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§1. Fundamental definitions and statements of results

1.1. Let Q be a bounded connected closed domain in the plane R2 or on the
two-dimensional torus Tor2 with the Euclidean metric. We assume that the
boundary dQ consists of finitely many smooth (class C3) non-intersecting
curves Γ,·, 1 ^ i < d, which are either closed or have end points in common.

A billiard dynamical system (or simply, a billiard) in Q is generated by the
inertial motion of a material point inside Q. The point moves rectilinearly
inside Q with unit velocity. When hitting the boundary dQ, the point is
reflected by the law "the angle of incidence equals the angle of reflection".

Billiards serve as model systems in many problems of physics (see the
survey [6]). In particular, such a popular model in statistical mechanics as the
Lorentz gas belongs to the class of billiard systems under consideration [6],
[12], [19].

The ergodic properties of billiard systems are determined by the structure
of the boundary dQ, more precisely, by its geometric curvature at the regular
points. We equip each component Γ,- with the unit normal vectors n(q),
q e Γ,·, directed to the inside of Q. Then at each point q ε Γ, the curvature
x.(q) of Γ; at q has a well-defined sign. We assume it to be of constant sign
on each curve Γ,·, including the end points. Correspondingly, we call a
component Γ,· scattering if v.(q) > 0 for all q e Γ, (in this case Γ,- is convex,
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seen from the interior of Q), focussing if %{q) < 0 for all q e Γ,· (that is, Γ, is
convex as viewed from the outside), and neutral if x(q) Ξ 0 on Γ,· (in this case
Γ, is a segment of a straight line).

Definition. A billiard in Q is called scattering if all components of dQ are
scattering (Fig. 1).

Fig. 1

The stochastic properties of two-dimensional scattering billiards have been
studied rather exhaustively. They are ergodic, are ΛΓ-systems (see [10]), and in
a number of cases the 5-property has been proved for them [21].

Everywhere in this article (except in §6) we consider scattering billiards
only. Such billiards have a very strongly expressed hyperbolic behaviour (for
more detail see §2). Certain classes of billiards with focussing and neutral
boundary components are also hyperbolic. One such class is considered in §6.

The phase space of a billiard system in Q is the unit tangent bundle Μ
over Q, that is, Μ = {χ = (q, υ) : q e Q, \\o\\ = 1}, or Μ = QxS1. We
denote by π the natural projection of Μ on Q: nx = q. It can easily be seen
that Μ is a three-dimensional manifold with boundary 9M = '{J π"1]",· = \J M®.
We put ' {

So = {* = (9, V): q GE dQ, (υ, η (q)) - 0},

F o = U ιΓΜΓίΠΓ,), R0^S0\JV0.

The one-parameter group of shifts along the trajectories of a billiard system
is denoted by {S'}> —oo < t < oo. The systems considered are discontinuous.
In particular, the flow {S'} is defined only on the subset M' = {x : S'x φ Vo

for all t}. We will assume that the trajectories of points χ e M\M' are
defined only up to the moment of hitting the set VQ.

The Liouville measure on Μ has the form άμ = const dqdo, where dq and
c/υ are the Lebesgue measures on Q and S1, respectively, and const is a
normalizing factor. It is well known that {S'} preserves the measure μ and
that μ(Μ') = 1 (see, for example, [7]).

The ergodic properties of flows are often studied using special
representations of the flows, in other words, using the successor maps of a
certain cross-section [14]. In the case of billiards a cross-section can easily be
constructed, using the natural boundary 8M of the phase space. We put
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M] = {x = {q, D) : q ε Q, (υ, n{q)) ^ 0}. Clearly, M\ is a two-dimensional
manifold with boundary dMx = Ro. Let us put M\n = M1 Π Λ^0, I < i ^ d.

Fig. 2

On each M['~* we introduce natural coordinates (r, φ), where r is the length
parameter on the curve Γ, and φ is the angle between the vectors u and n(q),
— π/2 ^ φ ^ π/2. The coordinate r is measured from some point q0 e Γ,
and increases when moving along the boundary dQ in such a way that the
domain Q remains on the left (Fig. 2). With these coordinates A/[!) is either a
rectangle (when Γ, is not closed) or a cylinder (when Γ,- is closed).

For a phase point χ ε Μ we denote by τ + (χ) and τ~(χ) the first positive and
negative moments of hitting the boundary dM: τ + (χ) = ΐηίη{τ > 0 : Szx ε dM},
x~(x) = raax{t < 0 : Szx e dM}. It can be shown [10] that Ιτ*^) ! < oo
almost everywhere on Μ and everywhere on M\. The successor map
Τ : Mi -> Mi is defined by Tx = S%+(x)+"x, χ e Mv It is known [7] that Τ
preserves the measure dv = const cos φ dxdtp (as before, const is a
normalizing factor).

We put M\ = M\ Π Μ'. The map Τ is one-to-one on M[. The images
T"x of the remaining points χ e M\\M{ are not defined for all η ε Ζ, but
only up to the moment of hitting the set VQ. In the language of ergodic
theory {S'} is called a special flow, constructed from the automorphism T,
base space Mi, and function x + (x) (see [7]).

The maps Τ and Τ ~1 are piecewise smooth on Μj. The set of singular
points for Τ (respectively, Τ~λ) coincides with Ro U T~lR0 (respectively,
^o U TR0). We put Sk = TkS0, Vk = TkV0, Rk = TkRo for -oo < k < oo,

and also j /?, for — co ^ k < m ^ <x> (here and in the sequel,

TV0 = {Tx : χ = (q, υ), q ε Γ,· Π Γ; for i φ j and ο pointing inside Q}\ the
set T~x VQ is similarly defined). Then the set of singular points of T±n, η ^ 1,
coincides with R-n,o (respectively, Ro,n)- It is not difficult to see that the set
R-K,,<x> consists of countably many smooth (C1) curves, which will simply be
called discontinuity curves in the sequel. Finally, the multiplicity of a point
χ ε Μι is the (possibly infinite) number of discontinuity curves passing
through it or ending at it.
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A basic instrument in the study of ergodic properties of hyperbolic systems
consists of locally stable and unstable manifolds (LSM and LUM, for short).
In our case a LSM is defined as a smooth (C1) curve γ* C M\ (regarded
without end points) such that Tn is continuous on ys for all η ^ 1, while the
length of the image Tn"f tends to 0 as η ->• oo. The LUM γ" is similarly
defined, with T" replaced by T~n.

For two-dimensional scattering billiards it has been proved [10] that
v-almost every point χ e Mi has a LSM and a LUM passing through x. We
denote by yu(x) (respectively, /(χ)) the maximal smooth segment of the LUM
(respectively, LSM) passing through x. The sets Γ5 (x) = (J T~nys (T"x) and

Ji>0

Γ" (x) — \J T"yu (T~nx) will be called the globally stable and unstable manifolds

(abbreviated to GSM and GUM), respectively (see [14]). For x, y e M\ we
put [x, y] = γ"(χ) C "f{y)· In §2 we will prove that the set [x, y] consists of
at most one point. If A C "fix), Β C y"(y) and the point [x', y'] is defined
for all x' e A, / e B, then we put [A, B] = {[x', /] : x' e A, y' e B}.

1.2. Markov partitions.
In M] we introduce special subsets, called parallelograms.

Definition. A subset U C M\ is called a parallelogram if for any pair of
points x, y e U the point [x, y] is defined and belongs to U.

In the definition of a parallelogram it is usual to require v(U) > 0. We
discard this requirement, and call a parallelogram of positive measure non-
degenerate, and one of zero measure degenerate.

The term "parallelogram" for elements of a Markov partition was
introduced in [16] (in which a Markov partition was constructed for an
automorphism of the two-dimensional torus with elements of the form of the
"present" parallelograms). In [3] the term "rectangle" was used for the same
purpose (see also [8]).

For a subset A C Mx we put y"A(x) = yu(x) Π A and fA(x) = -f(x) Π A.
Subsets A\ C Y"(*I)

 a n d ^2 C Ύ"(ΧΙ) are called canonically isomorphic [18] if
for any point y e A\ the LSM Js(y) intersects Ai, and conversely. A similar
definition is given for subsets of LSM. In a parallelogram U, for all χ e U
the sets y'uix) are canonically isomorphic. This is true also for the sets
Υ[/(χ), χ e U. Therefore any parallelogram U can be represented as
U ~ [jh(x), y'biy)], where x, y are arbitrary points of U. In other words, the
parallelogram U has the structure of a direct product.

In the definition of a parallelogram it is not assumed that y'uix), Υυ(χ) are
connected, open, or closed. In certain smooth systems they can be chosen to
be connected [14], and then U is a curvilinear quadrangle. However, in
discontinuous systems (including billiards) the LUM and LSM can be
arbitrarily short in a neighbourhood of any point of the phase space.
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Therefore the parallelograms U and sets yt{x), ysu(x) for χ e U have a rather
complicated structure. In our case they are totally disconnected sets of Cantor
type (see §5).

The intersection of an ordered pair of parallelograms U\ and U2 is called
regular if it is non-empty and if U\ Π Ui = [fupc), Yc/,W] for any point
χ e U\ Π U2- The corresponding intersections are schematically drawn in
Fig. 3.

Non-regular intersections Regular intersection

Fig. 3

Let η be a finite or countable covering (mod 0) of the space M\ of closed
parallelograms {[/,·} such that v(C/,· Π UJ) = 0 for i Φ) and v(M1\i\ Ut) — 0

i

(that is, v-almost every point χ e M\ is covered by exactly one parallelogram).
For those χ e M\ that are covered by exactly one element £/,· € η we will
denote this element by U(x).

Definition. A Markov partition is a covering η such that: a) every
parallelogram U e η lies in a connected domain V(U) C M\ on which the
maps Γ and T~l are continuous; b) for v-almost every point χ e M\ the
parallelograms U(x) and TU{T~lx) intersect regularly.

The first Markov partitions for Anosov 7-systems were (in a somewhat
different form) introduced in [8]. Later they were constructed for the more
general ^-systems of Smale [2], [3]. An exhaustive exposition of the
corresponding theory is given in the books [3], [14]. In all these cases the
partition η is finite, and its elements have a comparatively simple structure.

The importance of Markov partitions lies in the fact that they allow one to
construct a convenient symbolic representation of the automorphism T.

We recall how one constructs in the general case a symbolic representation
of an automorphism Τ of a measure space (M, v) using an arbitrary finite or
countable measurable partition η = {C/,}, 1 < / =ζ Ν (Ν ^ oo). For any
point χ e Μ we define a two-sided sequence of indices σ = σ(χ) =
= {..., σ_ι, σ0, σι, ..., ση, ...}, where Tnx e υ^η, —οο < η < oo. The
secquence σ(χ) is called a coding of the point x. We denote by Σ the space of
two-sided sequences σ = {σπ}, 1 < ση =ζ Ν, and let θ be the left shift on Σ,
that is, θσ = σ', where σπ = σ«+ ] . We consider the map Φ : Μ -* Σ
mapping χ to σ(χ), and let Σ φ = Φ(Μ) Q Σ. It can easily be verified that
φ ο τ — θ ο φ , that is, Φ is the union of the automorphism Τ and the shift Θ.
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The invariant measure ν in Μ induces a measure νΣ in Σ by the formula
VL(-4) = ν(Φ~~ιΑ), A C Σ. In this manner the measure space (Σ, νΣ) becomes
a realization space of a stationary stochastic process with a finite or countable
number of states. Therefore problems on the study of stochastic properties of
dynamical systems become problems in probability theory or in the one-
dimensional statistical mechanics of lattice systems.

Among the simple partitions, Markov partitions are distinguished by the
fact that the symbolic dynamics (Σφ, θ) obtained via them allows a relatively
simple description: it is (mod 0) a topological Markov chain [2]. Namely, we
introduce the intersection matrix Π = ]|π^!| by

(1 if Uj f\ TO'i is a regular intersection,
v \θ otherwise.

The space Σπ of sequences {σπ} satisfying the condtion πσ,σ.+1 = 1 for all
η e Z, on which the left shift θ is defined, is a topological Markov chain
(TMC). It can easily be shown [3] that for any sequence σ e Σπ the
intersection Π£°= -<χ>Τ~ηυση consists of precisely one point.

Theorem [3], [8]. If η is a finite Markov partition of a space Μ with elements
of sufficiently small diameter, then

1 · Σφ ^ ^πί
2. ν ϊ ( Σ Φ \ Σ π ) = 0;
3. the map Φ is well defined on Σπ and is continuous on this set.

This theorem can be transferred without difficulty to countable Markov
partitions, as was noted in [18].

Thus, any sequence σ satisfying the "scattered transitions" conditions
π σ σ = 1 is the coding of some trajectory of the automorphism T.

1.3. The fundamental results of this paper.
Theorem 1.1. Let the domain Q generating the two-dimensional scattering
billiard satisfy the following conditions:

A. All interior angles formed by the intersection of the smooth components
of the boundary dQ are strictly positive.

B. The multiplicity of all points of the space M\ is uniformly bounded above
by a constant KQ = KQ(Q) < oo (this condition holds for a domain Q in general
position).

Then for any ε > 0 there is a countable Markov partition of Mi with
elements of diameter less than ε.

The first Markov partitions for two-dimensional scattering billiards were
constructed in [18] (see the correction in [20]). In the present paper the
construction in [18] is simplified at several points. Moreover, we give it in a
more general setting.

Unlike smooth systems, for which there is a finite Markov partition, in the
case of billiards one cannot expect this. The reason is that the LSM and
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LUM can be arbitrarily short, and therefore there must exist elements of the
Markov partition that have arbitrarily small dimensions.

Moreover, the presence of a countable Markov partition does not allow
one to immediately obtain the consequences holding for a smooth system with
finite Markov partition. (Such are: an estimate for the rate of decrease of
correlations [19], the central limit theorem, and asymptotics of the number of
periodic trajectories [20].) In our case the symbolic dynamics (Σπ, θ) obtained
does have certain additional properties (these are partly described in [18]).
The derivation of these properties requires an additional study of the Markov-
partition constructed (a number of statements in §5 are concerned with this).
A more precise treatment will be given in a forthcoming publication of the
authors.

Remark 1.2 [3], [18]. It suffices to construct a Markov partiton η for
T\ = Tm for some m ^ 1, since then

η V Τ Ά V · • • V T"~\

is a Markov partition for T.
The proof of Theorem 1.1 is presented in §§3 —5. In §§3 and 4 we

construct a so-called pre-Markov partition (an intermediate stage in the
construction of a Markov partition). In §3 we impose one additional
restriction: [τ*^)] ζ const(g) < oo for all χ e Λ/Ί (such systems are called
billiards with finite horizon). In §4 we study billiards with infinite horizon and
generalize the results of §3 to this case. In §5 we construct a Markov
partition starting from a pre-Markov partition. In §6 the results of
Theorem 1.1 are transferred to a class of non-scattering billiards with
hyperbolic behaviour. Finally, in §7 we derive, as a corollary of Theorem 1.1,
an exponential lower bound for the number of periodic trajectories of the
automorphism T. We hope that the asymptotics of the number of periodic
points can be studied more completely by using the Markov partition
constructed.

The authors express their gratitude to A. Kramli and D. Szasz, who
indicated an inaccuracy in the handwritten text.

§2. General properties of two-dimensional scattering billiards

The main content of §2 lies in the description of the geometric structure of
the discontinuity curves, the LSM, and the LUM in the space M\. A number
of statements are published for the first time.

2.1. Increasing and decreasing curves.
A smooth (C1) curve γ in Mi is called increasing {decreasing) if it is given by
an equation φ = cp(r) and dq>/dr ^ 0 {d^jdr < 0). Such curves will be
called monotone. They have the important property of semi-invariance.
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Lemma [10]. If γ is an increasing (decreasing) curve and Τ (Γ" 1 ) is continuous
on γ, then Ty (T~ly) is also an increasing (decreasing) curve.

This property is, in essence, equivalent to the condition of semi-invariance
of a system of stable and unstable cones in the tangent space, introduced
in [31].

A curve γ is called m-increasing (m-decreasing) for m ^ 1 if Τ m (Tm) is
continuous on γ and T~my (Tmy) is increasing (decreasing). Clearly, the
m-increasing (m-decreasing) curves do not intersect i? O m (R_my0)- A curve γ
is called neutral if γ is a segment in Ro.

Let an increasing or decreasing curve γ be given by an equation φ = cp(r),
Π =ζ r ^ r2. We denote by /(γ) its length in the metric ds2 = dr2 + <Λρ2.
Also, we define the p-length of γ by the formula [21]

(2.1) />(V)=^C<

At each point χ = (r, φ) of the curve γ we define the quantities

(2.2) χ ί (ζ) = — — ( 4 5 1 4- κ (r)) ,V / AT \ / cos φ \ eir — I

where x(r) denotes the curvature of dQ (see §1).

Remark 2.1. Since the components of dQ are smooth, we have
0 < >tmin ^ x(r) < xmax < °o for all points r e 9Q.

We disclose the clear geometrical meaning of the quantities introduced in
(2.1) —(2.2). The points of γ generate an "outgoing" pencil of trajectories
{S'y}, y e γ, t > 0. We consider an orthogonal cross-section σ(χ) of this
pencil, passing through an arbitrary point χ = (r, φ) e γ (Fig. 4), and its
equipment by normal vectors, directed along the motion of the pencil. Then
the /^-length element of γ at χ equals the length element of σ(χ) at x, while
Xy(x) equals the curvature of σ(χ) at x. Similarly, %y~(x) equals the curvature
of the orthogonal cross-section of the "incoming" pencil of trajectories
{S'y}, y e γ, for t < 0.

Fig. 4
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2.2. The hyperbolic structure of the automorphism T.

First we study the properties of expansion and contraction.

Lemma 2.2 [21]. If Τ (T~l) is continuous on the increasing (decreasing) curve

y, then ρ (Γ^γ) = \" (1 + χ,τ (τ) τ± (χ)) cos φ άφ (" + " corresponds to an
ν

increasing curve, " —" to a decreasing curve).

Note that for decreasing curves Xy~(x) < 0 and τ~(χ) < 0. Therefore
increasing (decreasing) curves expand under the action of Τ (Τ~λ). It is
important to estimate the coefficient of expansion. From (2.2) and
Remark 2.1 it follows that for increasing (decreasing) curves γ the estimate
%y(x) > xmin > 0 (respectively, %y~(x) < —xmjn < 0) holds. Condition A of
Theorem 1.1 readily implies that for certain constants m0 = mo(Q) and
το = to(Q) > 0 o n e n a s t n e following result.

Assertion 2.3 [11], [14]. For any point χ ε Μj there are among the m0 first
reflections of its trajectory on the boundary dQ two neighbouring reflections
between which the segment of the trajectory has length at least τ 0 .

In other words, the trajectories of a billiard cannot undergo arbitrarily
small reflections while remaining in a small neighbourhood of a break point
of dQ.

Statements 2.2 and 2.3 imply the following result.

Lemma 2.4. If Tm° (T~m<>) is continuous on the increasing (decreasing) curve γ,

then ±Sl^L^An, "{7

f^
y) > - V where Ao = 1 + *minT0 > \ is a

constant for Q.

Thus, the expansion and contraction in the tangent space to M\ under the
action of Tm° is of a uniform nature.

For m ^ 1 we denote by Am the minimal coefficient of expansion of
increasing (decreasing) curves under the action of Tm (T~m).

Corollary 2.5. Am > Aj,1"''"'"I

Finally we study the angles between stable and unstable directions in the
tangent space to M\.

Let γ be an increasing curve and let Tm, m ^ 1, be continuous on γ.
Then for each point χ e γ we have [10], [21]

(2.3)
cos φ η ι

^r,,-t

τι
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using the notations x,· = (r,-, φ,) = T'x, κ,- = κ(>,•), τ,· = τ + (χ;_ι). A similar
formula holds for decreasing curves. A description of the hyperbolic
properties of billiard systems using continued fractions appeared in [10].
Formula (2.3) allows one to prove the following estimate for the derivative
άψ/dr for monotone curves:

Lemma 2.6. For any l-increasing (l-decreasing) curve φ = cp(r) we have

| άψ/dr | > κ (r) > xmin.

The same estimate holds for the smooth components of the sets R\ and R~\.

Lemma 2.7. For any mo-increasing (mo-decreasing) curve φ = φ(τ-) lying in
M^ we have

| dy/dr | < const {Q) (d {r))-V°-,

where d(r) is the distance from the point r e Γ,- to the nearest end point of Τ ι
(for closed curves Γ,- we may put d(r) = 1).

Thus, in a neighbourhood of Vo the angles between stable and unstable
directions are not separated from zero. Therefore, if Vo Φ 0 , then the
billiard system is only non-uniformly hyperbolic (see also [22]).

Lemmas 2.6 and 2.7 readily imply that for mo-increasing and mo-decreasing
curves γ the following relation holds:

(2-4) V 1 -f κ?ηΙη ρ (γ) < Ι (ν) < const (Q) Υ ρ (γ).

For a monotone curve γ and points a, b e γ we will denote by γ(α, b) the
segment of γ from a to b.

2.3. Discontinuity curves.

Lemma [18]. For k ^ 1 the smooth components of the set R\tk (R-k,-i) ai's
increasing (decreasing) curves.

Lemma 2.8. For k ^ 1 any smooth component of the set Ritk (R-k,-\) lies on
some continuous (not necessarily smooth) monotone curve in Ro,k (R-k,o) whose
end points belong to RQ. For any integer I < k the set R; ^ partitions Mi into
curvilinear polygons, whose interior angles do not exceed 180°.

The proof is by induction over /, k using simple geometric analysis.
In Fig. 5 the typical structure of discontinuity curves is depicted.
We denote by &^m (0^m) the union of all /-increasing and /-decreasing

curves of/^-length not exceeding ε and ending on Ro,m (R-m,o)·

Remark 2.9 [18]. In billiards with finite horizon the set R; k consists, for all
integral / < k, of finitely many smooth components.
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Remark 2.10. In billiards with finite horizon there is, for any 1 ^ m < oo,
a δ0 = 50(m) > 0 such that any increasing (decreasing) curve of p-length not
exceeding 50 intersects R-m>o (Ro,m) at KQ points at most.

Fig. 5

2.4. For two-dimensional scattering billiards the LUM and LSM have been
constructed and well described in [10], [22], They are solutions of ordinary
differential equations d<p/dr = B"(r, φ) cos cp+x(r) (for the LUM) and
άφ/dr = -Β*{τ, φ) cos cp-x(r) (for the LSM). Here

(2.5)

cos φ]

2κ,

cos ι '

is a continued fraction in which (/*„, φπ) = T"(j, φ), κη — x(rn), and
xn = τΤ(Γ"~1(/·, φ)). The quantity Bu(r, φ) is similarly defined, using the
semitrajectories Tn(r, φ) for η ^ 0. It is easily seen that all elements of the
continued fraction (2.5) are positive and S T « = °°- This implies [15] that

ffir, φ) is defined for all points χ e Μ^Λ-οο,ο. Similarly, Bu(r, φ) is defined
for all χ e Mi\i?0,oo- Moreover, B"(r, φ) and ^(r , φ) are continuous as
functions of χ = (r, φ) in their domains of definition [10].

These properties of the LSM and LUM allow one to prove the following.

Lemma 2.11. If {yn} is a sequence of kn-increasing (kn-decreasing) curves
converging in the metric of C° to a continuous curve γ, and if kn -* oo as
«-•οο, then γ is a LUM (LSM).

Thus, for large k the /c-increasing (fc-decreasing) curves approximate the
LUM (LSM). In particular, LUM (LSM) are increasing (decreasing) curves,
so that for arbitrary x, y e M\ the set [x, y] consists of at most one point.
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It is well known that for χ e Mx the length of the LUM y"(x) (the length
of the LSM ys(x)) depends on how close the trajectory Tnx for η < 0 (re > 0)
can approach the boundary dM\. To give a strict statement, we define d+(x)
(d~(x)) for χ e Mj as the minimal /^-length of /-increasing (/-decreasing) curves
joining χ with the set i?0, ι (-R-ι,ο)- We denote by M2 (M2) the set of
points χ e Mi with the following property: for any λ < 1 there is a
c+(x, λ) > 0 (c~(x, λ) > 0) such that d+(Tnx) > c+(x, λ)λ~π

(d~(Tnx) S* c~(x, λ)λπ) for all re ^ 0 (n > 0). Roughly speaking, the set
M2

+ (M2) consists of the points whose trajectories in the past (future)
approach the boundary sufficiently slowly (slower than an arbitrary
exponential).

Lemma 2.12. Let χ e M2 (X e M2). Then
a) the p-length of the segments of the LUM yu(x) (of the LSM ^(x)) from χ

to its end point is at least AQC+(X, XO) (AQC~(X, λο));
b) yu(x) C M2

+ (fix) C Mf).
Here λ0 = Λ - 1 ^ 0 and Ao = Λ0~

2.

Lemma 2.13. If χ e M% (x ε Mf), then the ends of the LUM yu(x) (of the
LSM y*(x)) belong to the set i?0;OO (Λ-οο,ο)·

The proof of the lemmas follows immediately from the construction of the
LUM and LSM [22], and we omit it.

We put Μ2 = Mt Π Mf. Clearly, T~lM2 £ M^, 7Ά/£" £ Mf, and
TM2 = Τ~λΜ2 = Μ2. Lemma 2.12b implies that if x, y e M2 and the point
[x, y] is well defined, then [x, y] e M2 (in this sense M2 has the structure of a
direct product).

It is well known that v(M2) = 1 (see, for example, [21]). This follows
directly from the Borel — Cantelli lemma and the estimate

(2.6) ν {x: d± (χ) < ε} < const (Q) ε

(for billiards with finite horizon this estimate follows from Remark 2.9; in the
case of infinite horizon the proof can easily be obtained from the estimate
given in §4).

Finally, we note that two LUM (LSM) cannot intersect, but may have end
points in common, lying on discontinuity curves in ROiCC (Λ_οοΐ0)·

2.5. Regular partitions.
In the sequel we denote by int A and clos A the interior and the closure of a
set A C Mu respectively, and also put &(A) = clos (int A).

Definition. A finite or countable covering ξ (mod 0) of the space Mi by sets
Δι, Α2, ... such that:

a) v [M1 \ U Δ,) = 0 and ν (Δ, Γ\ Δ;·) = 0 for i Φ j ;
i

b) each Δ ,• is the unon of finitely or countably many closed domains in Μχ

and Δ,- = #"(Δ,·);
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c) each connected component A C Δ,· has piecewise smooth boundary,
consisting of finitely many monotone or neutral curves,
is called a regular partition.

For each Δ,- e ξ we denote by 9"Δ(· (0sA t) the union of all increasing
(decreasing) components of 9Δ,-, and we put du\ = 'Lj duAt, <9νξ = jj <9"Δ;,

If ξ and ζ are regular partitions, then ξ V ζ denotes the regular partition
consisting of the sets Δ = &?(Α' Π A"), A' e ξ, Δ" e ζ.

One of the methods for constructing a regular partition with connected
elements is the specification of its boundary 9ξ. Namely, a fnite or countable
system Γ of monotone curves is called consistent if the end points of each
curve lie either on two other curves from Γ or on Ro. Then together with Ro

the curves γ e Γ partition M\ into connected components, whose closures
form a regular partition.

§3. Construction of a pre-Markov partition

We recall that in §3 we consider billiards with finite horizon. By
Remark 1.2, to prove Theorem 1.1 it suffices to construct a Markov partition
for T\ = Tm for some m ^ 1. In the sequel we put mx = m + mo. The
construction of the Markov partition will depend on a small parameter
0 < ε < 80(m). The quantities m and eo(m) are chosen during the
construction process.

3.1. The initial partition ς 0 .
The first step is the construction of a regular partition of M\, this can be
done rather arbitrarily. We only have to take care that the dimensions of its
elements and their positions satisfy certain very weak restrictions. The
partition ξο looked for is given by a finite system of consistent curves, forming
9ξ0 as described in 2.5.

Proposition 3.1. In M\ we can choose a finite system of rn\-increasing curves
^o = {ΥΓ}» 1 < i < /Ο", and a finite system of ni\-decreasing curves
Γ<Γ = {γΓ}, 1 =ζ i < /(Γ, such that

a) the p-lengths of the curves in TQ \J YQ lie between the bounds λχε and
λΓ'ε;

b) the curves in TQ ( I T ) He outside (Ρλ,ε,™, ( \ E , m , ) ;
c) (consistency) the end points of each curve in Γο (ΤΤ) lie on two curves in

IT (r0

+);
d) any m^-increasing (mo-decreasing) curve of p-length λ] : ε intersects at least

one curve γ e ΓΤ (Υ ε I V ) in such a way that the point of intersection divides γ
into segments of p-lengths at least λ^.

Here λ\ = λι(<2) e (0, 1) is a constant not depending on m.
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Note that requirement d) implies a definite density of the filling of Mx by
each system of curves Γο", Γό~.

Proof. We choose a finite ciE-net {xt}, 1 < i ^ IQ ({xf}, 1 ^ i < IQ) in
the set Mi\&2e,n,l (Mi\@2e,m)· Here c\ = min{l, xmin}/2, while the cje-net is
chosen in the sense of the metric ds2 = dr2 + άφ2. Through each point xt
(xf~) we draw an arbitrary mi-increasing (/^-decreasing) curve γ,* (γ,~) which
is divided by the point xt (x,~) into two segments of p-length ε. We denote
by at and bt the end points of the curves γ * (Fig. 6). We mark off γ *
points a*! and # , such that Χγ±(α±, aft)) = Piitttt, # 0 ) = ε/10. By ̂
Remark 2.10, for sufficiently small εο(ηι) each segment ytiflt, afi),γ,*(&,*
intersects at most Ko discontinuity curves in -R_m>0 (Ro.m)· Therefore there
is a point a* on the segment γ,* (of, ά*ι) and a point bf1 on the segment
f / W . *«ίι) n o t belonging to the set Cs^.m, U ^ . « , , where cj = (lOOi^o)"1

We make an additional construction: through at on γ * we draw an
mi-decreasing curve of/^-length C2& with end points at at and at a certain
point att\. Further, through a^\ we draw an m\-increasing curve of/)-length
C2E with end points at a£\ and at a certain point α,*2· Finally, through a^2 we
draw an m\-decreasing curve up to the intersection with γ,^ at a certain point
a,*3 lying on the segment jt(at > xt) (Fig· 7). For sufficiently small εο(ιη)
this construction can be done in such a way that the ^-lengths of the curve
constructed and of the curve γ* (a t , 0^3) lie between the bounds c2e/2 and
2c2E. A similar "loop" of three additional curves is constructed around the
point bt (Fig. 7). These "loops" are also constructed around the points
af, bf on the curves γΓ, 1 < / ^ /o~ (in this case the monotonicity of each
curve is replaced by the opposite). We put γ * = γ,* (α,*, bt), 1 < i ^ /f-

Fig. 6 Fig. 7

The system Ff looked for consists of the curves γ*, 1 ^ i ^ /^, and of
all increasing (decreasing) curves occurring in the above constructon of the
loops in the neighbourhoods of the end points of the curves γ,*. It is easy to
compute that if = 7/f.
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Assertions a)—c) in Proposition 3.1 can be verified immediately. We prove
assertion d). We assume that λΓ 1 ^ \0KQ. By Remark 2.10, for sufficiently
small B0(m) any mo-increasing curve γ of η-length λΓ'ε intersects at most KQ
discontinuity curves in -R_mij0. Therefore there is a segment γ of/^-length 5ε
on this curve, not intersecting J?_ m i i 0 . We choose a point x0 e γ not in C .̂m,·
Then there is a point xf, 1 < i: < /o~, with distance to x0 at most c\&. It is
not difficult to verify that the curves yf and γ intersect, and that the point
of intersection divides the first curve into two segments of /^-lengths not less
than λ]8. The case of an mo-decreasing curve γ can be treated similarly. The
propostion has been proved.

Note that we can put λ! = (200Λ:0)"1.

3.2. The pre-Markov partition ξ.

The next step consists in replacing the smooth curves in Ff by segments of
the LUM and LSM near to them. The system of LUM and LSM obtained
must be consistent with the dynamics Tm\ namely, the image of each LUM
(LSM) under the action of T~m (Tm) must fall inside some other LUM (LSM)
in this system.

We give precise definitions. Let ξ be a regular partition all boundary
components of which are discontinuity curves or segments of LUM and LSM.

Definition. The partion ξ is called pre-Markov for Tm if

(3.1) Tm (dsl) ςζ dl and T~m (δηξ) Q d\.

If this definition is formally generalized to smooth hyperbolic systems, then
(since there are no discontinuity curves) relation (3.1) gives a Markov partition ξ.
Hence a pre-Markov partition ξ for a billiard may be constructed similarly to
the construction of a Markov partition for two-dimensional smooth systems

[2], [9]·
First of all it is necessary to "provide" a sufficiently large coefficient of

expansion (contraction) for the automorphism T\ = Tm (for this reason we
make the transition to Τλ). We choose m so large that

(3.2) Am > (ίλΐ)-1 > 1

for some c < 1/2 whose value will be given below.
We now turn to the construction. We consider an arbitrary curve γ0 e Γ̂ ~.

Its end points a\, a2 lie on certain curves γι, γ2 e Γο". By Proposition 3.1b)
the curves yr (r = 1,2) can be extended on both sides from ar over /^-distance
λ]Ε while preserving the mpincrease property. We mark off two points a{, a2

on γι, 72, respectively, lying on one side of the curve γ0 and such that
p(yr(ar, a'r)) = όλχε, r = 1, 2 (Fig. 8a). It is easily seen that we can either
draw from a{ an mpdecreasing curve intersecting γ?(β2'

 ί4)> ΟΓ> conversely, we
can draw from a2 an ni\-decreasing curve up to the intersection with y\(at, a[).
Without loss of generality we assume the first can be done. Then we can also
draw from any point of yi(ai, a[) an m\-decreasing curve up to the
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intersection with J2(a2, a2); moreover, the /^-length of this curve will not
exceed 2λ]ε.

Fig. 8

We consider the curves γ r = Tijr, r = 0, 1, 2, and the points dr = TiaT,
ar = Tid'r, for r = 1, 2 (Fig. 8b). By (3.2), ρ (y0 (aj, «2)) < c-^ε and
ρ (yr {dT, Or)) ^ λ^ε. Moreover, through each point of γ4 (ά,, ά'χ) we can draw
an mo-decreasing curve of/^-length not exceeding 2όλ]ε up to the intersection
with Ϋ2(ά2, ά2) (this is guaranteed by the nearness of γ, (αΐ5 «ί) and γ2 (ά2, ά2)).
By Proposition 3.Id) there is a curve γό ΕΞ Γ(7 intersecting both segments
yr (dri «,'), r = 1,2. We also assume that among all these curves γό is
nearest to the points Λ,, α 2 . Let % denote the segment on νό contained
between the curves γ4 and γ 2 . Then y0 = T^yl is a 2m-decreasing curve
whose end points lie on Yi (α,, αί) and y2 (a2, a2).

Such a curve γ, can be constructed for each curve yi e Γό". The set of
curves {yt} will be denoted by Γι. Next, each curve yt e To is elongated or
shortened from each of its end points so that it ends on the curves γ£ΐ, yhe Ff
if earlier it ended on γ,·,, yif,e Γό~ (when elongated, the mpincrease property is
preserved; this is guaranteed by conditon b) in Proposition 3.1).

A similar procedure (with 7Ί replaced by T{~x) is performed for each curve
γ,· e Γο", giving a new system of curves T\ consisting of 2m-increasing curves.
The systems Ff satisfy the relation

GE Γ± 3γ (Ξ C y

(here and everywhere in §3 the inclusion " ( ^ " means that one curve lies
strictly in the interior of the other). Between the curves γ e Tf- and y e F
there is a natural relation, under which corresponding curves remain at a
distance at most ck\& from each other.

To the systems of curves Tf we again apply the above described
procedure, as a result of which each curve γ e Ff is replaced by a curve γ
near to it. The system of curves {γ} obtained by this step is denoted by Γ
Recurrently repeating this procedure gives a sequence of systems of curves
η = 1, 2, ... .
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Lemma 3.2. The curves γ e Γ^ (γ ε Τ~) are (n + X)m-increasing
((η + \)m-deer easing). They are subject to the condition

V7 6Ξ Γ± 3γ e Γ±_ι: 7 ? xy a y.

Between the curves γ e Γ* and γ e F*_i i/ie/*e w a natural relation, under
which corresponding curves remain at a distance at most (ck\)nz from each other.

The lemma can be proved by induction.

Lemma 3.3. The systems of curves Γ* have limits as η —• oo (in the metric
of C°). We denote these by Γ*. The limit system Γ^, (Γ^) consists of the
segments of LUM (LSM) satisfying the conditions

a) V7 e Γ± 3γ' <ΞΞ Γ±: Γ? 1 γ d γ';
b) between the curves γ e Γ» α«^ Υ ε Γ^ //iere w α natural correspondence,

under which corresponding curves remain at a distance of at most 2ck\E from
each other;

c) (consistency) the end points of each curve γ e Γ^ lie on two curves in Γ^.

Proof. The existence of limit systems Γ* and assertions a), b), c) can be
derived from Lemma 3.2 by a simple limit transition. By Lemma 2.11 the
curves γ e Γ£ are LUM (LSM).

Having chosen the value of c sufficiently small (c < λι/200), we can use
the idea of the proof of Proposition 3.Id) for proving the following lemma.

Lemma 3.4. Any mo-increasing (mo-decreasing) curve of ρ-length λΓ ]ε intersects
some segment of a LSM in Γ^ (LUM in Fj>); moreover, the point of
intersection divides this segment into two pieces of p-lengths not less than \\ZJ2.

Finally, the partition ξ of M\ is given by the systems of curves Fj,, F ^ ,
and R_mm, which generate δξ.

Proposition. The partition ξ is finite and pre-Markov for T\.

Finiteness of ξ follows from the fact that any two smooth components of
R-n,jm, Γ^, and Fj, intersect in at most two points.

3.3. The modified partition ξι.
The elements of the above constructed pre-Markov partition ξ are of very
complicated shape (in particular those bordering with R-mm). We will
construct a pre-Markov partition with elements of a much simpler shape.

We consider the system of curves Fff) consisting of the curves γ e Γ* and
the smooth components of their images Γ^'γ. We define the regular partition
ξι by giving its boundary using the systems F^) and the discontinuity curves

Proposition 3.5. The partition ξι is finite and pre-Markov for T\. Each curve
γ e F(t) ends on i ? _ m m or strictly inside certain curves in F^).
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Proof, ξ being pre-Markov implies that ξι is pre-Markov. Finiteness is
verified as for ξ. The last assertion of Lemma 3.5 follows from relation a) in
Lemma 3.3 (recall our convention on the use of the inclusion symbol "C"D·

The following lemma provides a description of the geometric shapes of the
elements of ξι.

Lemma 3.6. a) If the element Δ e ξι does not border with R-.mm, then it is a
curvilinear quadrangle, bounded by two LUM and two LSM alternating each
other (Fig. 9a).

b) If the element Δ e ξι does border with R-mm, then it is a curvilinear
polygon, bounded by segments of LUM, LSM, and discontinuity curves such that
all interior angles do not exceed 180°.

The proof of the lemma involves simple geometrical constructions and the
use of Lemma 2.8. It is easily computed that the number of sides of a
polygon Δ e ξι lies between 3 and 6 (Fig. 9b, c).

Fig. 9

Corollary 3.7. The diameters of the elements of the pre-Markov partition ξι do
not exceed const(g)N/e.

Proof. We consider an arbitrary monotone curve γ inside an element Δ e ξι.
By Lemma 3.4 and relation (2.4), /(γ) < const(g)N/e. This and Lemma 3.6
implies the required result.

3.4. In conclusion we consider the partition ξπ = Τ{~π+λξι V ... V ξι V
V ^ιξι V ··· V ^ Τ ' ξ ι · By induction with respect to η it is easily proved
that ξπ is, for any n, a pre-Markov partition. This and Lemma 3.6 imply that
all elements of ξπ are connected and are curvilinear polygons whose interior
angles do not exceed 180°. The hyperbolic properties and Lemma 3.4 imply
that the diameters of the elements Δ e ξπ tend to zero as η grows. Hence
lim ξπ = ε (here ε denotes the partition into individual points).



Markov partitions for two-dimensional hyperbolic billiards 123

§4. The case of infinite horizon

At first reading this section may be omitted without loss of understanding
the sequel.

4.1. Billiards with infinite horizon are possible only on the torus Tor2. If the
function x + (x) (τ~(χ)) is unbounded in a neighbourhood of a point z0 e M\,
then:

a) its semitrajectory {S'z0} for t > 0 (t < 0) forms a closed periodic
winding of the torus;

b) at all points of contact of this semitrajectory and the boundary dQ, the
corresponding component of dQ lies at one side of this semitrajectory (Fig. 10).

Γ

Z1 Z2

I'

Z5

ZZ

i
Z4

Fig. 10

Such points will be called u-singiilar {s-singular). In Fig. 10 the points
z\, Z2 are ί-singular but not «-singular, while z3, z4 are simultaneously «- and
j-singular. The discussion above implies that Mi contains only finitely many
«- or s-singular points, and also that they all lie on Ro. Note that several
singular points can have a common semitrajectory (the points z\ and z3, and
z2 and z4 in Fig. 10).

We distinguish three types of singular points ζ:
1) type S for ζ e S0\V0;
2) type V for ζ e Vo\ So; and
3) type SV for ζ ε So Π VQ.

These types will be called generic. For each «-singular (j-singular) point z0 we
denote by Z"(z0) (Zs(zo)) the set of s-singular (w-singular) points {z} whose
supports π(ζ) do not lie on the semitrajectory {S'z0} for t < 0 (t > 0) and
such that TV(z) Π V(z0) Φ 0 (respectively, T~lV(z) Π V(z0) φ 0), where
V{z) is a sufficiently small neighbourhood of the singular point ζ in M\. For
example, in Fig. 10, Z"(z5) = {zu z3}. For each w-singular (j-singular) point
ζ we introduce the u-type (s-type). It takes one of the six values: 5 p u r e , Vpure,
SVpure, >Smix> ^mix, SVmix, where S, V, and SV are the possible generic types
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of z and the subscripts "pure" and "mix" mean that the set Z"{z) (Zs(z))
consists of points of the "pure" types (S or V), or contains at least one point
of the "mixed" type SV, respectively.

In neighbourhoods of «-singular (s-singular) points there are infinitely
(countably) many smooth components of the set R\ (i?_i). The smooth
components of R\ (R-ι) partition these neighbourhoods into countably many
subdomains, called u-cells (s-cells) in the sequel. The structure of the cells in a
neighbourhood of a singular point is determined by the type of the point and
is fairly universal. The positions and dimensions of «-cells of four types are
depicted in Fig. 11. Here the notation 0(1 /«") stands for a quantity between
const i/n" and const2/na; the values of the constants depend on Q (the cells
are given a natural enumeration, by the order of approach to the singular
point). The corresponding drawings for «-cells of the types SVpure and 5 F m i x

can be obtained by cutting the drawings for the types Spuie and Sma by a
vertical line through the singular point (this line corresponds to the
component Vo). The positions and dimensions of s-cells are similar, up to
mirror symmetry.

Type Spun
Type Vp

Vn

Type Type

Fig. 11
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Note that condition Β in Theorem 1.1 is not violated in the case of infinite

horizon, since through each singular point precisely two components of i?o, ι

CR_i,o) pass.
The definition of cells implies the following.

Lemma 4.1. In a neighbourhood of an s-singular (u-singular) point any u-cell

(s-cell) with index η is transformed under the action of T~x (T) into an s-cell

(u-cell) with index between const! η and const2 η (the type of the cell may

change).

4.2. The Lorentz gas.
We consider the special case of a billiard with infinite horizon when all

singular points are of type 5 p u r e (that is, lie at regular points of 3(2). As far

as is known to us, in all papers on the study of ergodic properties of

scattering billiards the authors restrict themselves to this case [6], [21], [25].

The Lorentz model, which is very popular in statistical mechanics, belongs to

this class [6].

Fig. 12

In the case considered, all w-singular points are ί-singular, and conversely.

Hence in a neighbourhood of each singular point ζ there is a sequence of

«-cells Au

n(z) and s-cells As

u(z) (Fig. 12). The cell A"n(z) (As

u(z)) intersects the

cells Asi(z) (A"(z)) for all constj Jn =ζ i ^ const2«
2. This and Lemma 4.1

imply that for all π ^ const the s-cell As

n(z) intersects the w-cell TAs

n(z') for

some singular point ζ' Φ ζ, such that their intersection forms a quadrangle,

bounded by the long sides of the cells As

n(z) and TAs

n(z') (see the shaded

domain in Fig. 12). The number of singular points is finite, hence for any

k ^ 1 there is a (unique) sequence ζ χ, ..., zk of singular points such that the

set K,k(z) = A'n(z) Π ΤΑη(ζλ) Γ) - Γ) TkAs

n(zk) is not empty and forms a

small strip joining the two long sides of the cell A'n(z) (the blackened part in

Fig. 12). The limit of these strips as k -* oo is a LUM joining the two long

sides of As

n(z) (see Lemma 2.11). We denote this LUM by γ"(ζ). In a similar

manner we can construct the LSM "fn(z) joining the two long sides of the

w-cell A"(z). This system of LUM (LSM) is semi-invariant:

(4.1) T-iyl (z) CI γ " (Z) (Tfn (z) Cl ys

n (z'))
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for some singular point ζ' Φ ζ. Relation (4.1) follows since the images
Τ~γη{ζ) (T!-fn(z)) lie, for all / ^ 0, in the ί-cells («-cells) with fixed index n.

We now turn to the construction of a pre-Markov partition for this case.
Let V(em) be the union of the s*-neighbourhoods of all singular points {z}.
The quantity ε» is chosen so small that under the action of Τ (Τ~ι) the
coefficient of expansion of any increasing (decreasing ) curve γ C ^(ε.) is at
least some Λ». By using Lemma 2.2 it is easily proved that such an ε* > 0
exists for any Λ, > 1. It remains to choose Λ». This will be done later.

For any m ^ 1 the set Λ/Ί\Γ(ε,,) contains only finitely many smooth
components of the set R_mm. Hence for sufficiently small ε < Eo(m, ε») we
can construct in it a system of curves Γ ί satisfying all the conditions of
Proposition 3.1 except d), for the same value of λι. Condition d) is fulfilled
only for curves lying entirely in M{\V(z*). At this stage the quantity m, as
well as ε,, is not fixed yet.

We extend the construction of the curves Ff to the domains ^(ε»). We
put TV» = (ce)1/2, where c is a small constant not depending on Λ» and ε»;
its value is chosen below. We take the above constructed LUM γ£(ζ) and
LSM γί(ζ) for all const < η *ξ Nt and all z, and add to them their images
Tyu

n(z) and T~lfn(z). The system of LUM (LSM) thus obtained is denoted by
Tt (Γ,Γ)- It has the following properties:

a) semi-invariance: for each γ e Γ ί there is a γι ε Γ ί such that

TT1y C γι;
b) for all ζ and const < η < const TV* there is in the «-cell Au

n{£) (s-cell
As

n(z)) a γ e F.+ ( a y e T~) joining the two short (!) sides of A"n(z) (As

n(z)).
The LUM and LSM constructed are called supporting.
In the set V{E.*)\G2t.,\ (ί/(ε*)\β)2ε,ι) we choose a finite cie-net {χ?} ({xF}),

where c\ = min{l, xm;n}/2. As in the proof of Proposition 3.1, through each
point χ? (χΓ) we draw a 1-increasing (1-decreasing) curve y$ (γΤ), divided
by the point xf (χΓ) into two segments of ^-length ε. At the ends of yr we
mark off the points af-, bf, dfj, bfa, as in the proof of Proposition 3.1. If
the segment y^(a^, dfi) intersects some supporting LSM (LUM) γ at a point
dividing γ into two segments of /^-lengths at least *c ε, then we denote this
point of intersection by af-. If, however, this LSM (LUM) has not been
found, then, as is clear from a careful analysis of the structure of the cells, by
the choice of N, and the smallness of 7 the segment γ,*(α,*, ά,*ι) intersects at
most K\ components of the set i?_j (R\), where K\ = Ki(c) < oo is a
constant. In this case we construct in a neighbourhood of γ,* (ά,*, a,*i) a
"loop" of three additional curves, in the same manner as in the proof of
Proposition 3.1. Similar constructions are carried out for γ*(6,*, bj^\).

We fix the value of 7 such that K(7) is finite. The result of the
construction is summarized in the following lemma.
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Lemma 4.2. In the set V(em) we can find a finite system of l-increasing
(I-decreasing) curves Γοο (Γόο) such that:

a) the p-lengths of all curves in Γόο lie between λ2ε and λ^'ε;
b) the curves in Γοο (Too) He outside d>£e, ι (0j^e> 0;
c) the end-points of each curve in Γοο (Γοο) lie on two curves in Γόό U ΓΓ

(Γοο U Γ,+ ); moreover, the curves in I T (TY) divide these ends into two
segments of p-lengths at least λ2ε;

d) any l-increasing (I-decreasing) curve γ0 C V{zt) of p-length λ^'ε
intersects at least one of the curves γ 6 Γ̂ ο U Γ7 (γ ε Γοο U Γ,+) in such a
way that the point of intersection divides γ into two segments of p-lengths at
least λ2ε.

Here λ2 e (0, 1) is a constant determined by K\ = K\^c).

Assertion d) is proved as in Proposition 3.1. Note that c\ K\, λ2 do not
depend on ε* and A». We put λ3 = min{Xj, λ2}. Finally we fix m and Λ.
(and hence ε») so that min{Am, A»} > (ckf)~1, where c = λ3/200 (compare
with 3.2). Now our construction is completely defined.

We put f £ = r f U Γ& U Γ*. We replace each supporting LUM
γ ε Γ»+ (LSM γ e ΓΓ) by the maximal subsegment 7 C Υ ending at two
curves in I"o~ (Γο~). Then the system Ff becomes consistent (see 2.5) and
together with the component of R-m,m it generates an initial partition ξ0 for
the class of billiards considered.

In constructing the pre-Markov partition ξ we need a differentiated
approach to the various components of the boundary δξ0. We apply the
transformation T*m to the curves γ e Ff, as in 3.2. We apply the
transformation TT1 to the curves γ e Γ fa. By the choice of Λ», all
constructions of 3.2 are applicable to these curves. The supporting LSM and
LUM lead, without changes, to the boundary of a pre-Markov partition, up
to the choice of their end points as described above.

As a result we obtain a consistent system of LUM and LSM, generating
together with R-m_m a pre-Markov partition ξ. Moreover, the statement of
Lemma 3.4 holds for it, after replacing λ! by λ3.

The construction of the pre-Markov partition ξι of 3.3 and of the
partitions ξπ of 3.4 can be transferred without changes to the case under
consideration. We only note that the partition ξι is countable, but for any
δ > 0 the set Mj\F(6) contains finitely many elements of it. Moreover,
finitely many LUM and LSM are included in δξ.

4.3. In a number of cases, similar to the one described above, the «-cells and
j-cells cover each other in a neighbourhood of a singular point. This is
possible for points of u- and j-types Smjx, SVmix, SVpure. In all these cases a
pre-Markov partition can be constructed by means of the scheme given in 4.2,
with minor changes. The only difference can lie in a somewhat more accurate
construction of supporting LUM and LSM. The detailed analysis of these
cases does not involve new ideas, and we omit it. We only stress that our
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construction is based on two properties of the system: strong hyperbolicity in
neighbourhoods of singular points (the coefficient of expansion and contraction
during one step can become arbitrarily large!) and the covering of the «-cells
on the s-cells, which allows the construction of supporting LUM and LSM.

4.4. "Wandering" cells.

There are cells of altogether different types: F p u r e and F m i x . In
neighbourhoods of such points the «- and s-cells are not covered by one
another. The images of «-singular (s-singular) points of these types under the
action of Tm (T~m) for m ^ 1 are not singular any more—they "wander"
somewhat inside M\. In neighbourhoods of them infinitely many components
of Rm+\ (R-m-i) accumulate (Fig. 13), which complicates the construction.

Fig. 13

The construction of supporting LUM and LSM in cells of these types is
not successful. Instead we construct for each of them a special chain of
increasing and decreasing curves.

First of all we fix m as in §3, and put ni\ = m + m0. Then there is an
no = no(m) such that in all «-cells Au

n(z) (s-cells As

n(z)) of the type considered
and with index η ^ «o the transformations T±2mi are continuous. Moreover,
let ε > 0 be a small parameter: ε < εο(^), as in §3.

Vn

Fig. 14
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Let Au

n(z) be an arbitrary «-cell with index n0 =ζ η < (c 'e)" 1 , where 7
is a sufficiently small constant, chosen below. We construct a chain of
2m]-increasing and 2n\\-decreasing curves in Au

n(z) as indicated in Fig. 14, such
that the following conditions hold:

a) this chain joins the two long sides of the cell Au

n(z)\
b) all end points of increasing (decreasing) curves of this chain (except the

two boundary points lying on dAu

n(z)) lie on decreasing (increasing) curves of
this chain;

c) the /^-lengths of all curves of the chain do not exceed λΓ'ε; if the chain
consists of more than one decreasing curve, then the />-lengths of all curves
must exceed λ]ε;

d) any mo-increasing curve joining the two short sides of A"(z) intersects at
least one decreasing curve γ of the chain such that if γ does not end on
dA"(z), then the point of intersection divides γ into two segments of p-lengths
at least λ!ε.

Here λ! is the same as in §3.
Similar chains are constructed in all s-cells As

n(z), «ο =ζ η =ζ (7έ)~ι.
(Here, in the statement of conditions a) —d) the monotonicity of each curve
must be replaced by the opposite.) The curves of the chains constructed as
well as all their images under the action of TJ, \j\ ^ m, are also called
supporting. A consequence of our constructions is the following.

Lemma 4.3. Let Λ > 0, and let 7 = If (A) > 0 and ε < εο(ί«, Λ) be
sufficiently small. Then any mQ-increasing (mo-decreasing) curve of p-length less
than Λε and intersecting more than UT0 + 3 components of R-m,o (Ro,m)
intersects at least one decreasing {increasing) supporting curve γ in such a way
that the point of intersection divides γ into two segments of p-lengths at least λ]ε.

The subsequent construction of an initial partition is done by analogy with
that described in 3.1: one constructs a finite set of m\-increasing
(»?i-decreasing) curves r<f which together with the supporting curves and the
components of R-m,m form a consistent system satisfying conditions a) —d) of
Proposition 3.1. In the proof of c) and d) Lemma 4.3 is used, in which
Λ = λΓ 1 (and thus 7 = 7(λΓι) is fixed).

The construction of a pre-Markov partion ξ is done as in 3.2, with one
modification: the transformations Tm (T~m) are applied not to each
supporting decreasing (increasing) curve, but only to those lying in TJ~A"(z)
and TJAs

n(z) for 0 =ζ ; =ξ m (-m < j < 0). The lengths of such curves do
not exceed λΓ 1ε. The remaining supporting curves are defined as the images
of those indicated above under the action of TJ, \j\ ^ m. Moreover, as in
4.2 it is necessary to replace increasing (decreasing) supporting curves by their
maximal subsegments ending at two decreasing (increasing) supporting curves
or on curves in Γ ? . After this the system obtained is consistent.

The constructions in 3.3 and 3.4 can be transferred to the case under
consideration without changes.
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Note that, as in 4.2, 4.3, the pre-Markov partition ξι is countable, but that
8ξ] contains only finitely many LUM and LSM.

§5. Transition from a pre-Markov to a Markov partition

5.1. In §3 it was noted that in the case of smooth two-dimensional systems
pre-Markov partitions are simultaneously Markov partitions. In discontinuous
systems this is not true, since the elements of a pre-Markov partition are not
parallelograms. To obtain a Markov partition an additional construction is
necessary, consisting of refining the pre-Markov partition ^ in neighbourhoods
of discontinuity curves, since it is there that LUM and LSM of small length
are concentrated. Such a construction was proposed for the first time in [18],
In [26] an attempt was made to simplify it (regrettably, it involved a number
of inaccuracies). Below we give a reworked and formalized version of this
construction.

We construct an increasing sequence of regular partitions ηι ^ ηι ^ ... of
the space M\, converging (mod 0) to the required partition η as η -*• oo. The
partition η π , η ^ 2, is constructed recurrently, by refining η π - ι in
neighbourhoods of the discontinuity curves R^k,,k, (kn ->• <x> as η ^ co). The
corresponding neighbourhoods will be called necklaces. Their thickness and
measure decrease sufficiently rapidly as η grows.

5.2. We now turn to strict statements. Let D°n, η ^ 1, be the union of all
elements of the partition ξπ (see 3.4) whose boundary intersects i ? _ m m .
Clearly, D° 2 D% 3 ... and η D°n = R-m,m. The set D°n, η > 1, is a closed

η

neighbourhood of R-m>m.
We define the sequence of integers kn reccurrently: k\ = 1, ki = 2, and

kn = 2/cn_1-l for η > 3 (its general term is kn = 2"~ 2+ 1, η ^ 2). Let ξ^,
η > 1, be a regular partition coinciding with ξ^ on 2 ) ] ^ and including the
complement Afi\int D^^as an element. We put ξ^ = !Γ*ξ°, f° r n ^ 1>
keZ.

We recurrently define a sequence of regular partitions η π : ηι = ξι, and

(5.1) η Β - τΐη-χ V ( V ID
|k|i

for η ^ 2. It is clearly non-decreasing: ηι ^ η 2 ^ ... .
We put Dk

kn = T$D°K and £ £ = M^int Dk

k for aU Ο 1, \k\ < kn+x-\.
Since ξ^ is a pre-Markov partition, D^M and E^ consist of elements of η«+ι·
We introduce the following notations:

£>tn (ft, I) = D\n U Dtl1 U · · · U ^ ' k n for k < I;

Dtn - D)in (0, kn+1 - 1); DTtn - / ) t ( i (-ftn + 1 + 1,0); Dl!n = i>Jn U Ζ?ΐη

The sets Z)/, will be called necklaces.
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By (5.1) each element of η π is the intersection of finitely many elements of
ξι and ξ£ for \k\ < k,-\, 1 < t «ξ n. We divide the elements of the
partitions mentioned into two classes:

the 1st class contains all elements of ξι and the elements of the partitions
ξ* lying in the necklace D^^;

the 2nd class consists of all elements of Ε*, \k\ < fcr+1 —1.
It is easily seen that the 1st class contains connected elements of small

diameter. On the other hand, the 2nd class includes disconnected elements,
each of which fills "almost all" of Mi, except for small neighbourhoods of the
discontinuity curves.

Lemma 5.1. D^ is a closed neighbourhood of the set R-k.+lm,k,+lm'> Dkn and

Ό^η are closed neighbourhoods of the sets Ro,k,+lm and R-kn+lm,o> respectively.

The lemma can be derived from the construction of the sets R^j since Di
is a closed neighbourhood of R_m>m for all η ^ 1.

5.3. We introduce the notion of rank of the curves forming the boundary 3ξη,
η ^ 1. The ranks of all smooth curves in δξι are put equal to 1. For each
η ^ 2 the ranks of the smooth curves in 9ξπ\δξπ_ι are put equal to n. The
rank of a curve γ is denoted by rank γ.

ξπ being pre-Markov implies the following rules for computing the ranks of
increasing curves:

a) if rank γ > 1, then rank Ti

±iy = rank γ ± 1 ;
b) if rank γ = 1, then rank T{~1y = 1.
Similar rules (with the replacement of T\ by T{~x and conversely) are valid

for decreasing curves.

Lemma 5.2. For all kn < k < kn+l-\,n ^ 1, the boundary 8"D^* (9j£>jtj

consists of curves of rank 1.

The proof consists of a direct computation of the ranks.
We can prove that the partition r\n is pre-Markov for all η ^ 1. However,

we will not need this fact.

5.4. We introduce some concepts in order to describe the geometrical shapes
of the elements of the partitions r\n. A simply-connected closed domain
A C Mi is called a polygon if A = ^(A), if dA consists of finitely many
LUM, LSM, and discontinuity curves, and if all interior angles formed by
intersections of smooth components of 8Λ of different monotonicity do not
exceed 180°. A side of a polygon A is a maximal continuous (not necesarily
smooth) monotone or neutral curve y Q dA. It is obvious that each side
consists either of a chain of curves of the same monotonicity, or of a single
neutral segment. Correspondingly we distinguish between increasing,
decreasing, and neutral sides of a polygon. Any polygon has at most two
increasing and two decreasing sides. This can be proved by calculating the
angle of rotation under a full circuit of the boundary dA.
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The polygons with excactly two increasing and two decreasing sides (and
arbitrarily many neutral ones) are called complete.

Remark 5.3. For any polygon A and point χ e A the sets y^x) and γ^(χ) are
connected. The end points of JA(X) (ΎΛΟΌ) either coincide with the "natural"
end points of the LUM yu(x) (LSM Υ(χ)), or lie on the decreasing (increasing)
sides of A.

Remark 5.4. Let A be a complete polygon. We assume that the LUM γ"
intersects both decreasing sides of A, while the LSM γ5 intersects both
increasing sides of A. The point χ = γ" Π 7s exists and belongs to A.

In the sequel we will consider only polygons satisfying the following two
conditions R^ and R2.

Condition R^. Each smooth component of the boundary of the polygon lies in
δξπ for some η ^ 1.

Thus the components of the boundaries of polygons have ranks. Let
rank4".4 (rank~.4) be the maximal rank of the increasing (decreasing)
components of dA.

Condition R2. The interior of A does not contain increasing (decreasing)
curves of ranks not exceeding rank + A (rank"A).

It is easy to prove that if the intersection of certain polygons has a non-
empty interior, then it is also a polygon, and

(5.2) ΐΆη\ϊ±{Α1 Π • · · Π Α ) = max {rank±
i

In 3.4 we have, in fact, proved that all elements of ξη, η ^ 1, are polygons
(in particular, they satisfy conditions R\ and R2). This implies that all
elements of the first class (defined in 5.2) are polygons.

5.5. We show that the necklaces Ό^η form (mod 0) a covering of M\ of at
most finite multiplicity. Our version of this assertion is more precise than the
corresponding lemma in [18], [26].

setsLemma 5.5. Each point χ ε M2 (x e M2 ) belongs to only finitely many

At, (Dk), n> I.

Proof. Let χ e D£. Then Tfkx e D°km for some 0 «S k =ζ ifcn + 1 - l . Let Δ
be an element of ξ^ containing T{~kx. It borders R_m m, hence for some
l\ ίζ m the polygon Δι = ΤΆ borders i?0, ι (we stress that the initial

automorphism Γ is involved, and not Γι). We put X\ = T~km+Ix, xj e Δ].
We show that Δ) lies in a sufficiently small neighbourhood of i?o,i· It is

easily seen that for j \ = (kn — l)m — l and j 2 = (kn — \)m + l the
transformations Tjl and T~J2 are continuous on int Δ^ Let γ be an arbitrary
increasing (decreasing) curve inside Δ]. Then γ' = Tjiy (γ' = T~jly) are
j \ -increasing (_/'2-increasing). By the choice of Δ the curve γ does not intersect
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decreasing (increasing) components of 3ξι· By Lemma 3.4 we have
P(Y) *ί λΓ ]ε (in the case of finite horizon λ3 must be replaced by λι (see §3)).
Hence p(y) ^ ε', where ε' = λ3~

1εΛ^:'/1"·1 andj = mm{Ju j2} = (&„-l)m-|/I-
Similar estimates hold for the ^-lengths of all increasing (decreasing) curves
inside T~1A\, which borders i?_1>0- This readily implies that
d + {x\) =ζ const(0e', or otherwise

ι- ( l l - T i - 1 ) m - | f |

(5.3) rf+ ( r- ' i m + / x)< const (Q) εΛ0

 L

(we recall that 0 =ζ fc ^ kn+x — 1). If χ e Λ/ί, the latter inequality can only
be valid for finitely many n. A similar reasoning is valid for χ e Λ/τ". The
lemma is proved.

Remark. From the estimates (5.3) and (2.6) we can also derive the following
estimate for the measure of D°kn, which was given in [18], [26] without proof:

(5-4) ν (Dllln

for all η ^ 2 (here c > 0 and oc < 1 are certain constants for Q).
For each χ e Mi we put JV* = max{« : χ e At,_,}· If χ Φ Dk for all

η ^ 1, then we put JVX = 1. Lemma 5.5 shows that Nx < GO for all χ e Λ/2.

5.6. We consider in more detail the geometric shape of the elements of η π ,
η ^ 2. We are only interested in the Δ e η π that do not lie in the necklace
Dkni. These are called regular elements. For each regular element Δ e η π we
put NA = max{r < η : Δ C At,_,}· If Δ Q Dkl for all / *ξ η —1, we put
NA = 1. Thus, 1 ^ NA ^ n-l.

We fix an η ^ 2 and a regular element Δ of r\n. By (5.1) we can write

(5.5) Δ = :f {Gi η G: η . . . η G;, η d η G: η . . . η Gl^

where 6?j denote the elements of the 1st class and G, the elements of the 2nd
class. The results of 5.4 imply that the set Gl ---- if {Gv C\ G', Γ] . . . f] Gp) is
a polygon.

Lemma 5.6. rank± G'{ < A N A + 1 .

For the proof we note that the elements 6^, G2 GPi belong to the
partitions ξ] and ξ^ for certain \k\ ^ k,— l and t ^ iVA. Subsequently we
have to estimate the ranks of these elements by the rules a) and b), and
apply (5.2).

Among the elements Gx, ..., G,,., of the 2nd class we, distinguish two groups:
to the first group belong those E\ for which kt ^ k < kt+i, and to the
second group those El for which —k,+ i < k < — kt. The intersection of the
selected elements from the first group is denoted by GA , that from the second
by GA.

Lemma 5.7. Δ -= .f (Gl Π Gl Γ) Gl).
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For the proof we consider an arbitrary "non-selected" element Gi, = E\(

For it |fc| =ζ kt-l and t < w-1 . By the construction in 5.2 the set D\t_\D\
is the union of the elements of the 1st class of the partition ξ°. Hence
Gi. = Ekt is the union of the element J?fi_1 and certain elements of the 1st
class of the partition ξ°(. Let G" denote the element among those mentioned
that contains Δ. Clearly G" £ G^ and, moreover, the element G" is included
in the partition (5.5). This implies the lemma.

We put Gln = f (G& Π <Ά) and G'A
n = f (Gl f) Gl).

Lemma 5.8. d*G? Q d*G\ and duGA° Q dl'Gl

Proof. By Lemma 5.2 the boundaries QSGA and Q"G& consist of curves of
rank 1. By condition R2 these curves cannot lie strictly in the interior of the
polygon G\. The lemma is proved.

The typical shape of a regular element Δ is depicted in Fig. 15.
Note that a regular element Δ can contain "splinters" (of the type W\ and

W2 in Fig. 15), in which there cannot be points of the limit parallelogram
U e η. We will finally get rid of these "splinters" below, in 5.8.

Fig. 16

5.7. We consider the partition of M\ obtained from η π as η -* oo.
We fix a point χ e M2. Then for all η ^ Nx +1 there is a regular element

An(x) of τ\η containing x. If χ e Βηπ, there are several such elements. More
precisely, there are at most four such elements; this follows from the next
remark.

Remark 5.9. For any η the set An(x) contains either a full neighbourhood of
x, or a semineighbourhood of the LUM y"(x) (LSM /(χ)), or the interior of
one of the four angles between the LUM y"(x) and the LSM ~f(x) (Fig. 16).

In any of these cases we can choose a decreasing sequence of regular
elements Δ^+ιΟ*) 2 K,+ z{x) 2 •·· • We put Δ*, (x) = f] An (x). It is

obvious that Δ β is a closed non-empty set (in particular, χ e Δ^χ)) . The
regularity of Δ τ̂,+ ιΟΌ readily implies that

(5.6) ^ (x) = lim .f (ANχ+1 (x) \ U A-n)·
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The set of all elements Δοο(χ) of the form (5.6) is denoted by Ω. It is clearly
countable.

We put <9"η = (J 5"ηη, dst] = \J dsr\n, and dr\ = dur\ \J d% The sign
τι η

~ is used here since formally these sets are not boundaries (albeit only
because they are dense in Mi). However, dr\ serves as an analogue of the
boundary of a Markov partition for smooth systems [2], [9]. Namely, if
χ e M2\dr\, then χ is covered by precisely one element Δ e Ω. If, however,
χ e df], then there can be several such elements, but at most four (this was
shown above).

Let χ e Μ2 and let V(x) be an infinitesimal neighbourhood of x. The

regular components of d\\ that pass through χ or end at χ divide V(x) into
several parts, called characteristic neighbourhoods of x. Any χ e M2 has at
most four characteristic neighbourhoods, corresponding to those described in
Remark 5.9. The characteristic neighbourhoods of χ will be denoted by V(x).
We conventionally say that a characteristic neighbourhood V(x) of χ e M2 is
connected with the element Δ e Ω if Δ = Δ α, (χ) and V(x) belongs to all
"prelimit" sets Δπ(χ) e η π defining Δ ^ χ ) by (5.6).

Remark 5.10. Let χ e M2. Every element Δ ε Ω containing χ is connected
with exactly one characteristic neighbourhood of V(x) of x, and conversely.

We recall that 9ξι contains finitely many LUM and LSM (see §§3, 4).
ξι pre-Markov implies that these LUM (LSM) contain finitely many periodic
(under Γ,) points x"u x\, ..., χ\ (χ\, x\, ..., xs

n), to which these LUM (LSM)

approach under the action of T{~" (T") as η -»· oo. Let Γ" (η) = (j Γ"(χ")

and Γ (η) = (J Γ (χ\) be the unions of the LUM of the points xf and of the

LSM of xf (see 1.1). The construction of η implies that

(5.7) ^"η (Ζ Γ" (η) and ^ η (Ζ Γ5 (η).

5.8. Ω is a countable covering of M2. To obtain a Markov partition from it
we must remove certain "non-typical" points from the sets Δ e Ω. These sets
then become parallelograms.

We introduce some notation. For each Δ e Ω we put A0 = A f| M2, and
let Δ* be the closure of Δ0 (clearly Δ* C Δ). We also put Ω° = {Δ0} and
Ω* = {Δ*}. For each Δ e Ω we put N(A) = min{A^ : χ e Δ}, and denote by
Cn(A), η ^ 1, an element of η π containing Δ. For η > N(A) it is regular.
By Lemma 5.7 it has a decomposition, which may be written as

Cn (A) = f {G°n (Δ) Π Gn (Δ) Π Gn (Δ)).

We put, as in 5.6, G*° (Δ) = f (G± (Δ) Π Gl (Δ)). It is obvious that the
sequences of sets {Cn (A)},{G%0 (Δ)} are non-increasing for η > N(A). We
put G±° (Δ) = η G±° (Δ). Thus, Δ = Gi° (Δ) f] GM

0 (Δ). Note that,
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by Lemma 5.6, for all η > N(A) the polygons G°(A) coincide. The
corresponding polygon is denoted by G°(A). For y e Δ we put

γ* (y, Δ) = yu (y) (Ί G" (Δ) and VS (». Δ) = Vs (?) Π G° (Δ).

Lemma 5.11. Lei Δ* e Ω*. For eac/a y e A*
a) ί/ie curve γ"(>1) (ys(y)) intersects the two decreasing (increasing) sides of

the polygon G°(A) (in particular, G°(A) is complete);
b) yu

0(y, A) C G£°(A) and ys

0(y, A) C G^°(A).

Proof. By Lemma 2.11 it suffices to consider the case y ε Δ°. Then y e M2,
and by Lemma 2.13 the end points of the LUM y"(y) lie on two discontinuity
curves γ,, γ2 C *ο > 0 0 . We put yu

n(y) = y"(y) Π (?Π

+Ο(Δ) for η > Ν(Α). For
sufficiently large η we have kn > max{rank γ ΐ 5 rank γ2}, and by Lemma 5.1
the set Gn(A) does not intersect γι and y2. Then γ£(ν) is at a positive
distance from the end points of y"(y). Hence all boundary points of y"(y), as
a subset of yu(y), belong to 5SG^°(A) (if they belonged to 5"G^°(A), then they
would lie on increasing discontinuity curves or on other LUM, which is
impossible). By Lemma 5.8 these points belong to dsG°(A). This implies that
γ«(Δ) coincides with yl(y, A). Thus, yo(y, A) C G^°(A). A similar reasoning
is valid for the LSM y*(y). The lemma is proved.

Assertion. For any A e Ω the sets A and A* are parallelograms.

Proof. By Lemma 2.1 it suffices to prove that Δ0 is a parallelogram. Let
x, y e A0. By Lemma 5.11a) and Remark 5.4 the point ζ = [χ, y] exists and
belongs to G°(A). By Lemma 5.11b), ζ e yg( x, Δ) C (7£°(Δ) and
ζ e y%(y, A) C G^°(A), therefore ζ e G^°(A) Π G^°(A) = Δ. Moreover,
ζ e M2 since x, y e M2 (see Lemma 2.12b)). Hence ζ e Δ0. The assertion is
proved.

Note that ν(Δ*\Δ°) = 0 for any Δ, since Δ*\Δ° C Δ\ΛΓ2.

Corollary. The closed parallelograms A* e Ω* form a covering (mod 0) of M\.
Moreover, they cover all points of M2- Each χ e M2 is covered by at most four
parallelograms.

We will say that a characteristic neighbourhood V(x) of χ e M2 is
connected with the parallelogram Δ* e Ω* if it is connected with the
corresponding Δ e Ω. Remark 5.10 naturally generalizes to elements Δ* e Ω*.

5.9. We now show that the covering Ω* constructed above is a Markov
partition. It suffices to verify the regularity of intersection of parallelograms
U(x) and ^[/(ΓΓ'χ) for v-almost all x.

Assertion 5.12. Let χ e M2, and let A\ e Ω* be a parallelogram containing x.
Then there is a parallelogram Δ| e Ω* containing T\x (Tflx) such that the
intersection Δ* ,r] 7ΊΔ* (Δ* Γ) 7\Δ*) is regular.

We give a proof only for T\X (for Tf lx it is completely similar).
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Lemma 5.13. Let V(x) and V{T\x) be characteristic neighbourhoods of χ and
Γιχ, respectively. We assume that V(x) is connected with the parallelogram
A* e Ω*, and that V{T\x) is connected with the parallelogram At e Ω*. If
T\V(x) Π V(Tix) Φ 0, then the intersection Δ* Π Τ ι At is regular.

This lemma immediately implies the statement, since a corresponding
characteristic neighbourhood V(T\x) of T\x can always be found.

We prove Lemma 5.13. It suffices to show that ?\γ" * (χ) £Ξ ϊ ' * (1\χ) and
A l 2

.̂ΙΥΛ* (Χ) — Ί'Δ* ( ^ Ι ^ ) · We P r o v e 0 I U V t n e first relation (the proof of the

second is similar). We use the notations introduced in 5.8 and put
«o = max{iVx, NTiX}. We first prove that

/r o\ 71 -,-s /^. Λ \ t— - , s {rr Ύ· \ \

It is obvious that Γιγο(χ, Δ0 is a LSM. If (5.8) does not hold, there is a
point y in the interior of this LSM lying on duG°(A2). Let γ be the smooth
component of d"G0(A2) containing y. By the construction of the polygon
G°(A2), the curve γ lies in the boundary of some element G' 2 G°(A2) of the
1st class. Two cases are possible:

1st case: G' is an element of ξ£( for some k ^ — k, + 2 and t ^ 1. Then
T{~lG' is also an element of the 1st class. It contains V(x), and hence the
polygon G°(Ai). Then Γιγο(χ, Δι) C G' and we have a contradiction.

2nd case: G' is an element of gj or ξ£- for /c = — k,+ 1 and t ^ 1. In
this case it is easily verified that rank γ = 1. Then Tfly C δξι- Hence it
cannot intersect yo(x, Δι) at the interior point T{~1y. Thus (5.8) is proved.

We show that

(5 9) Τ ν Ι (χ) cz γ ! (Τ χ)

Let y be an arbitrary point in YA^X). By (5.8) its image T\y e G°(A2), while
by Lemma 5.11b) it lies in G^(A2). Hence it suffices to prove that
T\y e G^(A2). If this were not true, then Τλν φ G^(A2) for some η > n0.
Using the definition of G^(A2) and (5.4) it is easily proved that in this case
y φ Gn(Ai). We arrive at a contradiction, proving (5.9).

Finally, let y be an arbitrary point in yb *(x). If ν e Mi, then T\v 6 Mi,
Δ ι - . -

and in view of (5.9) we have T\y e γ^*(Γ]χ). If y φ Μ2, then v,- -»• y for some

sequence yt e Δ?. It is easily seen that the points y\ = [yf, x] are defined and
belong to Δ?. As was shown above, T\y\ e -f *{T\x). Hence T\y = lim T\y\ e

Δ 2

e y^CTix). Lemma 5.13 is proved.
Δ 2

In this way a Markov partition η for Tm has been constructed. A Markov
partition for Γ can be obtained by Remark 1.2. Note that the following two
corollaries follow from our construction:
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Corollary. Any point χ e Mi has a coding σ(χ) in the symbolic dynamics
(Σ π , θ) {the notion of coding and all notations were introduced in 1.2).

Corollary. If χ e M2 and Tkx φ 5η for all integers k, then the coding σ(χ) is
unique.

In certain applications it is essential that for each individual point the
number of distinct codings σ(χ) e Σ π is uniformly bounded. To achieve this
we construct in §7 a modified symbolic dynamics.

§6. Non-scattering billiards with hyperbolic behaviour

The results of this section will not be used in §7. Here we construct a
Markov partition for certain classes of non-scattering billiards by essentially
using the material in §4.

6.1. Semiscattering billiards.
A billiard in a domain Q is called semiscattering [14] if dQ consists of
scattering and neutral components (for terminology see 1.1).

In semiscattering billiards the reflections in neutral components are at most
a "disturbing factor", since they do not lead to expansions and contractions
(that is, to hyperbolicity). To exclude the influence of this factor we turn to a
derived transformation. Let d+Q (9°0 denote the union of all scattering
(neutral) components of 9g. We put M\ = {χ : π(χ) e 9 + g},^
M°i - {χ : π(χ) e 9°β}, and consider the derived automorphism Τ
constructed from Τ and M\ . For a point χ e M\ we denote by k(x) the
index of the first reflection of the trajectory of χ in 8 + β, that is, Tx = Tk(x)x
for χ e M\ . The measure dv = const cos q>drdq> is invariant under Τ , as
well as under T. It is •easily seen that the function k(x) is constant on the
continuity domains of Τ in MJ1", while the transformations T" are continuous
for 1 < i < k(x).

Let χ e M\ and k{x) ^ 2. The reflections in the neutral components of
dQ at the points Tx, ..., Γ * ^ " 1 * can be "straightened out" by symmetrically
reflecting the domains Q itself with respect to the corresponding component of
cpQ (Fig. 17). This shows that locally the properties of Τ are the same as
those of the automorphism Τ in scattering billiards.

We impose restrictions on Q, as in Theorem 1.1:
A'. All interior angles of QQ are strictly positive.
B'. The multiplicity of all points χ e M\ is uniformly bounded by a

constant Ko = K0(Q) < oo (as in 1.1, the multiplicity is the number of
discontinuity curves of the maps Tn, η e Z, passing through x).

From what we said above it follows that under the conditions A' and B' all
definitions and assertions in §§1, 2 can, without essential modifications, be
transferred to the transformation Τ . On β we impose the additional
restriction:

C The function k(x) is uniformly bounded on M\ :k{x) < const(0 < oo.
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Under this condition the number of discontinuity curves of Τ " is finite for
any integer n, and Τ has all the properties of the automorphism Τ for
scattering billiards with finite horizon. Hence the constructions in §§3, 5 can
be transferred to this case. As a result we obtain a Markov partition η' of
Mt for the automorphism Τ .

ι
ι
ι
I
I
i
\
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Fig. 17 Fig. 18

To construct a Markov partition η in the whole space M\ we consider an
arbitrary element U e η (U C ΜΪ). There is a connected domain V D U ,
on which Τ is continuous. Hence k(x) = const on U . The sets
U , Τ U, ..., Tk(x)~lU for all possible U e r\ , where χ e U, form a
Markov partition of Mi for T. This can be directly verified. Thus we have
proved the following result.

Theorem 6.1. Let Q be a semiscattering billiard satisfying the conditions A', B',
and C. Then for any ε > 0 there is a Markov partition with elements of
diameter at most ε.

In conclusion we note that condition C is very restrictive. If it is not
satisfied, then in a number of cases the truth of Theorem 6.1 can be proved
by direct reduction to scattering billiards. For instance, in Fig. 18, after three
reflections in the neutral components of QQ the domain Q fills the square K,
from which a domain D with scattering boundary is deleted. Using the
procedure of "straightening out" (Fig. 17), the billiard trajectories in Q
become billiard trajectories on the torus Tor2\Z) (the torus Tor2 is given by a
fundamental domain, which coincides with K). The billiard on Tor2\Z> is
scattering, and a Markov partition for it can easily be transformed into a
Markov partition for the billiard in Q.

This procedure is applicable if the neutral components of the boundary lie
on sides of a rectangle, a regular triangle (or a hexagon). However, in general
Τ has singular points ^at which k(x) is unbounded), in neighbourhoods of
which the structure of Τ cannot be given a simple description.
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6.2. Regular focussing components (pockets).
Let Q have focussing boundary components. We denote their union by d~Q
and put Mf = {χ : π(χ) e d~Q}. A focussing component Γ C 9β is called
regular (or a pocket) if it is an arc of a circle Or and if the disc KT bounded
by Or intersects dQ only along Γ (Γ Φ Ογ).

Billiards with regular focussing components were introduced and studied in
[5], [17], and turned out to be very similar to scattering billiards: they are
hyperbolic, ergodic, and are AT-systems. Subsequently the class of non-
scattering hyperbolic billiards was essentially enlarged in [32], [27]. However,
we do not have the possibility of encompassing all these cases, and restrict
ourselves to regular focussing components only.

We define k(x) as the index of first reflection of the trajectory of the point
χ s Mi in δ + ζ) U 9~β, and construct the derived automorphism Τ from Τ
and Μχ U Aff (that is, Τ χ = Tk{x)x). We will assume that Q satisfies the
conditions A', B', and C of 6.1.

The hyperbolic properties of billiards with pockets are described in [5], [17],
and we briefly list the necessary results. A curve γ C M\~ given by an
equation φ = cp(r) is called increasing (decreasing) if d<p/dr < 0 (dqjdr > 0),

notwithstanding the traditional definition. The property of increase (decrease)
is preserved under the action of T" for η > 0 (η < 0), and the p-lengths of
increasing (decreasing) curves increase under the action of Τ (Τ1"1). This is
related to the so-called defocussing property: an increasing curve generates a
convergent pencil of trajectories, passing through a defocussing point and
becoming divergent already under the next reflection; moreover, the
defocussing point lies on the first half of the path between the reflections
(Fig. 19). The LUM and LSM in ΜΓ are given by differential equations,
using the same infinite continued fractions as in §2. Convergence of these
continued fractions can be derived from the defocussing condition [6].

Fig. 19

As distinct from scattering billiards, expansion and contraction in Λ/f is
not uniform, that is, for any power T" the coefficients of expansion and
contraction are not bounded away from one. This is related to the fact that
the sequence of successive reflections in one focussing component does not
reduce to expansion and contraction (in particular, billiards in a disc are not
hyperbolic!). Hence again we are forced to turn to a derived transformation:
we put Mi = Mi U {x e Μχ : π(χ) e Γ,- C d~Q, π(Τ~ιχ) e Tj C 9β, j Φ i}
and consider the derived automorphism t : Mx -»• M\. In the coordinates
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(r, φ) the set Μ χ C Μ χ is the union of finitely many parallelograms. Then
for some m0 ^ 1 the transformation Τυ'° has uniform expansion and
contraction (compare with Tm« in §2). Thus, f has all the local properties
described in §2.

The global properties of f are determined by the structure of the
discontinuity curves, whose number in the present case is infinite. The
discontinuity curves accumulate in neighbourhoods of singular points ζ ε Μ χ,
corresponding to the tangent directions to the pockets at their end points
(Fig. 20a)). In Fig. 20b) the structure of the discontinuity curves of Γ in a
neighbourhood of ζχ is drawn. This structure is similar to the one investigated
in 4.4 for scattering billiards with infinite horizon. It is also easily verified
that the coefficient of expansion of t grows unboundedly in a neighbourhood
of ζχ. These properties allow us to transfer the methods in 4.3, 4.4 for
constructing a Markov partition to the case under consideration without
essential modifications. As a result we obtain a Markov partition η for T.

a)

Fig. 20

It remains to pass from ή to a Markov partition η for T. Let U ε fj be
an arbitrary element (ϋ(ΖΜχ). Then 0 belongs to a continuity domain of f.
Hence there is a k{JJ) Ss 1 such that VU C MX\MX for all 1 ^ i < k(U),
and TKU)U C M\- The sets 0, TU, ..., Tk(u)-lU for all possible U ε η form
a Markov partition for T. This can be verified immediately. Thus we have
proved the following result.

Theorem 6.2. Let Q be a billiard satisfying the conditions A', B', and C , and
let the focussing part of the boundary d~Q Φ 0 consist of pockets only. Then
for any ε > 0 there is a Markov partition whose elements have diameter at
most ε.

6.3. The "stadium".

Restriction C in Theorem 6.2, as in 6.1, is very restrictive. Here we consider
one system not satisfying it—the so-called stadium. This is the billiard in the
domain bounded by two parallel segments and two arcs of circles (Fig. 21).
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This system has applications of its own [14]. The hyperbolicity and ergodicity
of the stadium were proved in [17]. Note that if the segments on the
boundary of the stadium are not parallel, then the stadium satisfies condition
C , and hence the conditions of Theorem 6.2.

/' \

Fig. 21

We preserve for the stadium the notations M\, Τ, and f introduced in 6.1
and 6.2. The phase space Μλ is the union of two parallelograms (Fig. 22a)).
In neighbourhoods of the points A, B, C, D infintely many discontinuity
curves of f ' 1 accumulate (Fig. 22a)). Their structure (Fig. 22b)) is similar to
the one investigated in 4.4 for billiards with infinite horizon. It is easily
verified that the coefficient of expansion of f ~l grows unboundedly in
neighbourhoods of the points A, B, C, D. If the arcs bounding the stadium
are less than a semicircle, then the discontinuity curves of f accumulate in
neighbourhoods of the four points A', B', C, D' and have a similar structure
(Fig. 22a)). If the stadium is bounded by semicircles, then A = Α', Β = Β,
C = C", D = D', and the discontinuity curves of f and f"1 overlap (Fig. 22c)).

Fig. 22
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This case is similar to that of the singular points of type SVmix in billiards
with infinite horizon, which was considered in 4.3. Therefore the methods for
constructing a Markov partition developed in §4 can be transferred to the case
of the stadium. Finally, the transition from the Markov partiton ή for Γ to a
Markov partition η for Τ does not differ from that described in 6.2.

§7. Estimates for the number of periodic points

The results of this section were obtained by one of the authors—
N.I. Chernov.

7.1. Modification of the symbolic dynamics.
As has been noted in §5, for χ e M\ the coding σ(χ) need not be unique. For
computing the number of periodic points it is important that for each
individual point χ e M\ the number of distinct codings σ(χ) is uniformly
bounded. To this end we introduce a new, more accurate, definition of the
intersection matrix Π.

Take the Markov partition η = Ω* constructed in §5 for the map Tm. We
consider two parallelograms Δ*, Δ* e Ω* such that Δ* Π TkA* φ 0 for some
|/c[ =ξ m. Clearly, Δο Π Γ*Δ* is a closed parallelogram. We distinguish in it
the subset Γ 0 (Δ*Π Γ*Δι) of points χ e M2 for which the characteristic
neighbourhoods V(x) and V(T~kx) connected with Δο and Δ*, respectively,
satisfy TkV(T~kx) Π V(x) φ 0. Further, let Γ(Δ* Π TkAt) be the closure
of Γ0(Δ* Π TkAt) in M2. Using the construction of Ω* (in 5.8) we can verify
that Γ(Δ* Π TkA*) is a parallelogram. For several |/c,| =ζ m and A*e Ω* the
set Γ(Δ* Π TklAt Π - Π 7*'Ap)is similarly defined. Remark 5.10 gives the
following result.

Lemma 7.1. Let A* e Ω* and |fc,-| =ζ m for 1 ^ / ^ p , with some ρ ^ 1.
Then for every point χ e Δ ο (~) Μ2 there is a parallelogram Δ, e Ω*, 1 < ; ' < / ? ,
such that χ e Γ(Δ* Π Τ*1 At Π ... Π Γ^Δ*).

We define the Markov partiton Ω' for Τ as the collection of parallelograms

(7.i) r (Δ* n TAt n · • · n r^At^)
jig jl,

for all possible Δο, ..., Am_j e Ω* for which the set (7.1) is not empty. The
elements of Ω' will be denoted by Δ'. By Lemma 7.1, each χ e M2 is covered
by at least one parallelogram Α' ε Ω'. The same lemma implies that for each
χ e M2 there are parallelograms Δ*, Δ*, ..., Δ*, e Ω* such that
χ e Γ(Δ* Π TAt Π - Π Τ™Λ*νι)- Moreover, the parallelograms
Δ; = Γ(Δ* Π TAt Π ... Π Γ"- 'Δ^- ι ) and Δ2 = Γ(Δ* Π ΤΑ*2 Π ... Π
Π Tm~lA%l) are non-empty and hence belong to Ω'. Since χ e A[ Γ\ TA2,
Lemma 5.13 implies the following result.
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Lemma 7.2. Under the above described conditions, the intersection \ Π TAZ is
regular.

Thus Ω' is a Markov partition for T.

We redefine the intersection matrix Π = ||n,y|[ as follows. Let

ΔΙ - Γ (Δο*4 Π 2'Δ*ίΠ · · · 7""-ΐΔ*_,,0

Δ;- = r (Δ0* , π ΤΑ?., η . . . η r - ^ i U i )
be two parallelogams in Ω'. We put ny = 1 if and only if Δ*,ί = Δρ+1,3 for
all 0 < ρ < m-2 and the set

r ( Δ * { η T&i η · • · η r ^ A j U i η TmA*m.lt})

is non-empty. Otherwise we put ny = 0. Lemma 7.2 implies that for ny = 1
the intersection Δ;· Π ^Δί is regular, but the converse need not hold. (It can
be shown that for non-degenerate parallelograms the converse is true: if
ν(Δί) > 0, ν(Δί) > 0, and the intersection Α] Π TA\ is regular, then ny = 1.
Thus, our modification of the intersection matrix concerns degenerate
parallelograms only.) In the sequel we will consider only the TMC (ΣΠ, θ)
constructed using the new matrix Π.

This TMC has the following basic properties:

Assertion 7.3. a) Each χ e Μ-χ has at least one coding σ(χ) e Σπ;
b) for the points χ e M2 such that Tkx φ #η for all integers k, the coding

σ(χ) is unique;
c) each χ e Mi has at most four codings c(x) e Σπ·

For the proof of the last assertion we must consider the four infinitesimal

quarter-neighbourhoods of χ into which the infinitesimal neighbourhood V{x)
of χ is divided by the LUM y"(x) and the LSM y*(x), and verify that by the
construction of Π each of these generates at most one coding σ(χ) e Σπ-

7.2. We compare the numbers of periodic points of the automorphism Τ and
the TMC (Σ π , θ). For smooth hyperbolic systems the asymptotics of the
numbers of periodic points of the system and its corresponding TMC are, as a
rule, the same [3], [29], We show that this coincidence of asymptotics also
holds in our case.

Let Pn be the number of periodic points of Τ of period η (that is, the
number of solutions of the equation T"x = x), and let Pn(Ti) be the number
of periodic points of period η of the symbolic system (Σ π , θ).

Theorem 7.4. There is a constant C = C(Q) < oo such that | Ρ η - Ρ η ( Π ) | < C
for all n ^ 1.

The proof consists of a number of lemmas.

Lemma 7.5. Under condition Β of Theorem 1.1, only finitely many periodic
points lie in the set i?_ooj00·
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Proof. For a billiard with infinite horizon, singular points can be periodic
(see §4); there are however only finitely many such points. If χ e R-cc,» is
periodic and non-singular (Fig. 23), then it can easily be verified that infinitely
many regular components of i ? _ 0 0 0 0 pass through x, contradicting condition Β
of Theorem 1.1. The lemma is proved.

Fig. 23

Corollary 7.6. All except finitely many periodic points belong to M2-

Lemma 7.7. A point χ e M2 is periodic if and only if every coding σ(χ) of it is
periodic. If Tkx φ dr\ for all integers k, then the period of χ equals the period
of σ(χ).

Proof. Suppose the coding σ(χ) is periodic. Then from the relation
Φ ο T=Q ° φ (see 1.2) it follows that χ is periodic. Further, if a periodic point
χ of period k had a non-periodic coding σ(χ), it would have infinitely many
codings σ(χ), Qha(x), Q2kc(x), ..., contradicting Assertion 7.3c). Finally, if
Tkx φ dr\ for all integers k, then χ has a unique coding a(x) and from the
construction of σ(χ) it follows that χ and the sequence σ(χ) have the same
period.

Lemma 7.8. Only finitely many periodic points lie in 8η.

The proof follows immediately from relation (5.7).
By combining Lemma 7.5, Corollary 7.6, Lemma 7.7, and Lemma 7.8 we

obtain Theorem 7.4.

7.3. Estimates for the number of periodic points.
A way of computing the number of periodic points of a TMC is as follows
(see, for example, the surveys [1], [2]).

Proposition 7.9. For any η ^ 1 we have ΡΠ(Π) = trl!".

Here Π" denotes the nth power of the matrix Π. If Π is a countably-
infinite matrix, then in general Π" can contain infinite elements, and hence it
is possible that Pn(Tl) = 00 for some n. However, in our case this does not
happen:

Proposition 7.10. There is a constant Ao = A0(Q) < 00 such that Pn(U) =ζ Α%
for all η ^ 1.
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This proposition follows from Theorem 7.5 and results in [30], in which an
exponential upper bound is obtained for the number of periodic points in
semiscattering billiards of arbitrary dimensions (without using Markov
partitions).

On the other hand we can indicate a finite collection of parallelograms
QJV = {Δι,, ..., ΔχΥ} in Ω' and distinguish in Π the finite NxN submatrix ΠΛΓ
of entries π,- ,·, 1 =ζ ρ, q =ζ Ν, corresponding to the chosen parallelograms.
We denote by Ρ^Π^) the number of periodic sequences σ e Σ Π of period η
and consisting of the symbols i\, ..., iN only. Clearly PJJlN) < ΡΠ(Π) for all
η ^ 1. In the sequel we will use the notions of a decomposing, a periodic,
and a primitive matrix (see [2]).

Lemma 7.11. For each ε > 0 there is an Ν = Ν(ε) and a collection of non-
degenerate parallelograms ΩΝ = {Δ^, ..., A'iN} such that

a) μ (Κ U · • · U ΚΝ) > 1 ~ ε;
b) the corresponding matrix HN is non-decomposing;
c) for sufficiently small ε the matrix TlN is non-periodic.

Assertions a), b) readily follow from the ergodicity of T. Periodicity of Π^
for small ε contradicts the mixing property of T. The ergodicity and mixing
of Τ were proved in [10], [4] (see also the simpler proof in [13], [24]). It is
well known that a non-decomposing non-periodic matrix of zeros and ones is
primitive (that is, some power of it does not contain zeros) [2], which implies
the following result.

Corollary 7.12. There are constants Αχ = AX{Q) > 1 and no > 1 such that
for sufficiently small ε > 0 the matrix TiN, constructed in Lemma 7.11, satisfies
the estimate ΡΠ(ΠΠ) > A" for all η Js n0.

Thus the following theorem has been proved.

Theorem 7.13. There are Α ι = AX{Q) > 1 and n0 ^ 1 such that Pn(U) > A"
and Pn > A" for all η ^ no·

This also implies estimates for the number of periodic trajectories of a
flow {S1}. Let PT be the number of (closed) periodic trajectories of the flow
{S1} whose length does not exceed T. Then we have the following result.

Theorem 7.14. There are Bo = B0(Q) < oo, Βλ = B:(Q) > 1, and To > 0
such that B{ < PT < Bo for all Τ > To.

In the case of a finite horizon this theorem is a direct consequence of
Assertions 7.10, 7.13, and 2.3. For an infinite horizon we note that for any
ε > 0 the function τ + (χ) is bounded on the parallelograms Δ?,, ..., Δ,Ν

constructed in Lemma 7.11 by a constant τπ13χ(ε) < oo, and subsequently use
Corollary 7.12.
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Note that a precise asymptotics of PT has been obtained for certain classes
of scattering billiards (see [28]). Also note that for billiards in polygons the
rate of growth of the number of periodic points is less than exponential [23],

By Poincare's recurrence theorem [7], any state i in a TMC (Σπ, θ)
corresponding to a non-degenerate parallelogram Δ,- e Ω' is recurrent (that is,
there are iif ..., ik such that π,,-, = π,ι(-2 = ... = K i i i i t = 7t,y = 1. Hence any
non-degenerate parallelogram contains at least one periodic point. Together
with the arbitrariness of ε in the statement of Theorem 1.1 this proves the
following result.

Theorem 7.15. The periodic points are everywhere dense in Μλ. The {closed)
periodic trajectories are everywhere dense in M.

This theorem has a simpler proof, not using Markov partitions (it was
communicated to us by Ya.B. Pesin).

§8. Domains with smooth boundary

In this section we consider billiards with hyperbolic behaviour in domains
with smooth boundary. In the case of billiards on a torus the boundary dO
can be arbitrarily smooth and even analytic (for example, when dQ is a circle).
When β C R2 there is no example known of a billiard with hyperbolic
behaviour and with boundary of smoothness exceeding C'. It is possible that
such billiards do not exist at all, but up to now this has not been proved.
A substantiation of this hypothesis is a result of V.F. Lazutkin about the
existence of a caustic for billiards in a convex plane domain bounded by a
sufficiently smooth curve.

In the ergodic theory of billiards (and, in particular, in this article), one
always considers the case when dQ consists of finitely many curves of
smoothness class at least C 3 and having sign-definite curvature (see §1).
Hence, if Q is simply-connected, its boundary has smoothness at most C1.
The interior boundaries in a plane domain Q can have arbitrarily high
smoothness. We show that if dQ has smoothness C1, then in Theorem 1.1 the
conditions A, B are superfluous, and hence we need not require their
satisfaction in Theorems 6.1, 6.2. For condition A (or A') this is obvious,
since if dQ has smoothness C 1, then all interior angles between regular
boundary components are equal to π. Condition Β (or B') need not hold even
in this case (for example, the boundary of the domain Q depicted in Fig. 23
can be smoothed in such a way that a side of the triangle will touch the
scattering component of dQ as before). It turns out, however, that for a
C1-smooth boundary dQ in the construction of a Markov partition this
condition can be circumvented. More precisely, we have the following result.

Theorem 8.1. Suppose that a domain Q generating a two-dimensional scattering
billiard has boundary of smoothness class at least Cx. Then for every ε > 0
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there is a countable Markov partition, the diameters of all elements of which do
not exceed ε.

Moreover, analogues of Theorems 6.1 and 6.2 are true.

Theorem 8.2. Suppose that a domain Q inducing a semiscattering billiard has
C^-smooth boundary and satisfies condition B'. Then for every ε > 0 we can
construct a Markov partition with elements of diameter at most ε.

Theorem 8.3. Suppose that a domain Q has boundary dQ of class C] whose
focussing part consists of rays only (and is not empty) and that Q satisfies
Condition B'. Then for every ε > 0 there is a Markov partition with elements
of diameter at most ε.

A basic role in the proofs of Theorems 8.1 — 8.3 is played by the following
lemma.

Lemma 8.4. Let the domain Q have boundary of class C'. Then there is an
OQ > 0 such that for any χ e M\ and any integer m the number of curves in
Ro,m (Ro,-m) passing through χ does not exceed αφη\.

Proof. First of all, note that on the set M{\ T~lS0 (M{\ TS0) the map Τ (Τ~χ)
is continuous. Hence at most two discontinuity curves belonging to R\ (R-i)
pass through a point χ e M{\ T~lSo (x € M\\ TSo)- Further, consider a
rectilinear segment that is part of some billiard trajectory and that touches the
boundary dQ at least twice (at distinct points of M\). The set of all such
segments will be denoted by D. It is easily seen that D = Dp \J Dn, where
Dp is the collection of rectilinear segments in Q that are parts of periodic
trajectories of the flow generated by the billiard in Q, and Dn = D\ Dp.

Note that D does not include periodic trajectories that touch the boundary
dQ under every reflection; these correspond to fixed points of T. This
situation corresponds to the case of infinite horizon, which was investigated in
detail in §4. In particular, such points lie on So, and through them there
passes one curve belonging to Si and one curve belonging to S_i.

The set D consists of finitely many segments, denoted by b0. Moreover, if
some trajectory passes twice through one of these segments, then this trajectory
is periodic. Correspondingly, the given segment lies in Dp. Let p0 be the
maximum number of points of tangency that the segments in D have with dQ.

Lemma 8.5. For any point χ e M\ the collection of discontinuity curves
belonging to TmRo,for some fixed m, does not exceed 2bo(po+l)-

Lemma 8.4 follows immediately from Lemma 8.5 by putting

a0 = 2bo(po+l).
We will now formulate a more general assertion concerning the structure of

discontinuity curves. For any χ e Mi\So we put n+(x) = min{« > 0 : χ e Sn}
(n_(x) = min{n > 0 : χ e S_n}). Lemma 2.8 and the general properties of Τ
listed in 2.1 —2.3 imply the following result.
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Lemma 8.6. For any multiple point χ ε Mj\So and any m > 0 there is a
neighbourhood U(x) of χ such that:

a) the closure U(x) does not contain multiple points belonging to R-mm,
other than x;

b) among the discontinuity curves passing through χ there is a unique curve
Γ+0) e Rn+(X) (Γ-Ο) e i?_ n _ w ) such that Γ+ (Γ_) divides U(x) into two
semineighbourhoods Uf(x) and Uj (x) (respectively, U{~(x) and Uf(x));

c) all decreasing (increasing) discontinuity curves containing x, except
Γ_ (Γ + ), intersect only one of Ut (x) or Ui (x) (respectively, U{~(x) or U-f(x)).

In the case when 5Q contains one scattering component, Lemma 8.5
follows immediately from Lemma 8.6, by induction with respect to m.

We now consider the general case, in which dQ contains arbitrarily
(finitely) many scattering components. First note that if the trajectory of a
multiple point χ does not intersect D, then the proof of Lemma 8.5 does not
differ, for all multiple points on this trajectory, from the case when dQ"
contains a unique component.

So it remains to consider the case when the trajectory of a multiple point χ
contains a segment that touches two distinct scattering boundary components.
Here again two cases are possible, depending on whether χ e Dp or χ e Dn.
First, let χ e Dp, that is, the trajectory of χ is periodic. We denote the length
of the corresponding period by p(x). Then for arbitrary integers k\ > 0,
k2 ^ 0 the number of discontinuity curves passing through χ and belonging
to Rktfix) + k2 coincides with the number of discontinuity curves passing through
χ and belonging to Rp(xy Further, when passing along any (regular) segment
in D there emerges (at the point in the phase space M\ corresponding to the
end point of this segment) a number of discontinuity curves (belonging to i?i);
this number does not exceed the number of components of dQ that are
touched by this segment, plus one (because the initial point of the segment can
be a singular point of 9 0 . This implies the estimate in Lemma 8.5 for χ e Dp.

Finally, let the trajectory of χ be non-periodic, that is, χ e Dn. Then this
trajectory passes at most once through each segment in Dn. When passing
along each such segment, at its end point at most p0 + 1 discontiniuty curves
(belonging to So) are "glued", as was shown above. Thus, when the positive
semitrajectory of χ passes through all segments in Dn, at most (po+ l)bo new
discontinuity curves emerge. The remaining part of this semitrajectory consists
of segments that can touch at most one scattering component of dQ, and in
this case, as was shown above, the number of discontinuity curves passing
through a given point and belonging to a fixed set Rm does not increase when
m becomes larger. Thus Lemma 8.5 is proved.

Using Lemma 8.4, the construction of a Markov partition in the cases
governed by the conditions of Theorems 8.1—8.3 is carried out completely
similar to Theorems 1.1, 6.1, 6.2, respectively. Here "completely similar"
literally means the following: all geometric constructions are unchanged, the
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distinction lies only in the choice of the constants determining the dimensions

of the corresponding geometric objects.

The main difference from Theorems 1.1, 6.1, 6.2 is that instead of

KQ = KQ(Q), under the conditions of Theorems 8.1 — 8.3 we have αο'«· Hence

at the end of 3.1 we must put λι = (200αΟ'»)~1· Further, formula (3.2) takes

the form

(8.1) Am ? c'i (200α07?ι)2.

This inequality holds for all sufficiently large m, since Am grows exponentially

with m. Finally, the right-hand sides of inequalities (5.3) and (5.4) must be

multiplied by m, after which their proof remains the same.
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