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Abstract

We consider several classes of chaotic billiards with slow (poly-
nomial) mixing rates, which include Bunimovich’s stadium and dis-
persing billiards with cusps. In recent papers by Markarian and the
present authors, estimates on the decay of correlations were obtained
that were sub-optimal (they contained a redundant logarithmic fac-
tor). We sharpen those estimates by removing that factor.
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1 Introduction

Here we sharpen estimates on mixing rates (i.e. the decay of correlations)
for several classes of chaotic billiards, including the celebrated stadium in-
troduced by Bunimovich [4, 5] and dispersing tables with cusps studied by
Machta [15, 16]. In all our models the billiard map is known to be hyperbolic,
as well as ergodic and Bernoulli, but its hyperbolicity is very non-uniform
and consequently its mixing rates are slow (polynomial).

Physicists described this phenomenon as “intermittent chaos”. If you
watch a typical trajectory of a billiard with polynomial mixing rates, then
you observe that periods of truly chaotic behavior alternate with long regular-
looking cycles when the orbit remains confined to a small and special part of
phase space. That part acts as a ‘trap’ and that trap will play an important
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role in our analysis. The study of mixing rates in intermittent chaotic systems
is more difficult than that of truly chaotic ones, and the resulting estimates
may depend on delicate details of the dynamics in the traps.
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Figure 1: Bunimovich’s (straight) stadium.

Our two main models are stadia. Bunimovich’s original stadium is a con-
vex billiard table bounded by two equal semicircles and two parallel straight
lines, see Fig. 1. Due to its simplicity and geometric appeal it became popular
in many theoretical and experimental studies, see for example [2, 8, 22, 26]
and [25, Section 5.3]. We also discuss a ‘skewed’ stadium shown on Fig. 2,
which is a convex domain bounded by two unequal circular arcs and two non-
parallel lines; we call it ‘drivebelt’ due to its shape. Note that both types of
stadia have C1, but not C2, boundary.

Figure 2: Skew stadium (‘drivebelt’ table).

Another interesting class of billiards with slow decay of correlations is
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made by tables with concave (dispersing) boundary that includes cusps (cor-
ner points with zero interior angle). For example, Fig. 3 shows a table studied
by Machta [15, 16] made by three identical circular arcs. We also consider
billiards in a square with a small fixed circular obstacle removed (Fig. 4).
Such models are known as semi-dispersing billiards.

Let Γ denote the boundary of a billiard table and M = Γ × [−π/2, π/2]
the standard collision space whose canonical coordinates are r, ϕ, where r is
the arc length parameter on Γ and ϕ ∈ [−π/2, π/2] the angle of reflection,
see Fig. 1. The collision map F : M → M taking a collision point to the
next collision, see Fig. 1, preserves smooth measure dµ = c cos ϕ dr dϕ on
M, here c = (2|Γ|)−1 is normalizing constant.

Figure 3: Machta’s table with three cusps.

Let f, g ∈ L2
µ(M) be two functions. Correlations are defined by

(1.1) Cn(f, g,F , µ) =

∫

M

(f ◦ Fn) g dµ −
∫

M

f dµ

∫

M

g dµ.

It is well known that F : M → M is mixing if and only if

(1.2) lim
n→∞

Cn(f, g,F , µ) = 0 ∀f, g ∈ L2
µ(M).

The rate of mixing of F is characterized by the speed of convergence in (1.2)
for smooth enough functions f and g. We will always assume that f and g
are Hölder continuous or piecewise Hölder continuous with singularities that
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Figure 4: Semi-dispersing billiard.

coincide with those of the map Fk for some k. For example, the free path
between successive reflections is one such function.

Bunimovich proved that under very general conditions (that easily hold
for both types of stadia) billiards bounded by circular arcs and straight lines
are hyperbolic, ergodic and K-mixing [3, 4, 5]. Due to other general results,
these systems are also Bernoulli [10, 18]. Similar results were proved for semi-
dispersing billiards and dispersing tables with cusps by Sinai [20], Reháček
[19] and others.

It has been long expected bases on heuristic analysis [22, 15] that corre-
lations decay as O(1/n), but rigorous estimates were obtained only recently:
Markarian [17] proved that

(1.3) |Cn(f, g,F , µ)| ≤ const · (ln n)2/n

for the ‘straight’ Bunimovich stadia, the present authors [11] extended this
result to the drivebelt stadia and semi-dispersing billiards, and lastly one
of us with Markarian [13] derived the same bound on correlations for tables
with cusps.

It was clear to all of us [17, 11, 13] that the logarithmic factor (ln n)2 was
just an artifact of our method. Here we refine the method and remove that
factor:

Theorem 1.1. For both types of stadia, semi-dispersing billiards, and dis-
persing tables with cusps the correlations (1.1) for the billiard map F : M →
M and piecewise Hölder continuous functions f, g on M decay as |Cn(f, g,F , µ)| ≤
const/n.
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We note that Bálint and Gouëzel very recently obtained a lower bound
on correlations for stadia: they proved that |Cn(f, g,F , µ)| ≥ const/n for
infinitely many n’s, see details in [1, Corollary 1.3]. Thus the speed of the
decay of correlations for stadia is now completely determined.

2 General scheme

We start by briefly repeating the general scheme for the analysis of correla-
tions for nonuniformly hyperbolic maps developed in [17, 11].

The first step is to localize places in the phase space M where the hy-
perbolicity of the map F : M → M deteriorates (becomes non-uniform). In
those places long sequences of iterations of the map F occur without expo-
nential divergence of nearby trajectories. For example, in stadia, see [3, 4, 5]
and [12, Chapter 8], hyperbolicity is ensured by the ‘defocusing mechanism’,
which works when the billiard particle moves from one circular arc to the
other, hence during long series of consecutive collisions with the same arc or
bounces between two flat sides, the hyperbolicity weakens.

This suggests us to reduce the space M to a subset M ⊂ M on which the
induced (first return) map F : M → M would be uniformly hyperbolic. For
stadia [11] we define M ⊂ M as a set consisting of first (initial) collisions
with every circular arc, that is,

M = {x ∈ M : x lies on an arc C ⊂ Γ and F−1x /∈ C}.

It is proven in [11] that indeed the first return map F : M → M is uniformly
hyperbolic (more precisely, we proved uniform expansion and contraction of,
respectively, unstable and stable tangent vectors). A similar reduction of the
collision space was constructed for semi-dispersing billiards and tables with
cusps [13].

It is also proven in [11, 13] that in all these cases the reduced map
F : M → M enjoys exponential decay of correlations. This was done by
constructing Young’s tower [23] in M . That tower plays the role of a Markov
partition of M ; its full description is fairly complicated, but we only need
two elements of it here.

The first element is the ‘base of the tower’ ∆0 ⊂ M , which Young calls
a ‘horseshoe with hyperbolic structure’. For us, its structure is irrelevant,
we can just think of ∆0 as a subset of M of positive measure. Then for
a.e. point x ∈ M , its orbit {F nx} makes infinitely many returns to ∆0,
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according to the Poincaré theorem. Young only counts ‘proper returns’ (or
‘Markov returns’), as she defines in [23], but for us the exact meaning of
proper returns is not relevant. Young proved that a.e. point x ∈ M properly
returns to ∆0 infinitely many times. Let R(x; F, ∆0) denote the time of the
first proper return of x to ∆0 (under F ). The second important element of
Young’s tower construction is the exponential tail bound

(2.1) µ
(

x ∈ M : R(x; F, ∆0) > n
)

≤ const · θn ∀n ≥ 1

where θ < 1 is a constant.
Next we turn back to the map F : M → M. The tower in M can be

easily (and naturally) extended to M, thus we get a bigger tower (with the
same base ∆0 ⊂ M); and a.e. point x ∈ M again properly returns to ∆0

(now under F) infinitely many times. For every x ∈ M let R(x;F , ∆0)
denote the time of the first proper return of x to ∆0 (under F). Since M is
larger than M , it takes typical points longer to return to ∆0. In fact, only a
polynomial tail bound on return times presumably holds:

(2.2) µ
(

x ∈ M : R(x;F , ∆0) > n
)

≤ const · n−1 ∀n ≥ 1.

Assuming that (2.2) holds, the bound on correlations in Theorem 1.1 imme-
diately follows from Young’s general result [24]. Our goal is to prove (2.2).

Consider the return times to M under F , i.e.

(2.3) R(x;F , M) = min{r ≥ 1 : F r(x) ∈ M}

for x ∈ M. The following estimate is standard for systems under considera-
tion [7, 13, 11, 17, 22]:

(2.4) µ(x ∈ M : R(x;F , M) > n) ≤ const · n−1 ∀n ≥ 1

Equivalently,

(2.5) µ(x ∈ M : R(x;F , M) > n) ≤ const · n−2 ∀n ≥ 1

The equivalence of (2.4) and (2.5) is proven in [11].
Now for every n ≥ 1 and x ∈ M denote

r(x; n, M) = #{1 ≤ i ≤ n : F i(x) ∈ M}
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and

An = {x ∈ M : R(x;F , ∆0) > n},
Bn,b = {x ∈ M : r(x; n, M) > b ln n},

where b > 0 is a constant to be chosen shortly. By (2.1),

µ(An ∩ Bn,b) ≤ const · n θb ln n.

Let us choose and fix b > 0 large enough so that n θb ln n < n−1. It remains
to prove the following:

Proposition 2.1. µ(An \ Bn,b) ≤ const · n−1.

This proposition constitutes the main result of our paper and will be
proven in the next sections.

Proposition 2.1 concludes the proof of (2.2). Now Theorem 1.1 readily
follows from Young’s general result [24].

To conclude this section, we recall how µ(An\Bn,b) is estimated in [17, 11],
this should clarify our ideas. Since points x ∈ An \Bn,b return to M at most
b ln n times during the first n iterates of F , it is observed in [17, 11] that
there are ≤ b ln n time intervals between successive returns to M , and hence
the longest such interval, we call it I, has length ≥ n/(b ln n). Applying the
bound (2.5) to the interval I gives

(2.6) µ(An \ Bn,b) ≤ const · n (ln n)2 n−2

(the extra factor of n must be included because the interval I may appear
anywhere within the longer interval [1, n], and the measure µ is invariant).
This gives us a weaker version of (2.2):

µ(x ∈ ∆ : R(x;F , ∆0) > n) ≤ const · (lnn)2 n−1 ∀n ≥ 1.

Now Young’s general result [24] implies the sub-optimal correlation bound
(1.3), which is the main result of [17, 11].

But it is clear that the estimate (2.6) can only be sharp if most of the
intervals between returns to M have length ∼ n/ lnn. This is, however, the
‘worst case scenario’, which is extremely unlikely due to a special character
of the dynamics between returns to M . We explore these special features to
improve the estimate on µ(An \ Bn,b) in this paper.
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3 Analysis of the set An \ Bn,b

In this section we develop a strategy of the proof of Proposition 2.1 in the
case of stadia. (Semi)dispersing billiards require a different approach that
will be discussed in Section 5.

The set An\Bn,b consists of points x ∈ M whose images under n iterations
of the map F satisfy two conditions: (i) they never return to the ‘base’ ∆0

of Young’s tower and (ii) they return to M at most b ln n times. Our goal is
to show that µ(An \ Bn,b) = O(n−1).

The following subsets of M

Mm = {x ∈ M : R(x;F , M) = m + 1}

are called m-cells, m ≥ 0. Here M0 constitutes the ‘bulk’ of the space M
and M1, M2, . . . are (usually) small regions for which we make the following
assumptions.

First, their measures decrease polynomially:

(3.1) µ(Mm) ≤ C/mr

where r ≥ 3 and C > 0 are constants. (In all our models, r = 3, see [11, 13],
but we adopt a more general assumption here.) Second, if x ∈ Mm then
F (x) ∈ Mk with

(3.2) β−1m − C ≤ k ≤ βm + C

Here β > 1 is another constant. We will denote by C > 0 various constants
whose exact values are not important.

Our next assumption concerns transition probabilities ‘from cells to other
cells’:

(3.3) pk,m1,...,mt = µ(Mk/FMm1
∩ F 2Mm2

∩ · · · ∩ F tMmt)

where k, m1, . . . , mt ≥ 2 are indices and µ(A/B) = µ(A ∩ B)/µ(B) denotes
the conditional measure. If we fix a sequence m1, . . . , mt, then k = km1,...,mt

becomes a random variable with probability distribution {pk,m1,...,mt}. We
will also use the random variable

(3.4) ξm1,...,mt = ln(km1,...,mt/m1).
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Note that |ξm1,...,mt| ≤ ln β + O(1/k), due to (3.2). It is known that in the
billiards under consideration the distribution of ξm1,...,mt weakly converges to
a fixed probability distribution on the interval [− ln β, lnβ], as m1, . . . , mt →
∞. The reason is that the map F on the cells Mm with high indices m can
be well approximated by a stationary random walk; this fact was already
explored in [1, Section 4]. We only need a somewhat weaker property here,
we state it as an assumption below and prove it in the next section.

We assume that for any m ≥ 2 there exists a subset M̃m ⊂ Mm such that

(3.5) µ(Mm \ M̃m)/µ(Mm) ≤ C/md

for some d > 0, and for any t ≥ 1 and m1, . . . , mt the transition probabilities

(3.6) µ(Mk/FM̃m1
∩ F 2M̃m2

∩ · · · ∩ F tM̃mt)

define a random variable k = k̃m1,...,mt so that the logarithmic variable

ξ̃m1,...,mt = ln
(

k̃m1,...,mt/m1

)

satisfies

(3.7) ξ̃m1,...,mt ≤ η,

where η is a random variable supported on the interval [− ln β, ln β + 1] and
having a negative mean value

(3.8) η̄ = E(η) < 0.

We stress that the distribution of η is fixed (independent of m1, . . . , mt).
Note that our approximation of (3.3) by (3.6) is only good as long as all
m1, . . . , mt are large, due to (3.5).

Proposition 3.1. Under the above assumptions µ(An \ Bn,b) = O(n−r+2)

The rest of this section is devoted to the proof of this proposition.
For every point x ∈ An \Bn,b we consider all its returns to M within the

first n iterations of F , i.e. all 0 ≤ i1, . . . , iJ∗ ≤ n such that F ij (x) ∈ M . Note
that the sequence {i1, . . . , iJ∗} and its length J∗ depend on x and recall that
J∗ ≤ b ln n. For every ij we have F ij(x) ∈ Mmj

for some mj ≥ 1.
We fix a small q > 0 and say that mj is large if mj ≥ nq. We call an

island a subinterval I ⊂ [0, n] such that for all k ∈ I the point F k(x) either
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belongs to M \ M or lies in an m-cell Mm with a large m, i.e. m ≥ nq.
Each island terminates at 0 or n or at a point k satisfying F k(x) ∈ Mm with
some ‘small’ m < nq. Let Imax ⊂ [0, n] be the longest island (note that Imax

depends on x).

Lemma 3.2. There is a constant κ = κ(b, β, q) > 0 such that every x ∈
An \ Bn,b we have |Imax| ≥ κn.

Proof. The point x will be fixed throughout the proof. Consider an arbitrary
island I. If it does not terminate at 0 or n, then due to (3.2) we have

#{k ∈ I : Fk(x) ∈ M} ≥ t

where t is the smallest integer satisfying |I| ≤ nq(1 + β + · · · + βt), hence

t ≥ ln |I| − ln nq + O(1)

ln β
.

Now it is easy to see that

ln |Imax| − ln nq + O(1)

ln β
× n

|Imax|
≤ b lnn.

Suppose q < 1/2, then for large n we have

|Imax| ≥
n

b ln n
≥ n2q

thus ln |Imax| − ln nq ≥ q ln n, which implies the lemma with any choice of
κ < q/(b ln β).

Our further analysis is done within the maximal island Imax = [K0, K1].
Given x ∈ An \ Bn,b, we call a subinterval J ⊂ Imax a run if Fk(x) /∈ M
for every k ∈ J . Let Jmax = [n0, n1] be the longest run within Imax. As the
number of runs does not exceed b ln n, we have

|Jmax| ≥
|Imax|
b lnn

≥ κn

b ln n
.

Without loss of generality, we assume that K1 − n1 ≥ n0 − K0, i.e. the right
subinterval of Imax \ Jmax is at least as long as the left one (because the time
reversibility of the billiard dynamics allows us to turn the time backwards).
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Before going into further detail, we describe the idea of the proof. If
|Jmax| ∼ n, then due to (3.1) the measure of the corresponding points x is
O(n−r). Summing over all possible n0 and n1 gives the measure bound
O(n−r+2) as claimed by Proposition 3.1. The problem may arise when
|Jmax| = o(n), because the measure of such points x will be O(|Jmax|−r) �
n−r. But then we will show that, due to (3.8), for typical points y ∈ M|Jmax|

we have F t(y) ∈ Mmt where mt decreases exponentially fast. Then if we
add up all runs covered by the trajectory F k(x) of x during the interval
n1 ≤ k ≤ K1, we get O(|Jmax|). On the other hand, K1 − n0 ≥ κn/2.
This will prove that |Jmax| ≥ cn for some c > 0, taking us back to the case
|Jmax| ∼ n, which is handled already.

Let n1 < · · · < ns ≤ K1 be all the moments such that Fnt(x) ∈ M . We
need to estimate the measure of points x such that

(a) Fn0(x) ∈ M|Jmax|;

(b) Fnt(x) ∈ Mmt for nq ≤ mt ≤ m0 = |Jmax| for all t = 0, . . . , s;

(c) m0 + · · ·+ ms ≥ κn/2 and s < b ln n.

We will use the assumptions (3.5)–(3.8). At each iteration of F we incur
relative losses bounded by O(1/md

t ) = O(1/nqd) due to (3.5), thus the total
losses are bounded by rµ(MJmax

)/nqd = O(n−r−qd ln n), which is � n−r.
Next our assumptions (3.5)–(3.8) allow us to estimate the cell index mt

from above

(3.9) mt ≤ m̃t = m0 eη1+···+ηt

where η1, . . . , ηt are independent random variables having the same distribu-
tion as η. The probability distribution here is induced by the measure on
M̃m0

, so we denote it by Pm0
.

Of course it is possible that the random variable m̃t defined by (3.9) will
exceed |Jmax| or fall below nq, thus violating the above restriction (b) on mt.
But this only means that our probabilistic estimates will exceed the actual
measure of points satisfying (a)–(c). Since we are estimating our measures
from above, this approach is logically consistent.

Lemma 3.3. For every ε > 0 there are C > 0 and γ ∈ (0, 1) such that for
all t ≥ 1 we have the following probability estimate:

Pm0

(

η1 + · · ·+ ηt > (η̄ + ε)t
)

≤ Cγt
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Proof. This follows from the classical theorem on large deviations, see e.g.
[14, Theorem 2.2.3].

We fix ε > 0 such that η̄ + ε < 0, i.e. θ : = eη̄+ε < 1 and then fix the
corresponding γ < 1. Thus with an overwhelming probability we should have
m̃t ≤ m0θ

t for all large enough t. This idea lies behind the following lemma.

Lemma 3.4. There is C > 0 such that

n
∑

m0=n/(b ln n)

µ(Mm0
) Pm0

(

m̃t > m0θ
t for some t > κn/(10m0)

)

≤ Cn−r+1.

Proof. Due to the previous lemma, our probability is bounded by

n
∑

m0=κn/(b ln n)

µ(Mm0
)
Cγκn/10m0

1 − γ
.

Since µ(Mm0
) = O(m−r

0 ), we can obtain an upper bound by integral estima-
tion:

n
∑

m0=κn/(b ln n)

γκn/(10m0)

mr
0

≤ const

∫ n

1

x−rγ
κn
10x dx

=
const

nr−1

∫ n

1

yr−2γκy/10 dy

where we used the change of variables y = n/x. It remains to note that
∫ ∞

1
yr−2γκy/10 dy < ∞ since γ < 1.

Adding over n0 gives an upper bound O(n−r+2) on the measure as re-
quired by Proposition 3.1.

Finally, if mt ≤ m0θ
t for all t > κn/(10m0), then due to the above

restrictions (b) and (c) we have

κn

2
≤ m0 + · · ·+ mr ≤

m0κn

10m0
+

∞
∑

t=1

m0θ
t ≤ κn

10
+

m0

1 − θ
,

hence m0 ≥ (1− θ)κn/3 and µ(Mm0
) = O(n−r). This completes the proof of

Proposition 3.1.
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4 Dynamics in cells for stadia

It remains to prove our assumptions (3.5)–(3.8). They essentially follow from
the Markovian character of the map F restricted to cells Mm with high indices
m. First we do this for Bunimovich’s ‘straight’ stadia, for which the structure
of m-cells is well known [6, 7, 11, 17, 22] and the Markovian character of the
map F is already explored in [1]. Here we just recall relevant facts.

First of all, the m-cell Mm for any large m is a union of domains of
two types: one consists of points whose trajectories experience a long series
of consecutive collisions at the same semicircle, and the other is made of
points whose trajectories bounce between the two parallel flat lines. The
first type domains are small, they have measure ∼ m−4, which is negligible.
The second type domains have measure ∼ m−3 and we only consider them.
Slightly abusing notation we will call those domains m-cells.

The set M ⊂ M is the union of two identical parallelograms in the r, ϕ
coordinates, each one is constructed on one semicircle C ⊂ Γ. Fig. 5 shows
one of them (CEDB), and the m-cells make a nested structure of self-similar
domains converging to the vertices C and D as m → ∞.

0
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Figure 5: One half of the set M .

Each m cell consists of two identical parts, one near C and the other near
D. Due to the obvious symmetry, we only describe the domain of Mm near
C. It, in turn, is a union of two strips, one (M 1

m) below the line CF and the
other (M2

m) above the line CF . The domain M 1
m contains points mapped (by
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F) directly to a straight side of the stadium; the domain M 2
m contains points

that are mapped by F onto the same arc (but to its almost diametrically
opposite point) and then to a straight side.

Fig. 6 shows the image F (Mm) of an m-cell. These images, too, make a
nested structure of self-similar domains converging to the vertices C and D
as m → ∞. The intersection of k-cells with the image F (Mm) is depicted on
Fig. 6. Each F (Mm) intersects Mk with

(4.1) 1
3
m −O(1) ≤ k ≤ 3m + O(1).

Most of the intersections F (Mm) ∩ Mk are parallelogram-looking domains,
but a few (≤ const) intersections near the ends of the strip F (Mm) look like
less regular polygons with 3, 4 or 5 sides.

PSfrag replacements

C = (0, 0)

B

F

M1
k

M2
k

F (Mm)

(

L
k ,

L
2Rk

)

(

L
m ,− L

2Rm

)

(

0, L
2Rm

)

(

0, L
6Rk

)

(

L
3k ,− L

6Rk

)

(

0,− L
2Rk

)

Figure 6: The domains M 1
k and M2

k and the image F (Mm) near the vertex
C. The vertex C has coordinates r = 0 and ϕ = 0; other coordinates are
shown, to the leading order.

To clarify our ideas, let us assume for a moment that the domains M 1
m

and M2
m are exact trapezoids which shrink homotetically as m growth. Also

let the strip F (Mm) be a perfect trapezoid that scales with m, i.e. shrinks
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homotetically as m → ∞. Let the measure µ have constant density and
the map F be linear within every m-cell. Lastly, let us ignore the irregular
intersections F (Mm) ∩ Mk, i.e. assume that all of these intersections are
parallelograms, and (4.1) holds without the O(1) terms.

Under these ideal conditions, it is easy to see that the cells Mm would
make a Markov partition, so the action of F would be equivalent to a discrete
Markov chain. Moreover, the random variables (3.4) would be almost identi-
cally distributed, i.e. their distribution would not depend on m1, . . . , mt and
t, modulo a O(1/k) error term accounting for their discrete character (and of
course, as long as all the indices are ≥ 3). Effectively, the transitions between
cells could be described by a sequence of independent random variables.

It is known, see [1, Eq. (35)], that

(4.2) µ
(

Mk/F (Mm)
)

=
3m

8k2
+ O

( 1

m2

)

for k ∈ [m/3− C, 3m + C]. Under our ideal assumptions, the same estimate
would hold for multistep transition probabilities (3.3). Observe that

(4.3)

3m
∑

k=m/3

3m

8k2
ln

k

m
∼

∫ 3m

m/3

3m

8x2
ln

x

m
dx = 1 − 5

4
ln 3 < 0.

Thus one can easily find a random variable η satisfying (3.7) and (3.8).
Now in reality cell boundaries are curvilinear, the density of µ is not

constant, and the map F is nonlinear. We just need to estimate the effect of
nonlinearity in order to prove our assumptions (3.5)–(3.8). This was in fact
done in [1, Section 4], we only outline the argument here.

For one-step transition probabilities, i.e. for t = 1 in (3.6), this can be
done by a direct and fairly elementary analysis. The measure µ has density
cos ϕ, and |ϕ| = O(m−1) on Mm, so the density variation over Mm is just
O(m−2). The derivative of the map F : (r, ϕ) 7→ (r1, ϕ1) is given by (see [12,
Chapter 2])

DF =
−1

cos ϕ1

[

R−1τ + cos ϕ τ
R−2τ + R−1 cos ϕ1 + R−1 cos ϕ τR−1 + cos ϕ1

]

,

where R is the radius of the semicircles bounding the stadium (Fig. 1).
Within the m-cell, we have

τ =
√

4R2m2 + L2 + O(m−2),
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where L is the length of the flat lines bounding the stadium. Thus the
derivative of F varies by O(m−2) within every m-cell. Lastly, the curve
separating M 1

m from M1
m−1 has equation

r = Rϕ + R sin−1 R sin ϕ
√

(2m − 1)2R2 + L2
+ R tan−1 L

(2m − 1)R
,

i.e. its slope is dr/dϕ = R + O(m−1). The curve separating M 2
m from M2

m−1

has similar equation

r = 3Rϕ + R sin−1 R sin ϕ
√

(2m − 1)2R2 + L2
+ R tan−1 L

(2m − 1)R
,

i.e. its slope is dr/dϕ = 3R +O(m−1). So the curves separating neighboring
m-cells can be approximated in the C1 metric by parallel straight lines, up
to some O(1/m) error terms. It is now easy to check that the width of the
domain M i

m, i = 1, 2, is cim
−2 + O(m−3), where c1, c2 > 0 are constants.

Thus our map, measure, and cells admit good linear approximations: the
non-linearity only affects higher-order terms in all relevant parameters. Also,
the irregular intersections F (Mm) ∩ Mk, see above, have to be thrown out
(of Mm), but their relative measure is O(1/k). We conclude that (3.5)–(3.8)
hold for t = 1, we can even afford a luxury to set d = 1 in (3.5).

For multi-step transition probabilities, i.e. for t ≥ 2, such a direct analysis
is hardly feasible, so one needs a more sophisticated argument. In [1, pages
488–490], multi-step transition probabilities are estimated by foliating each
m-cell Mm by unstable curves {W u} which stretch completely across Mm, i.e.
terminate on its ‘long’ sides (separating Mm from Mm−1 and Mm+1). Such a
foliation can be chosen smooth enough so that conditional measures on the
fibers W u are nearly uniform. To analyze multistep transition probabilities
(3.3), we would like our foliations to be F -invariant under relevant iterations
of F , i.e. until the image of a fiber either falls into an irregular intersection
F (Mm)∩Mk, see above, or lands in the ‘bulk’ M0. Such a ‘limited’ invariance
can be ensured with a little extra work [1, pages 488–490].

We describe here an alternative approach that gives the invariance of the
foliation ‘for free’. Let us foliate m-cells by unstable manifolds of the map
F , so that in each cell Mm only unstable manifolds that stretch across Mm

completely (terminating on its long sides) are used. The invariance of this
foliation under F is then automatic. A little price to pay for this convenience
is to deal with ‘gaps’ between unstable manifolds.
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Indeed, since arbitrarily short unstable manifolds are dense in M , our
foliation is ‘holey’ (it covers a Cantor-like set), there infinitely many gaps
in Mm where unstable manifolds fail to reach one of the two long sides of
Mm. We need to estimate the relative measure of gaps in Mm. For x ∈ M ,
let ru(x) denote the distance from x to the nearer endpoint of the unstable
manifold passing through x (if none exists, we put ru(x) = 0). Then for any
stable curve W ⊂ M and ε > 0 we have

m(x ∈ W : ru(x) < ε) < Cε

where C > 0 is a constant (independent of W ) and m denotes the Lebesgue
measure on W . (For the proof, see [12]: it is shown in [12, Section 5.12]
that this estimate follows from the so-called first growth lemma in the case
of dispersing billiards, and the argument applies to stadia without change;
and the first growth lemma for stadia is proved in [12, Section 8.14].)

Thus the union of all gaps has relative measure O(1/m) in Mm, so it can
be simply excluded from Mm. After all bad parts of Mm are removed, as
described above, we obtain the desired subset M̃m ⊂ Mm.

The conditional measure on each unstable manifold W is smooth and its
density ρ satisfies

∣

∣

∣

d

dx
ln ρ(x)

∣

∣

∣
≤ C

|W |1/2
,

where C > 0 is a constant, see [12, Section 8.12]. Hence the fluctuations of
the density on our fibers in F (Mm) are bounded by

maxW ρ − minW ρ

minW ρ
≤ C|W |1/2 ≤ Cm−1/2.

The distortions of unstable manifolds under the map F are also estimated in
[12, Section 8.12]: if W is an unstable manifold on which F n is smooth, then

maxW JW F n − minW JWF n

minW JWF n
≤ C|W |1/2 ≤ Cm−1/2,

where JWF n is the Jacobian of the map F n restricted to W , and the constant
C > 0 is independent of W and n.

These facts imply that the transformation of the conditional measures
on unstable manifolds can be tightly approximated by a Markov chain as
non-linearity only affects higher order terms.
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Now in order to handle multistep transition probabilities (3.6) we note
that FM̃m1

∩ F 2M̃m2
∩ · · · ∩ F tM̃mt is a union of unstable manifolds in

FM̃m1
, each stretching completely across the strip FM̃m1

. Thus it is enough
to show that for any two such unstable manifolds W1, W2 ⊂ FMm1

and the
conditional measures νW1

, νW2
on them we have

∣

∣νW1
(Mk) − νW2

(Mk)
∣

∣ ≤ Cm
−1/2
1 ,

for every k ∈ [m1/3 + C, 3m1 − C]. This readily follows from standard
estimates on the Jacobian of the holonomy map, see [12, Section 8.13].

In summary, we obtain (3.5)–(3.8) with d = 1/2. This concludes our
analysis of the ‘straight’ Bunimovich stadium.

The dynamics in the ‘drivebelt’ billiard table is studied in [11, Section 9].
The m-cells Mm there consist only of points experiencing long series of con-
secutive collisions at the same arc (as the number of possible consecutive
bounces off the two nonparallel flat sides is limited). But there are two very
different types of series of collisions with the same arc. First, there are ‘slid-
ing’ trajectories (where ϕ ≈ ±π/2), just like in the straight stadium, which
make a small set of measure ∼ m−4, and so they are negligible. Second, there
are trajectories bouncing off within the bigger circle almost orthogonally to
its boundary (i.e. with ϕ ≈ 0), see Fig. 2. It was shown in [11, Section 9]
that they make a set of measure ∼ m−3, thus they are of interest to us.

The structure of m-cells in the drivebelt stadium are described in [11,
Section 9]. It is a sequence of self-similar domains accumulating at two
corner points of the space M (which again consists of two parallelograms in
the rϕ coordinates). The images of the m-cells are also self-similar domains
accumulating at the same corner points of M . More precisely, each F (Mm)
intersects Mk with

(4.4) 1
7
m −O(1) ≤ k ≤ 7m + O(1),

which is similar to (4.1), but now β = 7 instead of β = 3. Accordingly, the
transition probabilities are

µ
(

Mk/FMm

)

=
7m

48k2
+ O

( 1

m2

)

for k ∈ [m/7−C, 7m+ C], which is an analogue of (4.2). Here 7/48 is just a
normalizing factor resulting from the requirement

∑

k µ
(

Mk/FMm

)

= 1. A
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simple calculation analogous to (4.3) gives

7m
∑

k=m/7

7

48k2
ln

k

m
∼

∫ 7m

m/7

7m

48x2
ln

x

m
dx = 1 − 50

48
ln 7 < 0.

Thus we get a necessary Markov approximation in this case, too. We note
that the billiard dynamics in the drivebelt region is very similar to that
in Bunimovich’s stadia, but because the latter has been popular for a long
time, its dynamical properties have been investigated in great detail (see,
for example in [12, Chapter 8]). These include sharp estimates on distortion
bounds, conditional densities on unstable manifolds, and the Jacobian of the
holonomy map. For the drivebelt region, such estimates are obtained, in a
weaker form, in [7, Appendix 1.5]. We plan to publish separately a detailed
investigation of the drivebelt stadia along the lines of [12, Chapter 8].

5 Cell dynamics for (semi-)dispersing tables

Lastly we turn to the semi-dispersing billiards (Fig. 4) and dispersing billiards
with cusps (Fig. 3). They turn out to be much easier than the stadia.

For semi-dispersing billiards, we define M to consist of all collisions with
the circular obstacle. Now the return map F : M → M is equivalent to the
well studied Lorentz gas billiard map without horizon [11]. Then m-cells are
made of points colliding with the sides of the square exactly m times before
returning to the obstacle.

The structure of m cells in the semi-dispersing billiards is described in
the literature [6, 7, 12]. In particular, we still have µ(Mm) = O(m−3), as
for the stadia. But there is a crucial difference: the bound (3.2) fails, and
instead the image F (Mm) of the m-cell intersects other cells Mk with

(5.1) O(m1/2) < k < O(m2).

Moreover, typical points x ∈ Mm land in cells Mk with k � m, in fact
the average value of k is E(k) = O(m1/2). Thus the majority of points
x ∈ Mm ‘escape’ from ‘high cells’ into M0 much faster than they do in the
case of stadia. This is good, but our method used for the stadia (based on
Lemma 3.2) will no longer apply, so a different strategy must be employed.

A crucial estimate is proved in [21, Lemma 16]:
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Lemma 5.1 ([21]). There are constants p, q > 0 such that for any large b > 0
there is a subset M̃m ⊂ Mm such that

µ(Mm \ M̃m) ≤ Cm−pµ(Mm),

where C = C(b) > 0 is a constant, and for every x ∈ M̃m the images F i(x)
for i = 1, . . . , b lnm never appear in cells Mk with k > m1−q.

Lemma 16 in [21] is stated and proved for the iterations of T−1, but the
time reversibility of the billiard dynamics makes it applicable to T as well.
For the sake of completeness, we outline the proof here. Examining the cell
structure it is easy to see that the one-step transition probabilities are

(5.2) µ
(

Mk/F (Mm)
)

� (m + k)/k3,

where A � B means that 0 < c1 < A/B < c2 for two constants c1, c2 and k
satisfies (5.1). Thus for any small e > 0

(5.3) µ
(

∪m2

k=m1/2+eMk/Mm

)

= O
(

1/m2e
)

.

Hence we can neglect points x ∈ Mm such that F (x) ∈ Mk with k > m
1

2
+e

and those for which F 2(x) ∈ Mj with j > m
1

4
+3e. It remains to estimate

the probability that points y ∈ Mj with j ≤ m
1

4
+3e will come up to Mi,

i ≥ m1−q, within O(ln m) iterations of F . The key observation is that the
cells Mj are long (their length is lj ∼ j−1/2) and the cells Mi are very short
(because li ∼ i−1/2 = O(l3j )).

Actually we need to deal with homogeneous sections of m-cells, in which
distortion bounds can be enforced [12, Chapter 5]. Every cell Mj has length
∼ j1/2, and it is divided into homogeneous sections of length k−3 for k ≥ j1/4.
We will only keep homogeneous sections with k ≤ j1/4+e, as the union of the
rest has measure O(j−3−4e) = O

(

µ(Mj)/j
4e

)

, which is negligible.
Just as we indicated in the previous section, we can foliate each homoge-

neous section of Mm by smooth unstable curves, then their images in other
cells will be homogeneous unstable curves stretching completely across homo-
geneous sections in those cells (with negligible exceptions caused by irregular
intersections at the ends of homogeneous sections). Then we consider an arbi-

trary homogeneous unstable curve W ⊂ Mj, j ≤ m
1

4
+3e, in the k-th section,

where k ≤ j1/4+e. Its length is mW (W ) ∼ k−3 ≥ j−3/4−3e ≥ m− 3

16
−3e−9e2

,
where mW denotes the Lebesgue measure on W .
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Next we use the key estimate of the ‘growth lemma’ [9, Theorem 3.1],
which says that there are constants α ∈ (0, 1) and β > 0 such that for every
homogeneous unstable curve W , every n ≥ 1 and ε > 0

(5.4) mW (rn < ε) ≤ (αΛ)n mW (r0 < ε/Λn) + βεmW (W ).

Here Λ > 1 is the hyperbolicity constant and rn(x) is a function on W equal
to the distance from F n(x) to the nearest endpoint of the component of
F n(W ) that contains x, we refer to [9] for details. A crucial observation is
that if F n(x) ∈ Mk, then because the length of the largest homogeneous
section in Mk is O(k−3/4), we have rn(x) = O(k−3/4). So applying (5.4) with
ε = m−3(1−q)/4 (note that ε � mW (W )) completes the proof of the lemma.

We now turn back to our analysis of the set An \ Bn,b in the end of
Section 2. Let

Cn = {x ∈ An \ Bn,b : |I| > n/10},
where I is again the longest time interval, within [1, n], between successive
returns to M . It is immediate that µ(Cn) = O(n−1), because µ(Mm) =
O(m−3), just like in the proof of Proposition 3.1. On the other hand, the
above lemma implies that µ(An\Bn,b\Cn) is even smaller: it can be bounded,
say, by n−1−q/2.

Finally we deal with dispersing billiards with cusps. Here the hyperbolic-
ity of the map F is weak during long series of reflections deep in a cusp, see
[13] and Fig. 3. We define M ⊂ M to consist of points that do not belong
to series of N ≥ N0 reflections is a cusp, where N0 is a large constant. A cell
Mm is then made by points whose trajectories enter a cusp and come out of
it after m bounces.

The cell structure is described in [13] in detail, and it is surprisingly
similar to the cell structure of semi-dispersing billiards treated above. In
particular, the bound (5.1) holds. Lemma 5.1 carries over, and its proof is
essentially the same. For example, the equation (5.2) takes form

µ
(

Mk/F (Mm)
)

∼ m2/3/k7/3,

hence for any small e > 0

µ
(

∪m2

k=m1/2+eMk/Mm

)

= O
(

1/m4e/3
)

,

which is similar to (5.3). The rest of the argument goes word for word,
requiring only changes in the values of some constants.
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[1] P. Bálint and S. Gouëzel, Limit theorems in the stadium billiard, Comm.
Math. Phys. 263 (2006), 461–512.

[2] G. Benettin and J.-M. Strelcyn, Numerical experiments on the free mo-
tion of a point in a plane convex region: stochastic transition and en-
tropy, Phys. Rev. A 17 (1978), 773–785.

[3] L. A. Bunimovich, On billiards close to dispersing, Math. USSR. Sb. 23
(1974), 45–67.

[4] L. A. Bunimovich, The ergodic properties of certain billiards, Funk.
Anal. Prilozh. 8 (1974), 73–74.

[5] L. A. Bunimovich, On ergodic properties of nowhere dispersing billiards,
Comm. Math. Phys. 65 (1979), 295–312.

[6] L. A. Bunimovich, Ya. G. Sinai, N. I. Chernov, Markov partitions for
two-dimensional billiards, Russ. Math. Surv. 45:3 (1990), 105–152.

[7] L. A. Bunimovich, Ya. G. Sinai, N. I. Chernov, Statistical properties
of two-dimensional hyperbolic billiards, Russ. Math. Surv. 46:4 (1991),
47–106.

[8] N. Chernov, A new proof of Sinai’s formula for entropy of hyperbolic
billiards. Its application to Lorentz gas and stadium, Funct. Anal. Appl.,
25 (1991), 204–219.

[9] N. Chernov, Decay of correlations and dispersing billiards, J. Statist.
Phys. 94 (1999), 513–556.

[10] N. I. Chernov and C. Haskell Nonuniformly hyperbolic K-systems are
Bernoulli, Ergod. Th. Dynam. Sys. 16 (1996), 19–44.

22



[11] N. Chernov and H.-K. Zhang, Billiards with polynomial mixing rates,
Nonlinearity 18 (2005), 1527–1553.

[12] N. Chernov and R. Markarian, Chaotic Billiards, Mathematical Surveys
and Monographs, 127, AMS, Providence, RI, 2006. (316 pp.)

[13] N. Chernov and R. Markarian, Dispersing billiards with cusps: slow
decay of correlations, Commun. Math. Phys. 270 (2007), 727–758.

[14] A. Dembo and O. Zeitouni, Large Deviations, Techniques and Applica-
tions, Springer, NY, 1998.

[15] J. Machta, Power law decay of correlations in a billiard problem, J.
Statist. Phys. 32 (1983), 555–564.

[16] J. Machta and B. Reinhold, Decay of correlations in the regular Lorentz
gas, J. Statist. Phys. 42 (1986), 949–959.

[17] R. Markarian, Billiards with polynomial decay of correlations, Ergod.
Th. Dynam. Syst. 24 (2004), 177–197.

[18] D. Ornstein and B. Weiss, On the Bernoulli nature of systems with some
hyperbolic structure, Ergod. Th. Dynam. Sys. 18 (1998), 441–456.
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