′)
2.

If rC′ > rC , then we set ΦC∗C = −∞.
Next let K be a polygon (not necessarily convex) with vertices (x1, y1), . . . , (xm, ym)

that we want to place in our circle C. Then we set

(11) ΦC∗K = min
1≤i≤m

{
r2
C − (xi − xC)2 − (yi − yC)2

}
.

11

If H = T ∩ C∗
1 is a ‘hat’, i.e., the intersection of a triangle T and the

complement to a circle C1 (see Fig. 6), we simply put ΦC∗H = ΦC∗T , where
ΦC∗T is given by (11).

Now let D = C ′∩T be a circular segment, where C ′ is a circle with center
(xC′ , yC′) and radius rC′ and T a triangle as before, and qi = (xi, yi), i = 1, 2,
the endpoints of the chord bounding D; see Fig. 4a. We put

(12) ψ0 = min
i=1,2

{r2
C − (xi − xC)2 − (yi − yC)2}

then

ΦC∗D = ψ0 (for rC ≤ rC′)

Note that ψ0 = ΦC∗K subject to m = 2, see Fig. 4a. Now we define

(13) ΦC∗D = min{ψ0, max{ΦC∗C′ , ϕ1, ϕ2}} (for rC > rC′)

where ψ0 is given by (12) and

ϕ1 = (y1 − yC′)(xC′ − xC)− (x1 − xC′)(yC′ − yC)

ϕ2 = −(y2 − yC′)(xC′ − xC) + (x2 − xC′)(yC′ − yC)

Formula (13) results from the following observations: ΦC∗D ≥ 0 if ψ0 ≥ 0
subject to ΦC∗C′ ≥ 0 (see Fig. 4b), or ϕ1 ≥ 0 (Fig. 4c), or ϕ2 ≥ 0 (Fig. 4d).

1
q

D q
2

D

C

C

C

D

C'

1
q

q
2

D

C

(a) (b) (c) (d)

Figure 4: Non-overlapping C∗ and D.

To clarify the role of the functions ϕ1 and ϕ2 we introduce vectors e =
(xC − xC′ , yC − yC′), a1 = (x1 − xC′ , y1 − yC′), a2 = (x2 − xC′ , y2 − yC′),

12

e1 = (−(y1 − yC′), x1 − xC′), and e2 = (y2 − yC′ ,−(x2 − xC′)), as shown in
Fig. 5a. Note that a1 ⊥ e1 and a2 ⊥ e2. In these notation,

ϕ1 = 〈e, e1〉 and ϕ2 = 〈e, e2〉.
We call ϕ1 and ϕ2 “switch” functions. Note that max{ΦC∗C′ , ϕ1, ϕ2} < 0
if ΦC∗C′ < 0 and ϕ1 < 0 and ϕ2 < 0, see Fig. 5a. However, there exist
tree cases where ΦC∗C′ < 0 but max{ΦC∗C′ , ϕ1, ϕ2} ≥ 0. First, ϕ1 ≥ 0 and
ϕ2 < 0 (see Fig. 5b). Second, ϕ2 ≥ 0 and ϕ1 < 0 (Fig. 5c). Lastly, ϕ1 ≥ 0
and ϕ2 ≥ 0 (Fig. 5d).

q
2

q
2

1
q

1
q

O'
O'

O

O'

OO

D
D

D

1
q

q
2

e
2

1
e

e

1
e

1
e

e
2

e
2ee

C C C

1
a2a

q
2

1
q

O'

O
D

1
e

e
2

e

C

(a) (b) (c) (d)

Figure 5: Role of the functions ϕ1, ϕ2.

Polygon and hat. Let H = T ∩ C∗ be a hat, i.e., the intersection of the
complement to a circle C and a triangle T as shown in Fig. 6. Let G denote
the domain lying above the circle C and above the line L containing the
chord forming the base of the triangle T ; see the grey area in Fig. 6. Note
that H = G ∩ T .

Now if B is any convex object, then it overlaps with H if and only if it
overlaps with both T and G, hence we can define the phi-function as

(14) ΦHB = max{ΦTB, ΦGB}
provided we have properly defined ΦTB and ΦGB. This formula applies when
B is either a convex polygon or a circular segment. In these two cases ΦTB

is given by either (5) or (9), respectively. Thus it remains to define function
ΦGB. Here we assume that B is a convex polygon.

Let T1 and T2 denote two triangles adjacent to T ; one side of each is a
tangent to the circle C, and another side of each is a segment of the line L
adjacent to the chord; see Fig. 6 (the choice of the third side is not important).

13

C

G

T
T2 T1

L

P
(xC,yC)

rC

Figure 6: The domain G (grey) and three triangles T , T1, and T2.

Let the circle C have center (xC , yC) and radius rC . Let the half-plane P
below the line L be defined by inequality αP x + βP y + γP ≥ 0. Note that
G = (C ∪ P)∗ = C∗ ∩ P ∗.

Now let K be any polygon (not necessarily convex) with vertices (x1, y1),
. . ., (xm, ym). Note that K does not overlap with G if and only if two condi-
tions are met: (i) every vertex (xi, yi) lies either in the circle C or below the
line L; (ii) the polygon K does not overlap with T1 and T2. Accordingly, we
define

(15) ΦGK = min{ΦT1K , ΦT2K , Ψ},

where

(16) Ψ = min
1≤i≤m

max{r2
C − (xC − xi)

2 − (yC − yi)
2, αP xi + βP yi + γP}.

Therefore,

(17) ΦHK = max{ΦTK , ΦGK},

which completes the analysis of the “polygon-hat” pair.

Circular segment and hat. Let H = T ∩ C∗ = T ∩ G be a hat as before
and D a circular segment. The above analysis applies, up to the formula
(14), because D is a convex object. It remains to define ΦGD.

We again use the notations P,C, etc., for objects associated with the
hat H, as defined above. We denote by p1 = (x1, y1) and p2 = (x2, y2)
the endpoints of the arc bounding H, as shown in Fig. 8 i.e., the points of

14

intersection of ∂C with ∂P = L. The point pi = (xi, yi) is a vertex of the
triangle Ti for i = 1, 2.

The circular segment D = C ′ ∩ T ′ is the intersection of a circle C ′ and a
triangle T ′, as before. Let rC′ denote the radius of the circle C ′ and (xC′ , yC′)
its center. Let q1 = (x′1, y

′
1) and q2 = (x′2, y

′
2) denote the endpoints of the

chord bounding D (as shown in Fig. 4) and L′ the line passing through these
points. Let the half-plane P ′ below the line L′ (away from D) be defined by
inequality α′x + β′y + γ′ ≥ 0. Note that D = C ′ ∩ (P ′)∗.

If rC′ > rC , then we set

(18) ΦGD = max{ΦP ∗T ′ , ΦC∗D, ΦGC′ , ϕ1, ϕ2},

where ΦP ∗T ′ is defined by (6), ΦC∗D by (13), and for i = 1, 2 we set

ϕi = min{ΦT3−iD, r2
C − (x′i − xC)2 − (y′i − yC)2,

α′xi + β′yi + γ′,−(α′x3−i + β′y3−i + γ′)}.

Thus, ΦGD ≥ 0 if ΦP ∗T ′ ≥ 0 (see Fig. 7a) or ΦC∗D ≥ 0 (see Fig. 7b) or
ΦGC′ ≥ 0 (see Fig. 7c), ϕ1 ≥ 0 (see Fig. 7d) or ϕ2 ≥ 0 (see Fig. 7e).

G

D

C

L

q
2

1

p
2

p1

T

P

1
q

2
T

D

G

D

C

L

q
2

1

p
2

p
1

T

P

1
q

2
T

P

C

D

D

C'

G

G

G

T'

(a) (b) (c)

(d) (e)

Figure 7: A circular segment D versus the region G.

15

The function ΦGC′ in (18) is defined as follows:

ΦGC′ = max
{
ΦC∗C′ , ΦP ∗C′ , min{ω1, ψ1, ω2, ψ2}

}
,

where ΦC∗C′ was defined by (10) and ΦP ∗C′ by (8). We also denote

ωi = (xi − xC′)
2 + (yi − yC′)

2 − r2
C′

for i = 1, 2, and the functions ψ1, ψ2 are defined so that ψi = 0 is the equation
of the line Li (see Fig. 8), and ψi ≥ 0 is the half-plane below that line in
Fig. 8. The line Li passes through points pi1 and pi2. The line segment
pipi1, i = 1, 2, is perpendicular to the line p1p2, the line segment pipi2 is
perpendicular to the line pip3, and we have ‖pipij‖ = rC′ for all i, j = 1, 2.
The functions ψi, i = 1, 2, come from the application of (7) to Ti and C ′.

If rC′ ≤ rC , we need to replace ϕi, i = 1, 2, in (18) with ϕ′i defined by

ϕ′i = min{ϕi, α
′(xC′ − xC) + β′(yC′ − yC)}.

p p

p

p p
p
11

12
22

21

2 1

12L L

p
3

Figure 8: The lines L1 and L2 for a segment-hat pair.

Finally, combining (14) and (18) gives

ΦHD = max{ΦTD, ΦGD}.
Indeed, ΦHD ≥ 0 if ΦTD ≥ 0 (see Fig. 9a) or ΦGD ≥ 0 (see Fig. 9b).

Two hats. Let H ′ = G′ ⋂ T ′ be a hat and H ′′ = G′′ ⋂ T ′′ another hat.
Equivalently, H ′ = (C ′)∗

⋂
T ′ and H ′′ = (C ′′)∗

⋂
T ′′. For the hat H ′ we use

notation G′, C ′, T ′, etc., as defined above, and for the hat H ′′ the respective
notation G′′, C ′′, T ′′, etc. Now our phi-function is defined by

(19) ΦH′H′′
= max{ΦT ′H′′

, ΦG′T ′′ , ω, τ},

16

T

D

G

D

H
H

(a) (b)

Figure 9: A hat H and a circular segment D.

where ΦT ′H′′
, ΦG′T ′′ are given by (14), (15) respectively, and we denote

ω = min{α′2x′′1 + β′2y
′′
1 + γ′2, α

′′
2x
′
1 + β′′2y′1 + γ′′2 ,

(rC′)
2 − (xC′ − x′′3)

2 − (yC′ − y′′3)
2,

(rC′′)
2 − (xC′′ − x′3)

2 − (yC′′ − y′3)
2},

τ = min{α′1x′′3 + β′1y
′′
3 + γ′1, α

′′
1x
′
3 + β′′1y′3 + γ′′1 ,

(rC′)
2 − (xC′ − x′′1)

2 − (yC′ − y′′1)
2,

(rC′′)
2 − (xC′′ − x′1)

2 − (yC′′ − y′1)
2},

here (x′i, y
′
i) are the coordinates of the vertices and α′ix+β′iy+γ′i = 0, i = 1, 2,

are the equations of lines containing the two straight sides of H ′, respectively;
(xC′ , yC′) and rC′ are the coordinates of the center and the radius of the arc
bounding H ′. Similar notation apply to the hat H ′′.

The hats H ′ and H ′′ do not overlap if ΦT ′H′′ ≥ 0 (see Fig. 10a), or
ΦG′T ′′ ≥ 0 (Fig. 10b), or ω ≥ 0 (Fig. 10c), or τ ≥ 0 (Fig. 10d).

Horns. A horn V = H∩(D∪T) is the intersection of a hat H and the union
of a circular segment D and a triangle T ; see Fig. 11, where the triangle T
has vertices p1, p2, p3, and the hat H has vertices p1, p2, p4.

Now for any convex polygon K we define

ΦV K = max
{
ΦHK , min{ΦKD, ΦKT}}.

Similarly, for any circular segment D′

ΦV D′ = max
{
ΦHD′ , min{ΦDD′ , ΦTD′}}

17

2

3

v'

v''

v''

v'

v'' v'

H''

T'

H'

H''

G'

T''

1

1

2

3

e'
1e'2

e'3

e''
1e''2

e''3

2

3

v'

v''

v''

v'
v''

v'

H'

H''

1

1

2

3

e'
1e'2

e'3

e''
1e''2

e''3

 (a) (b) (c) (d)

Figure 10: Four cases of non-overlapping hats H ′ and H ′′.

and for any hat H ′

ΦV H′
= max

{
ΦHH′

, min{ΦH′D, ΦH′T}}.

Now let V ′ = H ′ ∩ (D′ ∪ T ′) be another horn. Then we define

ΦV V ′ = max
{
ΦHH′

, min{ΦHD′ , ΦHT ′}, min{ΦH′D, ΦH′T},
min{ΦDD′ , ΦTT ′ , ΦTD′ , ΦT ′D}}.

Some formulas for the phi-functions may appear quite complex. Note,
however, that they all can be programmed off-line and stored in a computer
library. In practical applications, one can just call the respective functions,
and their evaluation proves to be fast and efficient.

4 Adjusted phi-functions

Some applications involve restrictions on the distances between certain pairs
of objects, or between objects and the walls of the container. For example,
when one is packing radioactive waste, discarded pieces cannot be placed
too close together. On the other hand, when one designs a printed circuit
board (PCB), then certain electronic components cannot be placed too far
apart. Cutting mechanical parts out of a metal sheet is another example
where minimal distances have to be maintained, because one has to take into
account the physical size of the cutter.

18

D

T

H

p p

p

12

3

V

p
4

Figure 11: A horn V (grey) and the respective hat H (with vertices p1, p2, p4),
circular segment D, and triangle T (with vertices p1, p2, p3).

In other words, some upper and/or lower limits on the distances between
certain placed objects may be set, i.e., given two objects A,B, the corre-
sponding placed objects A′ = A(νA, θA) and B′ = B(νB, θB) must satisfy

(20) dist(A′, B′) ≥ ρ−AB or dist(A′, B′) ≤ ρ+
AB

where
dist(A′, B′) = min

X∈A′, Y ∈B′
dist(X,Y).

Here ρ−AB denotes the minimal allowable distance and ρ+
AB the maximal al-

lowable distance between A′ and B′.
To fulfil (20), it has been a common practice to compute the actual dis-

tance between A′ and B′ at every step during the optimization process and
check if (20) holds. But the computation of geometric distances (especially
for complex objects) involves complicated formulas with radicals, see a va-
riety of examples detailed in [2]. We avoid the computation of geometric
distances by using so called adjusted phi-functions defined below.

Suppose we have to maintain a minimal distance ρ = ρ−AB for a pair of

objects A,B. We will construct an adjusted phi-function Φ̂AB satisfying

(21)





Φ̂AB > 0 if dist(A′, B′) > ρ

Φ̂AB = 0 if dist(A′, B′) = ρ

Φ̂AB < 0 if dist(A′, B′) < ρ

19

Then we work with it a just like with the regular phi-function ΦAB in the
previous sections, where no restrictions on distances were imposed. Indeed,
all allowable placements of the objects A, B now correspond to Φ̂AB ≥ 0
and prohibited placements correspond to Φ̂AB < 0. Thus our optimization
algorithms can proceed the usual routine, but with the new (adjusted) phi-
function Φ̂AB instead of ΦAB.

A

ρ

A δA

Figure 12: An object A (left), its ρ-expansion Â (center), and the ρ-expansion
δA of its boundary ∂A (right).

Given an object A and ρ > 0 we define its ρ-expansion (Fig. 12) by

(22) Â = Âρ = A⊕ Cρ,

where (C, ρ) denotes a circle of radius ρ centered on the origin and the symbol
⊕ stands for the so-called Minkowski sum [12], which is defined by

A1 ⊕ A2 = {(x1 + x2, y1 + y2) : (x1, y1) ∈ A1, (x2, y2) ∈ A2}

for any two sets A1, A2 ⊂ R2. In other words, the ρ-expanded object Â in
(22) consists of points that are either in A or at distance ≤ ρ from A. We
will not need to use Minkowski sum for computing our phi-functions.

Now we construct the adjusted phi-function by Φ̂AB = ΦÂB, and it will
satisfies the requirements (21). Note that instead of expanding the object

A we can expand the other object B and define Φ̂AB = ΦAB̂. This extra
flexibility can be used in practice to minimize the cost of computation.

Suppose we have to maintain a maximal allowable distance ρ = ρ+ for a
pair of objects A,B. This means that the objects have to be positioned so

20

that ΦAB ≥ 0 (to avoid overlaps) and Φ̂AB ≤ 0, where Φ̂AB is the adjusted
function constructed above (the latter condition will keep the distance ≤ ρ).
Thus we can define another adjusted phi-function as

Φ̌AB = min{ΦAB,−Φ̂AB}.

Now we have




Φ̌AB > 0 if 0 < dist(A′, B′) < ρ
Φ̌AB = 0 if

(
int(′A) ∩ int(B′) = ∅ & ∂A′ ∩ ∂B′ 6= ∅) or dist(A′, B′) = ρ

Φ̌AB < 0 if int(A′) ∩ int(B′) 6= ∅ or dist(A′, B′) > ρ

Thus all allowable positions of A and B correspond to Φ̌AB ≥ 0.
We see that the adjusted phi-functions can always be defined as (ordinary)

phi-functions, but for expanded objects. It remains to define phi-functions for
expanded objects. For any object A we have Â = A∪δA, where δA = ∂A⊕Cρ

is the expansion of the boundary of A; see Fig. 12 (right). One can think of
δA as a “fattened” boundary of A (whose “thickness” is 2ρ). Then by the
decomposition principle (4) we define

Φ̂AB = ΦÂB = min{ΦAB, ΦδAB}.

Figure 13: Expansion of boundary components.

Now recall that ∂A consists of linear segments and circular arcs, i.e.,
∂A = ∪m

i=1γi, where each γi is either a segment of a line or a circular arc.
Therefore δA = ∪m

i=1γ̂i, where γ̂i = γi ⊕ Cρ denotes the expansion of γi (as
described below). Now by the decomposition principle (4) we define

ΦδAB = min
1≤i≤m

Φγ̂iB.

21

The domain γ̂i = γi ⊕ Cρ is shown in Fig. 13 for three different cases: γi is
a line segment (left), γi is an arc of radius > ρ (center), and γi is an arc of
radius ≤ ρ (right); see a detailed analysis below.

In all these three cases we have γ̂i = C1 ∪ C2 ∪ R, where C1 and C2 are
disks of radius ρ centered on the endpoints of γi. If γi is a line segment, then
R is a rectangle (Fig. 14, left). If γi is a circular arc of radius ri > ρ, then R
is a “bent rectangle” (Fig. 14, center). If γi is a circular arc of radius ri ≤ ρ,
then R degenerates to a circular segment (Fig. 14, right). Thus we define

Φγ̂iB = min{ΦC1B, ΦC2B, ΦRB},
where R denotes the corresponding rectangle, or bent rectangle, or circular
segment.

C
1

C
1

C
1C

2

C
2

C
2

R
R

D

Figure 14: Various domains γ̂ = C1 ∪ C2 ∪R.

We note that ∂A consists of m components, so δA will consist of m
disks of radius ρ and m rectangles or “bent rectangles” (some of the latter
may degenerate to circular segments). Rectangles and circular segments are
objects of basic types, for which phi-functions were defined in Section 3. Bent
rectangles are objects of a new type, so we need to handle them separately.

We have two cases shown in Fig. 15. On the left, the “bent rectangle” is
the union of two “wedges” W1, W2 and a hat H. Every wedge Wi is in turn
the union of a triangle Ti and a circular segment Di (see Fig. 16), hence

ΦRB = min
{
ΦHB, ΦT1B, ΦD1B, ΦT2B, ΦD2B

}
.

In the second case (Fig. 15, right) the bent rectangle R can be decomposed
as R = W1 ∪W2 ∪ (H ∩ C). Accordingly, we define

ΦRB = min
{
ΦW1B, ΦW2B, max{ΦHB, ΦCB}}.

22

C

Figure 15: A ‘bent rectangle’ R = W1 ∪W2 ∪H (left) and R = W1 ∪W2 ∪
(H ∩ C) (right).

Wi

Di

Ti

Figure 16: A wedge Wi = Ti ∪Di.

5 Numerical examples

We illustrate our method by several model examples. In these examples we
describe each object by listing elements of its boundary ∂A = {l1, . . . , ln}.
Each boundary element li is completely described by its numerical code
(which is 0 for straight line segments, +1 for convex arcs, and −1 for con-
cave arcs), the coordinates of the two endpoints (x1, y1) and (x2, y2), and (for
circular arcs only) the coordinates of the center (xC , yC).

Our goal is to place a given object or two given objects into a circle of
minimal radius or into a rectangle of minimal area. The rectangle is always
properly oriented, i.e., its sides are parallel to the x and y axes. Accordingly,
our objective function (to be minimized) is F (u1, u2, . . .) = r in case of a
circular container of radius r and F (u1, u2, . . .) = ab in case of a rectangular
container with sides a and b.

The arguments u1, u2, . . . of the objective function include the translation
vectors ν = (ν1, ν2) for all the objects and rotation angles θ, where appro-

23

code x1, y1 xC , yC x2, y2

1 3.753993,2.279451 1.586533,0.524744 1.233706,3.291040
1 1.233706,3.291040 1.197359,-1.021342 -1.57802,2.279451
1 -1.578020,2.279451 -0.164213,0.362623 -1.15153,-1.804929
-1 -1.151532,-1.804929 -5.628434,-17.641177 1.905534,-3.010089
0 1.905534,-3.010089 2.781521,-4.283507
0 2.781521,-4.283507 3.018245,-3.228149
0 3.018245,-3.228149 2.493878,-2.619361
0 2.493878,-2.619361 3.122744,-2.338969
0 3.122744,-2.338969 3.546228,-1.389653
0 3.546228,-1.389653 1.313080,-1.873368
-1 1.313080,-1.873368 1.127739,0.139935 -0.84345,0.589527
-1 -0.843455,0.589527 0.696106,-0.550254 1.384174,1.237457
1 1.384174,1.237457 1.595781,3.972047 3.753993,2.279451

Table 1: The boundary of the dolphin-like has 13 elements.

priate; cf. (1). If we place a single object into a circle, no rotation is needed.
If two objects are placed into a circle, it is enough to rotate one of them
to achieve the optimal placement. When one or two objects are placed into
a rectangle, each of them may have to be rotated in order to find the best
placement.

Example 1. The goal is to place a given object into a circle of minimal ra-
dius. The object is a dolphin-like domain A shown in Fig. 17(a), its boundary
is described in Table 1. The optimal placement is also shown in Fig. 17(a).
The radius of the optimal circle is r∗ = 4.015234. This example took 3.61
sec of the computer running time (we processed our examples on a PC with
an AMD Athlon 64X2 2.6 GHz CPU).

Example 2. The goal is to place the given object (same as in Example 1) into
a rectangle of minimal area. The optimal placement is shown in Fig. 17(b).
The rectangle has sides a∗ = 7.132090 and b∗ = 6.416804. We note that our
algorithm supports rotation of objects. The optimal rectangle is found when
the object A is rotated by angle θA = 1.31245. This example took 104 sec.

Example 3. The goal is to place two given objects, A and B, into a circle of
minimal radius. The objects are identical copies of the dolphin-like object in
Example 1. The optimal placement is shown in Fig. 18(a). The radius of the
circle is r∗ = 5.251253. Again, the objects are subject to rotation, and the

24

AA

CC

(a)

AA
RR

(b)

Figure 17: A dolphin-like object placed into (a) a circle of minimal radius
and (b) a rectangle of minimal area.

code x1, y1 xC , yC x2, y2

0 1.182742,1.708476 1.278823,1.694810
0 -1.278823,1.694810 -1.278823,-1.482497
0 -1.278823,-1.482497 1.175904,-1.482497
0 1.175904,-1.482497 1.175904,-0.635215
0 1.175904,-0.635215 -0.499328,-0.635215
0 -0.499328,-0.635215 -0.499328,1.175508
0 -0.499328,1.175508 1.196417,1.175508
0 1.196417,1.175508 1.182742,1.708476

Table 2: The boundary of the “thick staple” object has 8 elements, all straight
line segments.

optimal circle is found when the object B is rotated by angle θB = 3.141593.
This example took 4298 sec.

Example 4. The goal is to place two given objects, A and B, into a circle of
minimal radius. The objects have identical shape, they look like thick metal
staples and their boundary is described in Table 2. The optimal placement
is shown in Fig. 18(b). The radius of the optimal circle is r∗ = 2.455866.
Again, the objects are subject to rotation, and the optimal circle is found
when the object B is rotated by angle θB = 3.141593. This example took 31
sec.

Example 5. The goal is to place two given objects, A and B, of different

25

AA

CC

BB

(a)

C

A

B

(a)

Figure 18: (a) Two dolphin-like objects placed into a circle of minimal radius
and (b) two staple-like objects placed into a circle of minimal radius.

code x1, y1 xC , yC x2, y2

-1 -2.555404,-2.066713 0.651314,-15.372221 4.266788,-2.171920
1 4.266788,-2.171920 -0.740153,-1.703527 -2.19745,3.109491
-1 -2.197449,3.109491 -5.005667,0.703211 -2.55540,-2.066713

Table 3: The object A (Fig. 19) bounded by three arcs.

shape into a circle of minimal radius. The object A is made by three arcs (two
concave and one convex) described in Table 3. The object B = H1∪H2 is the
union of two overlapping hats specified in Table 4. The optimal placement
is shown in Fig. 19(a). The radius of the circle is r∗ = 5.322824. Again,
the objects are subject to rotation, and the optimal circle is found when the
object B is rotated by angle θB = 2.309901. This example took 1147 sec.

Example 6. The goal is to place the two given objects, A and B (same as in
Example 5) into a rectangle of minimal area. The optimal placement is shown
in Fig. 19(b). The rectangle has sides a∗ = 13.294256 and b∗ = 5.603828.
Again, the objects are subject to rotation, and the optimal rectangle is found
when the object A is rotated by angle θA = −0.118376 and the object B is
rotated by angle θB = 0.715346. This example took 443 sec.

Example 7. The goal is to place two very irregular (star-shaped) objects,
A and B, into a circle of minimal radius. The objects have identical shape,
each is the union of four overlapping hats specified in Table 5. The optimal

26

hat x1, y1 x2, y2 xC , yC xv, yv

H1 -2.878715,-1.116315 2.088654,4.400499 -2.884564,3.883681 2.661289,-1.109835
H2 -1.442662,-4.818566 -1.442654,2.605045 -4.792658,-1.106758 2.670029,-1.106765

Table 4: The object B = H1 ∪H2 (Fig. 19) is the union of two overlapping
hats. Each hat is specified by the coordinates of the two endpoints (x1, y1)
and (x2, y2) and the center (xC , yC) of the circular arc bounding it and by
the coordinates (xv, yv) of its third vertex. We note that both circular arcs
bounding H1 and H2 have radius r = 5.0.

A

B

C

(a)

AAAA

BBBB

RRRR

(b)

Figure 19: (a) Two objects of different shape placed into (a) a circle of
minimal radius and (b) a rectangle of minimal area.

placement is shown in Fig. 20(a). The radius of the circle is r∗ = 7.031531.
Again, the objects are subject to rotation, and the optimal circle is found
when the object B is rotated by angle θB = 0.634543. This example took
996 sec.

Example 8. The goal is to place two very irregular (star-shaped) objects,
A and B, a rectangle of minimal area. The objects are the same as in
Example 7. The optimal placement is shown in Fig. 20(b). The rectangle
has sides a∗ = 8.856350 and b∗ = 14.292623. Again, the objects are subject
to rotation, and the optimal rectangle is found when the object A is rotated
by angle θA = 0.470376 and the object B is rotated by angle θB = 3.611969.
This example took 154 sec.

27

hat x1, y1 x2, y2 xC , yC xv, yv

H1 -4.284755,-1.280657 0.682614,4.236157 -4.290604,3.719339 1.255249,-1.274177
H2 -2.848702,-4.982908 -2.848694,2.440703 -6.198698,-1.271100 1.263989,-1.271107
H3 4.249704,-0.281005 -0.717661,-5.79782 4.255557,-5.281 -1.2903,-0.287489
H4 2.813649,3.421245 2.813646,-4.002366 6.163647,-0.29056 -1.29904,-0.290559

Table 5: The object A = H1 ∪ H2 ∪ H3 ∪ H4 (Fig. 20) is the union of four
overlapping hats. Hats are specified as in Table 4. We note that all the
circular arcs bounding these four hats have radius r = 5.0.

A

B

C

(a)

RR

BB

AA

(b)

Figure 20: (a) Two objects of different shape placed into (a) a circle of
minimal radius and (b) a rectangle of minimal area.

Example 9. This is a modification of Example 5: we place two objects
A and B into a circle C of minimal radius, but now the object A must be
at least the distance of 0.7 away from the object B and from the edge of
the circle C, i.e., we need dist(A, B) ≥ 0.7 and dist(A,C∗) ≥ 0.7. In this
example we use adjusted phi-functions (Section 4). The optimal placement
is shown in Fig. 21. Note that the object A does not touch the object B
or the boundary of C∗, to maintain the required distance from both. The
radius of the optimal circle is r∗ = 5.823507. The objects are subject to
rotation, and the optimal circle is found when the object B is rotated by
angle θB = 2.322388. This example took 7725 sec.

Acknowledgement. We would like to thank M. Zlotnick for programming
the decomposition of objects into basic objects. N. Chernov acknowledges

28

A

B

C

Figure 21: Two objects A and B placed into a circle C of minimal radius,
with additional restriction on distances from A to B and C.

the support of National Science Foundation, grant DMS-0969187. We thank
the anonymous referee for many useful remarks.

References

[1] J. A. Bennell and J. F. Oliveira, The geometry of nesting problems: A
tutorial, European J. Oper. Res., 184 (2008), 397–415.

[2] J. Bennell, G. Scheithauer, Yu. Stoyan, and T. Romanova, Tools of
mathematical modelling of arbitrary object packing problems, J. Ann.
Oper. Res., 179 (2010), 343–368.

[3] E. G. Birgin, J. M. Martinez, F. H. Nishihara, D. P. Ronconi, Orthog-
onal packing of rectangular items within arbitrary convex regions by
nonlinear optimization, Comput. Oper. Res. 33 (2006) 3535–3548.

[4] E. Burke, R. Hellier, G. Kendall, and G. Whitwell, A New Bottom-
Left-Fill Heuristic Algorithm for the Two-Dimensional Irregular Packing
Problem, Oper. Res., 54 (2006), 587–601.

[5] E. Burke, R. Hellier, G. Kendall, and G. Whitwell, Irregular packing
using the line and arc no-fit polygon, Operations Research, 58 (2010),
948–970.

29

[6] N. Chernov, Yu. Stoyan, and T. Romanova, Mathematical model and ef-
ficient algorithms for object packing problem, Comput. Geometry: The-
ory & Appl. 43 (2010), 535–553.

[7] A. M. Gomes and J. F. Oliveira, Solving irregular strip packing problems
by hybridising simulated annealing and linear programming, Europ. J.
Oper. Res. 171 (2006) 811–829.

[8] V. Milenkovic, Rotational polygon overlap minimization and com-
paction, Comput. Geom. 10 (1998), 305–318.

[9] V. Milenkovic, Rotational polygon containment and minimum enclosure
using only robust 2D constructions, Comput. Geom. 13 (1999), 3–19.

[10] V. J. Milenkovic and K. Daniels, Translational polygon containment and
minimal enclosure using mathematical programming, Int. Trans. Oper.
Res. 6 (1999) 525–554.

[11] I. Milenkovic and E. Sacks, Two approximate Minkowski sum algo-
rithms. Int. J. Comp. Geometry & App. 20 (2010) 485–509.

[12] H. Minkovski, Dichteste gitterformige Lagerung kongruenter Körper.
Nachr. Ges. Wiss. zu Gottingen, 1904, pp. 311–355.

[13] G. Scheithauer, Y. G. Stoyan, T. Romanova, A. Krivulya, Covering
a polygonal region by rectangles, Comput. Optimiz. Appl., 48 (2011),
675–695.

[14] Y. G. Stoyan and A. Chugay, Packing cylinders and rectangular par-
allelepipeds with distances between them, Europ. J. Oper. Res. 197
(2008), 446–455.

[15] Y. Stoyan, G. Scheithauer, N. Gil, and T. Romanova, Φ-functions for
complex 2D-objects, 4OR: Quarterly J. Belgian, French and Italian Op-
erations Research Soc. 2 (2004), 69–84.

[16] Yu. Stoyan, J. Terno, G. Scheithauer, N. Gil, and T. Romanova, Phi-
functions for primary 2D-objects, Studia Informatica Universalis, 2
(2001), 1–32.

30

[17] A. Wächter and L. T. Biegler, On the implementation of a primal-dual
interior point filter line search algorithm for large-scale nonlinear pro-
gramming, Math. Programming 106 (2006), 25–57.

[18] G. Wäscher, H. Haußner, and H. Schumann, An improved typology of
cutting and packing problems, Europ. J. Oper. Res., 183 (2007), 1109–
1130.

[19] http://www.math.uab.edu/∼chernov/CP.

31

