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Abstract

We study hyperbolic systems with singularities and prove the cou-
pling lemma and exponential decay of correlations under weaker as-
sumptions than previously adopted in similar studies. Our new ap-
proach allows us to study the mixing rates of the reduced map for
certain billiard models that could not be handled by the traditional
techniques. These models include modified Bunimovich stadia, which
are bounded by minor arcs, and flower-type regions that are bounded
by major arcs.

AMS classification numbers: 37D50, 37A25

1 Introduction

This article is devoted to hyperbolic dynamical systems with singularities.
A general class of such systems was introduced in the fundamental work
by Katok and Strelcyn [19]. They studied maps T : M → M defined on a
Riemannian manifold M such that T is a C2 diffeomorphisms from an open
set M \ S onto its image; the closed set S ⊂ M is called the singularities of
T . Katok and Strelcyn make the following assumptions on S: the derivatives
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of T can only grow mildly near S (they are bounded by a negative power of
the distance to S), and the ε-neighborhood Uε(S) of S is not too heavy, i.e.
µ(Uε(S)) = O(εa) for some constant a > 0; here µ denotes the T -invariant
probability measure supported on M . Such assumptions are sufficient for
the construction of stable and unstable manifolds, their absolute continuity,
and certain formulas for the entropy of T , see [19]. In particular, stable
and unstable manifolds W s(x) and W u(x) exist at µ-almost every point x ∈
M . Moreover, if rs(x) and ru(x) denote the distance from x ∈ M to the
boundaries ∂W s(x) and ∂W u(x), respectively, then

(1.1) µ
(

x ∈ M : ru,s(x) < ε
)

≤ cεa

for some constant c > 0; here a > 0 is as above. Moreover, in the studies
of ergodic and statistical properties of T a ‘local’ version of (1.1) plays an
important role; we describe it in the simplest case dim M = 2 (in which
case stable and unstable manifolds are one-dimensional). Let W ⊂ M be
a smooth curve uniformly transversal to all stable manifolds crossing it and
mW denote the Lebesgue measure (length) on W . Then the ‘local’ version
of (1.1) reads

(1.2) mW

(

x ∈ W : rs(x) < ε
)

≤ cεa,

and a similar estimate holds for ru if W is uniformly transversal to unstable
manifolds.

The general studies by Katok and Strelcyn [19] were motivated by bil-
liards; the latter remain the main (if not only) physically interesting class of
systems with singularities. In billiards, the invariant measure µ is smooth
and has bounded density, and the singularity set S consists of smooth com-
pact submanifolds in M of codimension one. If the number of the smooth
components of S is finite, which is the case for Sinai billiards with finite hori-
zon [30, 12], then clearly µ(Uε(S)) = O(ε), i.e. a = 1 in the above formulas.
In Sinai billiards with infinite horizon, S has countably many smooth com-
ponents, and this implies µ(Uε(S)) = O(ε| ln ε|), but one can conveniently
change metric in M so that again µ(Uε(S)) = O(ε); see [12, Section 4.14].
The fact that a = 1 in (1.1)–(1.2) for all Sinai billiards is essential in Sinai’s
studies: his so-called Fundamental Theorem and his proof of ergodicity, see
[30] and [12, Chapter 6], work only under the condition a = 1.

In the later studies of finer statistical properties of billiards and related
models by Bunimovich, Sinai, and Chernov [5, 7, 8] and Young [32], the fact
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that a = 1 in (1.1)–(1.2) played a vital role, too. Even the introduction of
additional (secondary) singularities (separating the so called ‘homogeneity
strips’), which were needed for controlling distortions (see [5, 8] and [12,
Section 5.3]), increased the ε-neighborhood of all singularities, but the crucial
estimates (1.1)–(1.2) with a = 1 remained in place. We see that all the
present approaches to the studies of ergodic and statistical properties of
hyperbolic systems with singularities are effectively designed for systems with
a = 1; these include planar Sinai billiards [8], Bunimovich’s stadium [21],
higher-dimensional Lorentz gases [2], systems of two hard balls of different
masses [10], certain abstract multidimensional models [7], and others.

Recently we extended [13] these studies to various non-traditional planar
billiards such as a pinball machines in a box, skewed stadia, and flower-type
tables. In these models, hyperbolicity is weak in the sense that expansion
and contraction are not uniform. Then one needs to find a subset M1 ⊂ M
such that the first return map T1 : M1 → M1 is strongly hyperbolic, i.e. its
expansion and contraction are uniform. We call M1 a reduced space and T1

a reduced map; it preserves the measure µ conditioned on M1. As a rule, the
reduced map has more complicated singularities S1 ⊂ M1 than the original
map, i.e. S1 is usually a much larger set than S ∩ M1.

As a result, µ(Uε(S1)) may be much larger than µ(Uε(S)). However, in
all the new models covered in [13], we still have µ(Uε(S1)) = O(ε), i.e. the
reduced map satisfies the estimates (1.1)–(1.2) with a = 1. In fact our proofs
are based on the following one-step expansion condition for unstable curves,
which holds for the collision map in dispersing billiards and for the reduced
map in the above mentioned weakly hyperbolic billiards. Given an unstable
curve W (i.e. a curve whose tangent vectors lie in unstable cones), let us
denote by Wi ⊂ W the connected components of W \ S, i.e. the segments of
W on which T is smooth, and by Λi the (minimal) factor of expansion of Wi

under T ; then we require that

(1.3) lim inf
δ0→0

sup
W : |W |<δ0

∑

i

Λ−1
i < 1,

where the supremum is taken over unstable curves W of length < δ0. This
condition quite easily leads to (1.1)–(1.2) with a = 1, see [13].

On the other hand, there are plenty of physical models where µ(Uε(S1)) =
O(εa) only with a < 1, and (1.1)–(1.2) only hold for a < 1. These in-
clude large classes of planar chaotic billiards introduced by Wojtkowski [31],
Markarian [20], and Donnay [18], and even more physically interesting gases
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of hard balls on a torus [26, 27, 28, 29] and in a box [25]. And there are no
working methods developed for the studies of statistical properties for these
systems. Though we cannot go that far yet, we are making steps in this
direction.

In this paper we develop methods that can handle some systems with
a < 1. Our approach is rather general, but we also present two examples
– two Bunimovich billiard tables described in [13]. In those tables, there
exist arbitrarily short unstable curves W ⊂ M for which, in terms, of (1.3),
Λi ∼ 1/i for all i ≥ i0 = i0(δ0), i.e. the series (1.3) diverges. Thus the
methods of [13] do not apply, but our new method presented here works
and allows us to fully investigate the mixing rates in this difficult case. We
include the analysis of those two billiard tables in the end of our paper, as
our main goal is the extension of the existing techniques to some general
systems with a < 1.

Now we describe our work on some technical level. Young [32, 33] has
considered abstract hyperbolic systems and gave sufficient conditions under
which the dynamics can be represented in a ‘semi-symbolic’ way, by a tower
map, leading to exponential mixing rates. The tower method is powerful,
but constructing a tower in real systems, like billiards, involves fairly hard
labor [32]. Chernov [8] somewhat simplified Young’s construction reducing
it to the verification of a certain set of conditions for just one iterate of the
map (without having to deal with its higher powers). This approach was put
into a more abstract form in [13] and applied to several classes of billiards.

There is an alternative technique, avoiding the tower representation al-
together, based on coupling of the images of probability measures [33]. It is
quite explicit and dynamical, and it is formalized in the so-called coupling
lemma (see [10] and [12, Chapter 7]). The coupling method leads to a some-
what sharper estimates on correlations and more direct proofs of some limit
theorems [12, Chapter 7]. Though generally it is weaker than the tower con-
struction (see [11]), the main element of the coupling lemma – the magnet,
see [12, Chapter 7] – can be defined so that it serves as the basis of Young’s
tower, hence producing the tower (and all its benefits) as well. We use this
approach here, i.e. we prove the coupling lemma and additionally construct
Young’s tower.

Lastly we address our assumptions on the singularities of the map. The
construction of stable and unstable manifolds can be done under very general
assumptions on S; see [19]. The construction of natural invariant measures
(SRB measures) and the studies of their ergodic properties can be done under
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similar assumptions on S; see [1, 22, 24]. But our studies of fine statistical
properties of SRB measures require more restrictive assumptions on S –
we assume that S is a piecewise smooth set and has a structure somewhat
similar to billiard singularities. Though we do not need standard bounds on
the complexity of singularities [16, 32], as this property is incorporated into
our one-step expansion condition (3.8) generalizing (1.3).

As a last remark, we restrict our studies to 2-dimensional maps, i.e. as-
sume that dim M = 2. This will keep our presentation simpler and cleaner,
though our methods extend to higher dimensions, as will be explained in the
end of Section 3.

Acknowledgment. We would like to thank the anonymous referees for very
helpful remarks and suggestions.

2 Statement of results

Let T : M → M be a C2 diffeomorphism of a 2-dimensional Riemannian
manifold M with singularities S, i.e. T maps M \ S onto T (M \ S) dif-
feomorphically. In our studies S is a finite or countable union of smooth
compact curves. Assume T preserves a probability measure µ.

For any pair of integrable functions (observables) f, g ∈ L1
µ(M), the cor-

relations of f ◦ T n and g are defined by

(2.1) Cf,g(n) =

∫

M

(f ◦ T n) g dµ −
∫

M

f dµ

∫

M

g dµ, n ∈ N.

It is well known that T : M → M is mixing if and only if

(2.2) lim
n→∞

Cf,g(n) = 0, ∀f, g ∈ L2
µ(M).

Accordingly, the rate of mixing of T is characterized by the speed of con-
vergence in (2.2) for smooth enough functions f and g (Hölder continuity of
f and g is sufficient for smooth maps, and a weaker property – dynamical
Hölder continuity defined in Section 3 – is enough for maps with singularities).
We say that (T, µ) enjoys exponential decay of correlations if for any pair
of dynamically Hölder continuous functions f, g, there exists b = b(f, g) > 0
such that any n ∈ N

|Cf,g(n)| ≤ Cf,ge
−bn
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(b only depends on the Hölder exponents of f and g). Otherwise if it can
only be proved that |Cf,g(n)| ≤ Cf,gn

−a for some a > 0, we say T enjoys
polynomial decay of correlations.

In Section 3, we list our assumptions (H.1-H.5) on the map T .

Theorem 1. Under the conditions (H.1-H.5), the system (T, µ) enjoys ex-
ponential decay of correlations.

We also prove Coupling Lemma, whose statement is rather technical, it
is given in Section 7, and construct Young’s tower.

Our paper is organized as follows. In Sections 3–8 we deal with general
hyperbolic maps with singularities. In Section 3 we list our basic assump-
tions, (H.1)-(H.5), including the new one-step expansion estimate (3.8). In
Section 4 we introduce our main technical tool – unstable curves with regu-
lar probability densities on them (standard pairs and standard families). In
Section 5 we prove that short unstable curves grow exponentially fast (this
important property is formalized in various Growth Lemmas). Then we con-
struct a special rectangle (the “magnet”) in Section 6, after which we prove
the Coupling Lemma, which directly implies Theorem 1, in Section 8. Lastly,
as applications, we present two classes of billiards in Section 9.

3 A general theorem on exponential mixing

In Sections 3–8, we work with abstract hyperbolic maps, T : Ω → Ω, with
singularities. Assuming µ is a T -invariant mixing measure and T has singu-
larities, we give sufficient conditions for exponential mixing. Here Ω denotes
a two-dimensional connected compact Riemannian manifold. We first in-
troduce general conditions (H.1-H.5), which will be assumed throughout
Sections 3–8.

Let d denote the distance in Ω induced by the Riemannian metric ρ. For
any smooth curve W in Ω, denote by |W | its length, and by mW the Lebesgue
measure on W induced by the Riemannian metric ρW restricted to W . Also
let υW = mW /|W | be the normalized (probability) measure on W .

(H.1) Hyperbolicity of T (with uniform expansion and contraction).
There exist two families of cones Cu

x (unstable) and Cs
x (stable) in the tangent

spaces TxΩ, for all x ∈ Ω, and there exists a constant Λ > 1, with the
following properties:
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(1) DT (Cu
x) ⊂ Cu

Tx and DT (Cs
x) ⊃ Cs

Tx whenever DT exists.

(2) ‖DxT (v)‖ ≥ Λ‖v‖, ∀v ∈ Cu
x and ‖DxT

−1(v)‖ ≥ Λ‖v‖, ∀v ∈ Cs
x

(3) These families of cones are continuous on Ω and the angle between Cu
x

and Cs
x is uniformly bounded away from zero.

We say that a smooth curve W ⊂ Ω is an unstable (stable) curve if at
every point x ∈ W the tangent line TxW belongs in the unstable (stable) cone
Cu

x (Cs
x). As usual, a curve W ⊂ Ω is an unstable (resp. stable) manifold if

T−n(W ) is an unstable (resp. stable) curve for all n ≥ 0 (resp. ≤ 0).

(H.2) Singularities and smoothness. Let S0 be a closed subset in Ω,
such that M := Ω \ S0 is a dense set in Ω. We put S±1 = T∓1S0. We make
the following assumptions:

(1) T : M \ S1 → M \ S−1 is a C2 diffeomorphism.

(2) S0 ∪ S1 is a finite or countable union of smooth, compact curves in Ω.

(3) Curves in S0 are transversal to stable and unstable cones. Every smooth
curve in S1 (resp. S−1 ) is a stable (resp. unstable) curve. Every curve
in S1 terminates either inside another curve of S1 or on S0.

(4) There exists β ∈ (0, 1) and c > 0 such that for any x ∈ M \ S1

(3.1) ‖DxT‖ ≤ c d(x,S1)
−β.

The last condition is standard in [19]. In all billiards this condition holds
with β = 1/2; see [12].

Remark 1. In dispersing billiards, there are natural (primary) singularities, where
the map T fails to be smooth, and additional (secondary) singularities – the bound-
aries of the homogeneity strips; the latter are added to ∂Ω in order to guarantee
the distortion bounds (3.6); see [12, Chapter 5] for a detailed description. This
makes unstable manifolds homogeneous manifolds.

Remark 2. For convenience we assume that the lengths of unstable/stable man-
ifold are uniformly bounded (by a constant, CM ). This is not a restrictive as-
sumption, as one can always partition Ω into finitely many domains in which
the unstable manifolds have bounded length, and include the boundaries of those
domains in the singularity set.
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Whenever we say ‘the singularity of T ’, we refer to S : = S1. Denote
S±n = ∪n−1

k=0T
∓kS±1 and S±∞ = ∪∞

k=0T
∓kS±1. For each n ∈ N, Sn is a union

of stable curves and S−n is a union of smooth unstable curves. Note that S±∞

could be a dense set in M . Let ξn be the partition of M into the connected
components of M \ Sn. We denote ξs = M \ S∞ and ξu = M \ S−∞. Note
that any unstable manifold W u is a connected component in ξu, usually with
two end points in S−∞.

Definition 1. For every x, y ∈ M , define s+(x, y), the forward separation
time of x, y, to be the smallest integer n ≥ 0 such that x and y belong to
distinct elements of ξn. Similarly we define the backward separation time
s−(x, y). A function f : M → R is said to be dynamically Hölder continuous,
if there are ϑf ∈ (0, 1] and Cf > 0 such that for any x and y lying on one
unstable manifold W u

(3.2) |f(x) − f(y)| ≤ Cfϑ
s+(x,y)
f

and for any x and y lying on one stable manifold W s

(3.3) |f(x) − f(y)| ≤ Cfϑ
s−(x,y)
f .

We denote by H±
ϑf

the space of functions that satisfy only (3.3) or (3.2) with
fixed ϑf .

Remark 3. Note that by uniform hyperbolicity, any ordinary Hölder continuous
function is automatically forward and backward dynamically Hölder continuous.
but on the other hand, a dynamically Hölder continuous function can be only
piecewise continuous. For example, if A is a union of some unstable manifolds,
then the characteristic function χA is backward dynamically Hölder continuous.

(H.3) Regularity of smooth unstable curves. We assume that there is a
T -invariant class of unstable curves W ⊂ M that are regular in the following
sense:

(1) Bounded curvature. The curvature of W is uniformly bounded from
above by a positive constant B.

(2) Distortion bounds of T . There exist γ ∈ (0, 1) and CT > 1 such
that for any regular unstable curve W ⊂ M and any x, y ∈ W ,

(3.4) |lnJW (x) − lnJW (y)| ≤ CT d(x, y)γ

where JW (x) = |DxT |TxW | denotes the Jacobian of T at x ∈ W .
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(3) Absolute continuity. Let W1, W2 be two regular unstable curves
close to each other. Denote

W ′
i = {x ∈ Wi : W s(x) ∩ W3−i 6= ∅}, i = 1, 2.

The map h : W ′
1 → W ′

2 defined by sliding along stable manifolds is
called the holonomy map. Assume h∗mW ′

1
≺ mW ′

2
. Furthermore, h

satisfies the distortion bound:

(3.5) | ln Jh(y)

Jh(x)
| ≤ CT ϑs+(x,y), ∀x, y ∈ W ′

1,

where Jh is the Jacobian of h.

We will only consider regular unstable curves.

Remark 4. Note that (3.6) and the uniform hyperbolicity implies that for any
smooth curve in W ⊂ M , any x, y ∈ W , if 0 ≤ k < s+(x, y), then

(3.6)

∣

∣

∣

∣

ln
J k

W (x)

J k
W (y)

∣

∣

∣

∣

≤ Crϑ
s+(x,y)−k,

where J k
W (x) is the Jacobian of T k at x ∈ W and ϑ = Λ−γ , Cr = CT /(1 − ϑ).

Furthermore, notice for any n ∈ N and any unstable curve W in one connected
component in ξn, the expansion factor is almost constant on W by choosing n
large.

(H.4) SRB measure. µ is a Sinai-Ruelle-Bowen (SRB) measure. This
means that for any unstable manifold W u the conditional measure µW u on
W u induced by µ is absolutely continuous with respect to mW u . We also
assume that µ is mixing.

We note that under our other assumptions, the existence and finitude of
SRB measures can be derived by standard arguments (the finitude means
that there are finitely many ergodic SRB measures, and each of them is
mixing up to a cyclic permutation). But we do not pursue the goals of
constructing SRB measures and establishing their ergodic properties, see e.g.
[1]. Since µ might not be the unique SRB measure, from now on, whenever
we pick initial points (or stable/unstable curves) we take them from the basin
of µ automatically without emphasizing.
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Remark 5. The density function ρW u = dµW u/dmW u satisfies

(3.7)
ρW u(y)

ρW u(z)
= lim

n→∞

J−n(y)

J−n(z)

for any y, z ∈ W u. This is a standard formula in ergodic theory, see [12] page 105.
For any unstable manifold W u ⊂ M , the unique probability density ρW u satisfying
(3.7) is called the u-SRB density, and the corresponding probability measure µW u

on W u is called the u-SRB measure.

For any m ∈ N, the partition ξm induces an index set M/ξm. Denote Vα as
the connected component in TmW with index α ∈ M/ξm and Wα = T−1Vα.
Next comes our main assumption.

(H.5) One-step expansion. There exists q ∈ (0, 1] such that

(3.8) lim inf
δ0→0

sup
W : |W |<δ0

∑

α∈M/ξ1

( |W |
|Vα|

)q

· |Wα|
|W | < 1,

where the suppremum is taken over all unstable curves W ⊂ M .

Remark 6. For any index subset A, we define λ̂(A) = T∗υW (Vα |α ∈ A), then
(W/ξ1, λ̂) is a probability space. Thus the inequality in (3.8) can be written as
follows:

(3.9) lim inf
δ0→0

sup
W : |W |<δ0

∫

α∈W/ξ1

( |W |
Vα

)q

dλ̂(α) < 1

This has a clear intuitive meaning: if we regard ζq(Vα) := |Vα|−q as a measurement
of the length of the curve Vα; then (3.9) says that the average of this quantity
decreases at each iteration; in that sense the components of the images of short
unstable curves grow, on average.

Remark 7. Our assumption (H.5) can be extended to multidimensional hyper-
bolic systems, even though the ‘size’ |W | of an unstable manifold of dimension ≥ 2
has no clear meaning. Instead, we define

ζ(W ) =

∫

W
[ dist(x, ∂W )]−q dυW ,

where υW again denotes the normalized Lebesgue measure on W , and replace (3.8)
with

lim inf
δ0→0

sup
W : diam(W )<δ0

[ζ(W )]−1

∫

M/ξ1

ζ(Vα) dλ̂(α) < 1.
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Now most of the results obtained in this paper carry over to higher dimensional
case, but we do not pursue this goal here, as we do not have specific applications
yet. We hope to do it in a separate paper.

4 Standard families of unstable curves

By uniform hyperbolicity (H.1), T n expands any unstable curve W ⊂ M at
least by a factor Λn. At the same time, T n(W ) gets broken by singularities
into pieces. In this process, arbitrarily short pieces may appear, and the
total number of pieces may grow exponentially with n or become infinite.
Thus the hyperbolicity of T only guarantees exponential growth of unstable
curves in a local sense. Accordingly, we do not expect a uniform growth for
every component in T n(W ), but still hope there is a certain growth at least
on average at each step.

From now on we denote by W unstable curves, by C various large con-
stants and by c small constants.

Definition 2. Fix Cr as defined in (3.6). A probability measure ν on Ω sup-
ported on an unstable curve W is called regular, if ν is absolutely continuous
with respect to the Lebesgue measure υW , such that the density function f
satisfies

(4.1) | ln f(x) − ln f(y)| ≤ Crϑ
s+(x,y).

In that case (W, ν) is called a standard pair.

If ν is a regular probability measure supported on W ⊂ M \ ξn, for some
n ∈ N, then it is equivalent to the probability measure υW induced by the
Lebesgue measure mW in the following sense:

(4.2) e−Crϑn

υW (A) ≤ ν(A) ≤ eCrϑn

υW (A).

It follows from (3.2) that

e−Crϑn ≤ minx∈W f(x)

maxx∈W f(x)
≤ maxx∈W f(x)

minx∈W f(x)
≤ eCrϑn

,

which implies
e−Crϑn|W |−1 ≤ f(x) ≤ eCrϑn|W |−1.
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Clearly, as n gets larger, the regular measure ν becomes almost uniform on
W . From now on, we denote

(4.3) c1 = eCr

Then for any regular measure ν on W ,

(4.4) c−1
1 ≤ ν(A)

υW (A)
≤ c1, ∀A ⊂ W.

Note that for any standard pair (W, ν), T∗ν is a measure supported on
TW = ∪α∈W/ξ1Vα. We extend the transformation T on (W, ν) as follows: the
image of the standard pair (W, ν) under T can be viewed as a collection of
pairs {(Vα, να) : α ∈ W/ξ1}, where να is the conditional measure of T∗ν on
the smooth component Vα. Now we extend our definition of standard pairs:

Definition 3. Let {(Wα, να)}, α ∈ A be a (countable or uncountable) fam-
ily of standard pairs. We call it a standard family if there exists a prob-
ability factor measure λ on A, which defines a measure νG supported on
W = {Wα |α ∈ A} by

(4.5) νG(B) =

∫

α∈A

να(B ∩ Wα) dλ(α) ∀B ⊂ Ω.

The measure νG can be regarded as the ‘weighted sum’ or a ‘convex sum’
of the measures να on individual standard pairs. For simplicity, we denote a
standard family by G = (W, νG).

Lemma 1. If (W, ν) is a standard pair, then T (W, ν) is a standard family.

Proof. Let (W, ν) be any standard pair. The density function of T∗ν can be
written as

f1(x) =
f(T−1(x))

J (T−1(x))
, ∀x ∈ T (W ).

Note that for any x, y belong to the same smooth component Vα ⊂ T (W ),

| ln f1(x) − ln f1(y)|
≤ | ln f(T−1x) − ln f(T−1y)| + | lnJ (T−1(x)) − lnJ (T−1(y))|
≤ (Cr + CT )ϑs+(T−1x,T−1y)

= (Cr + CT )ϑs+(x,y)+1 ≤ Crϑ
s+(x,y).
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This implies for each α ∈ W/ξ1, (Vα, να) is a standard pair, where να is the
conditional measure of T∗ν on Vα. Furthermore, for any A in the index set,
let λ(A) = T∗ν(Vα |α ∈ A), then T∗ν satisfies (4.5). Accordingly, T (W, ν) is
a standard family.

In general, if G = (W, νG) is a standard family with a factor measure
λ and satisfies (4.5) then T n

∗ νG induces a standard family with T nG :=
(T nW, T n

∗ νG), where for n ≥ 0

(4.6) T n
∗ νG(B ∩ T nW) :=

∫

α∈A

T n
∗ να(B ∩ T nW)dλ(α), ∀B ⊂ Ω.

Let F denote the collection of all standard families G in M . For any
p ∈ (0, q], define a characteristic function Zp on F, such that for any G ∈ F,

(4.7) Zp(G) =

∫

A

|Wα|−p dλ(α).

Let Fp denote those G ∈ F such that Zp(G) < ∞.

Lemma 2. Let p ∈ (0, q], and n ≥ 0.
(1) If G ∈ Fp consists of a single curve W , denote λn(A) = T n

∗ νG(Vα |α ∈ A)
for any smooth component Vα ⊂ T nW and A ⊂ W/ξn then

Zp(T
nG) =

∫

W/ξn

Zp(Gα)dλn(α).

(2) If G ∈ Fp consists of W = ∪α∈AWα with λ(A) = νG(Wα, α ∈ A), then

Zp(T
nG) :=

∫

A

Zp(T
nGα)dλ(α).

Proof. (1) follows directly from the definition of Zp. So it is enough to show
(2). If n = 0, it follows from the definition that

Zp(G) =

∫

A

1

|Wα|p
dλ(α) =

∫

A

Zp(Gα)dλ(α).

If n > 0, then for each smooth curve Wα in W we introduce the measure λn
α

on the index space Wα/ξn such that for any βα ∈ Wα/ξn,

λn
α(βα) := T n

∗ να(Vβα
),
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where Vβ is a smooth component in T n(Wα). Denote An = {Wα/ξn : α ∈ A}
and define a measure λn on An, such that for any βα ∈ Wα/ξn with α ∈ A, we
have λn(βα) = λn

α(βα)λ(α). Then T n
∗ ν is a weighted sum of regular measures

{νβα
: α ∈ A, βα ∈ Wα/ξn}, where νβα

is the measure T n
∗ να conditioned on

Vβα
. Note that

Zp(T
nG) =

∫

An

|Vβα
|−p dλn(βα)

=

∫

A

∫

Wα/ξn

|Vβα
|−p dλn

α(βα) dλ(α)

=

∫

A

Zp(T
nGα)dλ(α).

The value of Zp(T
nG) characterizes, in a certain way, the “average size” of

the smooth components in T n(W), the larger they are the smaller Zp(T
nG)

is. For example, if G ∈ Fp is supported on W ⊂ M \ Sn, then for any
k = 1, ..., n,

Zp(T
k
∗ ν) ≤ Λ−pkZp(G).

Notice T kW is smooth for any k = 1, ..., n, so for any p ∈ (0, q],

Zp(T
k
∗ ν) =

1

|T kW |p =
|T k−1W |p
|T kW |p · · · |W |p

|TW |p · 1

|W |p ≤ Λ−pkZp(G).

Lemma 3. There exist δ0 > 0 and θ ∈ (0, 1) such that for any standard pair
G = (W, υW ),
(1) if |W | < δ0, then Zq(TG) ≤ θZq(G);
(2) if |W | > δ0, then Zq(TG) ≤ 4θδ−q

0 .

Proof. By (3.8), there exists δ0 > 0 such that

(4.8) θ := sup
W :|W |<δ0

∫

W/ξ1

( |W |
|Vα|

)q

dλ̂(α) < 1.

This implies for any |W | < δ0,

(4.9) Zq(TG) =

∫

W/ξ1

1

|Vα|q
dλ̂(α) ≤ θZq(G).

14



On the other hand, if |W | ≥ δ0, we divide (W, υW ) into k = [|W |/δ0]+1 pieces
{(W1, υ1), ..., (Wk, υk)} with |Wi| ∈ [δ0/2, δ0), and υi being the conditional
measure of υW on Wi. Clearly, each Gi := (Wi, υi) is a standard pair, for any
i = 1, ..., k. Then by the first statement, we have

(4.10) Zq(TGi) ≤ θZq(Gi) =
θ

|Wi|q
≤ θ

( 2

δ0

)q

.

Note that the set {Vα |α ∈ Wi/ξ
1, i = 1, ..., k} contains more short pieces

than T (W ). It follows that

Zq(TG) ≤
k

∑

i=1

∑

α∈Wi/ξ1

1

|Vα|q
T∗υW (Vα)

=
k

∑

i=1

∑

α∈Wi/ξ1

1

|Vα|q
T∗υWi

(Vα) · υW (Wi)

≤ δ0

|W |

k
∑

i=1

Zq(TGi)

≤ δ0

|W |θ
k

∑

i=1

Zq(Gi) ≤ 4θδ−q
0 .

This proves the second statement.

Next we will show that the value of Zq(T
nG) decreases exponentially in n

until it becomes small enough. This will imply that in any standard family,
small unstable manifolds grow exponentially in size on average.

Lemma 4. There exists C > 0 such that for any standard pair G = (W, υW ) ∈
Fq, and any n ≥ 0, one has

(4.11) Zq(T
nG) ≤ θnZq(G) + C

Proof. We first prove the following formula

(4.12) Zq(T
nG) ≤ θnZq(G) + C1(θ + ... + θn),

where C1 is a uniform constant. The formula (4.12) can be proved by induc-
tion on n. If n = 1, it follows from Lemma 3 that

(4.13) Zq(TG) ≤ θZq(G) + C1θ,
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where C1 = 4δq
0. Assume that (4.12) is proved for some n ≥ 1. Then we

apply it to each component Vα ⊂ T (W ) with conditional measure να on Wα

and obtain

Zq(T
n(Vα, να)) ≤ θnZq(Vα, να) + C1(θ + ... + θn).

By Lemma 2,

Zq(T
n+1(G)) =

∫

W/ξ1

Zq(T
n(Vα, να))dλ(α)

≤ θn

∫

W/ξ1

Zq(Vα, να)dλ(α) + C1(θ + ... + θn)

= θn

∫

W/ξ1

1

|Vα|q
dλ(α) + C1(θ + ... + θn)

= θnZq(TG) + C1(θ + ... + θn).

By (4.13), we get

Zq(T
n+1G) ≤ θn+1Zq(G) + (θ + ... + θn+1)C1.

Combining this with Lemma 3 gives (4.11) for C = C1/(1 − θ) + 1.

The above results can be extended to any unstable curve W equipped
with any regular measure ν and any standard family G ∈ Fq.

Lemma 5. There exists Cz > 0, such that for any standard family G ∈ Fq

and n ≥ 0,

(4.14) Zq(T
nG) ≤ c1θ

nZq(G) + Cz,

where c1 is defined as in (4.4).

Proof. If G = (W, ν) ∈ Fq, then it follows from Lemma 4 and (4.2) that

λ(A) = T∗ν(Vα |α ∈ A) ≤ eCrϑTυW (Vα |α ∈ A),

where A is a subset in the index set. This implies

(4.15) Zq(T
n(W, ν)) ≤ eCrϑn

θn(Zq(W, ν) + C).
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Let W = {Wα |α ∈ A}. We first apply (4.15) to each Wα with conditional
measure να:

(4.16) Zq(T
n(Wα, να)) ≤ eCrϑn

(θnZq(Wα, να) + C)

Note that by Lemma 2,

Zq(T
nG) =

∫

A

Zq(T
n(Wα, να))dλ(α).

It follows from (4.16) that

Zq(T
nG) ≤ c1θ

nZq(G) + Cz,

where Cz = CeCr .

We see that if Zq(G) is very large, the sequence {Zq(T
nG), n ∈ N} will

decrease exponentially fast until it reaches a certain threshold. In particular,
for any p ∈ (0, q), (3.8) also holds for q replaced by p. Thus Lemmas 3-5 are
still valid if we replace q by p. This implies that even if Zp(G) is very large
for some p ∈ (0, q], eventually, Zp(T

nG) will be under control and less than
certain fixed constant.

5 Growth Lemmas

Growth Lemmas show that expansion always prevails over fragmentation.
Here the Growth Lemmas follow from our one-step expansion (3.8).

Let G = (W, νG) be a standard family. To get a better control of T nG,
we need to estimate the size of “bad” points in W whose images under T n

get too close to the singular set S−n. For any ε > 0, n ∈ N, define

(5.1) Bε,n(W) := {x ∈ W : |Vα(x)| < 2ε, α ∈ W/ξn}.

Clearly, the set Bε,n(W) contains points in W whose T n images are contained
in short unstable curves. Let

(5.2) Fn(ε) = νG(Bε,n(W)), n ∈ N

be the distribution of Bε,n(W) in the probability space T nG. In fact we will
see, for “typical” regular standard families G, Fn(ε) will decay exponentially
in n. Given any standard pair G = (W, νG), for any x ∈ W, denote rW(x) or
rG(x) as the shortest distance from x to ∂W measured along G.
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Lemma 6. There exists c > 0 such that for any p ∈ (0, q], and standard
family G ∈ Fp, any ε > 0 and n ≥ 0, we have

(5.3) νG(rGn
(x) < ε) ≤ (c1θ

nZq(G) + Cz)ε
p,

Proof. Denote by Aε ⊂ W/ξn, such that for any α ∈ Aε, |Vα| < 2ε. Thus

Zp(T
nG) =

∫

W/ξn

|Vα|−pdλn(α) >

∫

Aε

|Vα|−pdλn(α)

≥ ε−p

∫

Aε

dλn(α) = ε−pνG(Bε,n(W)).

Note that for any n ≥ 0, the set {x ∈ W : rGn
(x) < ε} contains two parts.

One is Bε,n(W), and the other is

Dn := T−n{y ∈ Vα : dVα
(y, ∂Vα) < ε, α ∈ Ac

ε},

where dVα
( , ) is the distance measured along Vα. Since for any α ∈ Ac

ε,
|Wα| ≥ 2ε. Thus the measure of Dn is bounded by

νG(Dn) ≤ c1

∫

(2ε,∞)

2ε

s
dFn(s)

≤ 2c1ε

∫

(ε,∞)

|s|p−1|s|−pdFn(s) = 2c1ε
pZp(T

nG),

where c1 is the constant defined in (4.3) and Fn is the distribution defined
as in (5.2). This implies

(5.4) νG(rGn
(x) < ε) ≤ νG(Bε,n(W)) + νG(Dn) ≤ cεpZp(T

nG)

where c = 1 + 2c1.

Motivated by the above lemma, we introduce the notion of proper families
whose characteristic functions are uniformly bounded. Let

(5.5) Cq >
Cz

1 − θ
,

be a very large constant. Given a standard family G, if Zq(G) < Cq we say G
is a proper standard family. Denote by F∗

q = Z−1
q (0, Cq] the set of all proper

standard families in M . Similarly, for p ∈ (0, q), denote F∗
p = Z−1

p (0, Cq + 1]
as the set of all proper standard families in M with respect to p. Note that
for p < q, F∗

q ⊂ F∗
p.
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Corollary 1. For any p ∈ (0, q] and G ∈ Fp, there exists N = N(G), such
that for any n > N , T nG ∈ F∗

p. In particular, there exists δ̃ > 0, for

any unstable curve W ⊂ M with length > δ̃ and regular measure ν on W ,
(W, ν) ∈ F∗

q.

Corollary 2. For any p ∈ (0, q], there exists c > 0 such that for any G ∈ F∗
p,

any ε > 0 and n ≥ 0,

(5.6) νG(rGn
(x) < ε) ≤ cεp.

Next we state the Growth Lemmas similar to that of [12, Chapter 7],
which follows from Lemma 5 and Lemma 6.

Lemma 7 (First Growth Lemma). There exist constants c > 0, C > 0 such
that for any ε ∈ (0, 1) and any standard pair G = (W, ν), we have

(5.7) ν(rGn
(x) < ε) ≤ c ν(rG(x) < θnεq) + Cεq

Lemma 8 (Second Growth Lemma). There exist constants c > 0, χ > 0
such that for any standard pair G = (W, ν), Gn ∈ F∗

q for any n > χ| ln |W ||.
Furthermore, for any ε ∈ (0, 1),

(5.8) ν(rGn
(x) < ε) ≤ cεq, ∀n > χ| ln |W ||

The Growth Lemmas imply that a standard pair (W, ν) will eventually be
proper in Fq after a certain number of iterations. But for arbitrary standard
family G, its images might not belong to F∗

q. It all depends on the distribu-
tions of short unstable manifolds in G. By choosing p < q, we still might
guarantee that T nG belongs to F∗

p for all large n. As we will see that the
existence of such a p ∈ (0, q] is good enough for the proof of the Coupling
Lemma. The Growth Lemmas guarantee that that for any large n, the n-th
image of any standard pair (W, ν) is a proper family. Thus the set of points
on T nW which come too close to the singularity set has very small measure.
We still need to prove the corresponding global estimates.

Note that for any x ∈ M \ S−∞, W u(x) exists and connects x with S−∞,
see [12] page 93-95, so we define du(x,S−∞) as the distance from x to S−∞

along W u(x). Let Uu
ε (S−∞) be the ε-neighborhood of S−∞ in the du metric.

Denote by rn(x) = du(T nx,S−∞), and ru(x) = du(x,S−∞). Similarly, we
define ds(x,S∞) and Us

ε (S∞). Given a standard family G = (W, ν), if W is
made of maximal unstable manifolds, then the shortest distance from x to
∂W measured along W is r(x). This implies rGn

(x) = rn(x), for any n ≥ 0
and any x ∈ W.
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Lemma 9. There exists c̃ > 0 such that for any x ∈ M \ S∞,

(5.9) rs(x) ≥ inf
n≥0

c̃Λnrn(x).

Furthermore, there exists a uniform constant c = c(T ) > 0 such that for any
proper standard pair G = (W, ν),

(5.10) ν(rs(x) < ε) ≤ cεq.

Proof. For every x ∈ M \ S∞ there exists Ĉ > 0, such that

(5.11) rs(x) ≥ inf
n≥0

ĈΛnds(T nx,S1).

Since both stable and unstable manifolds have uniformly bounded curvature,
there exist c̃, ĉ > 0, such that for any x ∈ M ,

c̃du(x,S−1) ≤ ĉd(x,S−1) ≤ Ĉd(x,S1) ≤ Ĉds(x,S1).

Hence

(5.12) rs(x) ≥ inf
n≥0

c̃Λnrn(x).

Therefore

ν(rs(x) < ε) ≤
∞

∑

n=0

ν(rn(x) < c̃−1Λ−nε).

Due to the Second Growth Lemma,

ν(rn(x) < c̃−1Λ−nε) ≤ C1Λ
−npεq.

Summing over all n ≥ 0, we prove (5.10).

The above lemma recovers the fact that on any long unstable manifold
W u, a majority of points y ∈ W u have long stable manifolds stretching far
beyond W u on both sides of W u. Denote by Wu the family of all maximal
unstable manifolds in M \ S∞.

Lemma 10. For any small κ > 0, define

(5.13) Nκ = ∩∞
n=0

(

x ∈ M | rn(x) ≥ κ

Λn

)

.

Then there exists d > 0 such that for any proper family G = (W, ν) ∈ F∗
p

with W ⊂ Wu

(5.14) νG(Nκ) > d.
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Proof. Note that for any x ∈ (Nκ)
c, there exists n > 0 such that rn(x) <

κΛ−n. By Corollary 2, there exists c > 0 such that

νG(rn(x) < κΛ−n) ≤ cΛ−np.

Thus νG(Nκ) ≥ d, where d = 1 − cΛ−q.

Lemma 11. There exists c > 0 such that for any small ε > 0 one has

(5.15) µ(Uu
ε (S−∞)) ≤ cεq, µ(Us

ε (S∞)) ≤ cεq

Proof. Let W u be a maximum unstable manifold with length larger than δ̃
contained in the basin of µ. According to the Second Growth Lemma, there
exists c > 0 such that for any n > 0,

υW u(rn(x) < ε) ≤ cεq.

On the other hand, for each n ≥ 1,

T n
∗ υW u(Uu

ε (S−∞)) ≤ υW u(rn(x) < ε) ≤ cεq.

Let

ηn =
1

n

n−1
∑

k=0

T k
∗ υW u.

Since (T, µ) is mixing, so there exists a subsequence ηmn
that converges to µ

i.e. limn→∞ ηmn
= µ. For detailed reference, see [23, 22, 24, 1]. This implies

µ(Uu
ε (S−∞)) < cεq.

The second inequality easily follows from Lemma 9.

Lemma 12. Let Wu be the collection of all unstable manifolds in M . Then
E = (Wu, µ) is a standard proper family in Fp, for any p < q.

Proof. Let ξu be the measurable partition of (M,B, µ) into smooth unstable
manifolds. Then A = M/ξu is the index set, and for any α ∈ A, µα is the
conditional measure of µ on the unstable manifold Wα. Furthermore, λ is
the factor measure associated with the partition. Note να has the following
properties. First, by (3.7) and the distortion bound, for each α ∈ A, (Wα, να)
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is a standard pair. Second, for every B ∈ B, να(B ∩ Wα) is a measurable
function of α, and

µ(B) =

∫

α

να(B ∩ Wα)dλ(α).

Thus E = (Wu, µ) is a standard family. Note that for any fixed δ > 0 and
p < q,

Zp(E) =

∫

|Wα|−pdλ(α) =

∫ δ

0

s−pdF0(s) +

∫ ∞

δ

s−pdF0(s),

where F0(ε) denote the measure of short unstable manifolds with length
|W | < ε. The second integral is bounded by δ−p, so it suffices to show that
the first integral is bounded. According to Lemma 11, for any ε > 0,

∫ ∞

ε

ε

s
dF0(s) ≤ µ(Uu

ε (S−∞)) ≤ cεq,

which implies that

∫ 2ε

ε

1

sp
dF0(s) =

∫ 2ε

ε

s1−p

s
dF0(s) ≤ c1ε

q−p.

Accordingly, we have

∫ δ

0

1

sp
dF0(s) =

∞
∑

m=0

∫ δ
2m

δ

2m+1

1

sp
dF0(s)

≤ c2

∞
∑

m=0

2(q−p)m < c3.

By choosing δ small enough, we see that for any p < q, E ∈ Fp.

Growth Lemmas guarantee that for each individual unstable manifold
W u, no matter how short it is, eventually (T nW u, µW u) will be proper in F∗

q .
In addition, Lemma 11 indicates that E should belong to Fq, but we have
not achieved this goal. Instead, we will see that E ∈ F∗

p for p < q, and this
will be good enough for our purpose. From now on, we fix p < q and only
consider proper families in F∗

p.
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6 Construction of the “magnet”

In this section, we will first construct a family of stable manifolds crossing
an unstable manifold. It will serve as a “magnet” along which measures
will be coupled. For any x ∈ M , let W u,s(x) denote the maximal smooth
unstable/stable manifold of x. In this section whenever we say a smooth
unstable manifold, we really mean a maximum smooth unstable manifold
with length less than CM , see Remark 2. For any κ > 0, let W u,s

κ (x) denote
portion of the smooth unstable/stable manifold centered at x with length
2κ. Denote

(6.1) Nδ̃ = ∩∞
n=0

(

x ∈ M | rn(x) ≥ 2δ̃

Λn

)

.

By (5.12), for any x ∈ Nδ̃, both W s(x) and W u(x) exist with rs(x) ≥ 2κ and
ru(x) ≥ 2δ̃, where κ = c̃δ̃.

Note that even if W s(x) has length > 2κ, x may not belong to Nδ̃, since
T nx may approach to S−∞ much faster than δ̃/Λn. On the other hand,
according to Lemma 10 and Lemma 12, there exists d > 0 such that

µ(Nδ̃) > d.

Furthermore, x ∈ Nδ̃, we have

(6.2) υW u(x)(Nδ̃) > d,

where we used the fact that any unstable manifold has length less that CM .
For any x ∈ N2δ̃, let

Γs(x) = {W s(y) | y ∈ W u
δ̃
(x) ∩ Nδ̃}.

Note that Γs is the collection of all maximal stable manifolds along W u
δ̃
(x)∩

Nδ̃ which stick on both sides of W u(x) by at least κ. As the length of stable
manifolds in Γs(x) maybe very irregular, so we need to chop off a portion to
get our magnet.

Let U(x) be a “rectangular” shaped region such that W s
κ/2(x) ⊂ U(x) and

W u
δ̃/2

(x) ⊂ U(x). And the boundary ∂U(x) is made of 2 unstable manifolds

with length δ̃ and 2 stable manifolds with length κ. Accordingly, the region
U(x) can be viewed as a “rectangle” centered at x with dimensions δ̃ × κ.
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We say that an unstable manifold W u fully u-crosses Γs(x), if W u meets
every stable manifold in Γs(x). Let Γu(x) be the collection of all maximal
unstable manifolds W u(y) that fully u-cross Γs(x), with y ∈ W s(x) ∩ U(x).
Define

(6.3) R(x) = Γs(x) ∩ Γu(x) ∩ U(x) ∩ Nδ̃/4.

According to (6.2) and the distortion bound of the stable holonomy map h,
there exists d0 > 0 such that for any W ∈ Γu,

(6.4) υW (W ∩R(x)) > d0.

U(x)

W s(x)

W u

δ̃
(x)

Γs(x)

Γu(x)

Figure 1: R(x) = U(x) ∩ Γu(x) ∩ Γs(x) ∩ Nδ̃/4

We fix x0 ∈ Nu
2δ̃

, and define our magnet by R∗ := R(x0) and Γs/u =

Γs/u(x0). The magnet will be used to couple regular measures supported on
unstable manifolds in Γu.

Lemma 13. There exists n0 > 0, d1 > 0, for any standard pair (W u, ν) with
|W u| > 4δ̃ and n ≥ n0,

(6.5) ν(T−nR∗ ∩ W u) ≥ d1.

Proof. Let H(Ω) be the set of all closed unstable curves on Ω equipped with
the topology induced by the Hausdorff metric. Then H(Ω) is compact and
complete. Thus the set of all closed unstable curves of length larger or equal
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to δ̃ is a compact set in H(Ω). This implies that there exists m0 > 0 such
that U(x1), ..., U(xm0

) is a cover of {x ∈ M | |W u(x)| ≥ 4δ̃}. Accordingly,
any unstable manifolds with length longer than 4δ̃ must be fully u-across
R(xi), for some i ≤ m0. Now by the mixing property, there exist n0 > 0,
and d1 > 0 such that for any n ≥ n0,

µ(T nR(xi) ∩R∗) > d1.

According to assumption (H3), both T and h satisfy the distortion bound.
Thus for any unstable manifold W u with length longer than 4δ̃ and a regular
measure ν on W u, there exists d̂2 ≤ d1 such that for n ≥ n0,

(6.6) ν(W u ∩ T−nR∗) ≥ d̂2.

Note that here we used the fact that |W u| < CM by the remarks under (H.2).
Accordingly, by (6.4), we get (6.5).

Lemma 14. Fix p ∈ (0, q). There exists a positive constant d0 ∈ (0, 1) such
that for any G = (W, νG) ∈ F∗

p and n ≥ n0 we have νG (W ∩ T−nR∗) > d0.

Proof. For any p ∈ (0, q) and G = (W, νG) ∈ F∗
p, it follows from Corollary 2

that νG(B2δ̃,n(W)) ≤ c(2δ̃)p. This implies that for any n > n0,

νG(W ∩ T−nR∗) ≥ νG(W ∩ T−nR∗, |Wα| > 4δ̃)

≥ d1(1 − c(2δ̃)p).

This Lemma says that if G ∈ F∗
p, then for any n ≥ n0, at least d0 fraction of

T nG has base points returning to R∗ properly.

7 Coupling Lemma

In this section, we fix p ∈ (0, q], and only consider standard pairs or families
in Fp built on regular unstable manifolds.

Let (W, νW ) be a standard pair, and define

Ŵ = {(x, t) | x ∈ W, t ∈ [0, 1]}.

Then Ŵ is a rectangle based on W . We equip Ŵ with a probability measure
ν̂, such that for any (x, t) ∈ Ŵ ,

(7.1) dν̂W (x, t) = dνW (x)dt.
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Note that the map T n defined on W can be extended to Ŵ with T n(x, t) :=
(T n(x), t). Let G = {(Wα, νWα

), α ∈ A} be a standard family with probability
measure νG. Then the rectangles based on W are

Ĝ = {(x, t) : x ∈ ∪αWα, t ∈ [0, 1]}.

Again we define the probability measure ν̂Ĝ, such that dν̂Ĝ(x, t) = dνG(x)dt.

Lemma 15. Given any two families G, E ∈ Fp, there exists a measure pre-

serving map ( the coupling map) Θ : Ĝ → Ê with

Θ(x, t) = (y, s), Θ∗ν̂Ĝ = ν̂Ê

and a coupling time function Υ defined on Ĝ, such that TΥ(x,t)x and TΥ(x,t)y
lie on the same stable manifold. Furthermore, the coupling time function
Υ : Ĝ → N has exponential tail bound:

(7.2) ν̂Ĝ(Υ > n) ≤ CΥϑn
Υ,

where CΥ is a positive constant, and ϑΥ ∈ (0, 2Λ−p).

The main idea of the proof of this lemma is that we first fix a special
subset R with hyperbolic structure as we constructed in last section. Then
we try to match the measures ν̂Ĝ and ν̂Ê according to the simultaneous, proper
returns of the unstable manifolds (bases of regions) to R. At each coupling
time Υ, a fraction of both measures are matched and pumped out of the
system. Thus the total measure remaining at time n is an upper bound for
|T n

∗ ν̂Ĝ −T nν̂Ê |. In next section we will show that the speed of coupling leads
to the rate of decay of correlations. Now we consider an ideal case. At n0,
both regions Ĝ and Ê have at least d0 fraction whose base images under T n0

properly return Rs. If we couple d = d0/2 fraction, then both regions remain
1 − d fraction of total measure. Assume the two new families still satisfy
the assumptions, then we couple another d fraction of measure after another
n0 iterations. In this way, after n0 iterations, we will couple all points on
both regions except (1 − d)n fraction of each measure. This would give us
the exponential tail bound for the coupling time function, which will lead to
the exponential decay of correlations.

However, the real situation is that after each coupling, the two remaining
density functions do not satisfy distortion bound any more. To guarantee
distortion bound, we need to cut the regions into pieces at the place they
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got coupled. Thus the base of each region contains tons of arbitrarily short
unstable manifolds, which may need arbitrarily long time to recover. In
other words, the corresponding two new families are not proper anymore.
More precisely, notice for any unstable manifold W that fully u-crosses Rs,
W ∩ Rs is a closed nowhere dense (Cantor-like) set on W . After coupling,
the remaining set will be a countable union of very short unstable manifolds.
Next we need to estimate the recovery time for the remaining manifolds.

The proof of the Coupling Lemma follows from a similar argument as
in [9, 10] and [12] Section 7.12-7.15, which we will not repeat except the
following technical changes due to our general assumption on singularities.
Let V be a connected component (or a gap) of (W \R∗)∩U . Then we define
the rank of V as the first moment when the image of V is split into pieces.

Lemma 16. Let V be a connected component (or a gap) of (W \R∗)∩U of
rank n. There there exists C > 0 such that

(7.3) |T n−1V | ≥ CΛ
n

β−1 ,

where β ∈ (0, 1) was given in (3.1).

Proof. Since rank V = n, so T n(V ) gets split for the first time. Let x be any
one of the end points of V . By (6.3), we know x ∈ R∗ ⊂ Nδ̃/4. This implies
that for any m ≥ 1,

(7.4) rm(x) ≥ δ̃/(2Λm).

Let V0 be the smooth component in T nV that contains T nx. By (7.4),

|V0| ≥ rn(x) ≥ δ̃/(2Λn).

It follows from the regularity of unstable curves that there exists c1 > 0 such
that for the middle point y ∈ T−1V0,

|V0| ≤ c1JT−1V0
(y)|T−1V0|

By our assumption on singular curves, there exist c2, c3 > 0 such that

= d(y,S1) ≥ c2d(y, ∂T−1V0) ≥ c3|T−1V0|

Accordingly to (3.1), there exists c > 0 such that

c|V0| ≤ |T−1V0|1−β
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which implies that for some C > 0,

|T−1V0| ≥ (c|V0|)1/(1−β) ≥ CΛ
n

β−1 .

It follows from Corollary 1 that there exists n̂0 = n̂0(V ) such that for
any m > n̂0, Tm(V, νV ) will be a proper standard family again, where νV

is the conditional measure of a regular measure νW on V . Accordingly, we
define recovery time function rp(x) = n̂0(V )+n0 on V . Clearly, the recovery
function is constant on each gap and for any n ≥ rP, T n(V, νV ) has at least
d0 fraction properly return to the magnet R∗. Next we estimate the tail
bound of the recovery time function.

Lemma 17. For any unstable manifold W with |W | ≥ 4δ̃ that fully u-crosses
R∗, for all n ≥ 1,

(7.5) νW

(

x ∈ W \ Wκ | rp(x) > n
)

≤ const Λ−qn.

Proof. For any x in the interior of a gap V with rank n, there exists m ≥ n
such that rm(x) < c̃Λ−mκ. It follows that

V ⊂ ∪m≥n{rm(x) < c̃Λ−mκ}.

Since (W, νW ) is proper, by (5.8), for any m ≥ 0, νW (rm(x) < ε) ≤ cεq. This
implies that there exists C > 0 such that νW (V ) ≤ CΛ−qn. Summing over
all V with stopping time greater than n, we get

νW

(

rp > n
)

≤ const Λ−qn|W |.

Thus for any n > 1,

(7.6) νW

(

rp > n
)

≤ const Λ−qn.

This completes our proof of Coupling Lemma. In addition, we can now
construct Young’s tower by using the magnet R∗ as its base. The Markovness
of the returns would be guaranteed by the formula (6.1), in the same way
as it was done in [8, 32]. The exponential tail bound follows by exactly the
same argument as the proof of Coupling Lemma.
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8 Proof of the main theorem

Notice that the rate of decay of correlations is actually the speed of con-
vergence of a random distribution to the equilibrium state (more precisely,
SRB measure). Accordingly, it is enough to study the rate of convergence in
|T n

∗ ν−µ|, where ν is absolutely continuous with respect to the SRB measure
µ. Let G be a proper family, then any observable g on G can be naturally
extended to the region Ĝ as g(x, t) = g(x). For brevity, we use the notation
〈g〉 =

∫

M
g dµ. The following theorem follows from the Coupling Lemma by

a similar argument as in [9, 10] and [12], pages 175–177.

Theorem 2 (Equidistribution). Let G be a proper standard family. For any
dynamically Hölder continuous function f ∈ H−

ϑf
∩ L∞(M, µ) and n ≥ 0

(8.1)

∣

∣

∣

∣

∫

M

f ◦ T n dνG −
∫

M

f dµ

∣

∣

∣

∣

≤ Bfθ
n
f

where Bf = 2CΥ

(

Kf + ‖f‖∞
)

and θf =
[

max{ϑΥ, ϑf}
]1/2

< 1.

Theorem 3 (Exponential decay of correlations). For every pair of dynami-
cally Hölder continuous functions f ∈ H−

ϑf
∩L∞(M, µ), g ∈ H+

ϑg
∩ L∞(M, µ)

and n ≥ 0

(8.2)
∣

∣〈g · (f ◦ T n)〉 − 〈f〉〈g〉
∣

∣ ≤ Bf,g θn
f,g

where

(8.3) θf,g =
[

max
{

ϑΥ, ϑf , ϑg, e
−p/κ

}]1/4
< 1,

where

(8.4) Bf,g = C0

(

Kf‖g‖∞ + Kg‖f‖∞ + ‖f‖∞‖g‖∞
)

,

and C0 = C0(D) > 0 is a constant.

The above results can be extended to variables made at multiple times.
Let f0, f1, . . . , fk ∈ H−

ϑf ,Cf
, and ‖fi‖∞ = ‖f‖∞, i = 1, . . . , k. Consider the

product f̃ = f0 · (f1 ◦ T ) · · · (fk ◦ T k).

Lemma 18. Let G be a proper family in F∗
p. Then there exists Bf̃ > 0 such

that for any n ≥ 0,

(8.5)
∣

∣

∣

∫

M

f̃ ◦ T ndνG −
∫

M

f̃dµ
∣

∣

∣
≤ Bf̃ϑ

n
f .
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Furthermore, let g0, g1, ..., gk ∈ H+
ϑg

, and ‖gi‖∞ = ‖g‖∞, i = 1, ..., k.

Consider the product g̃ = g0 · (g1 ◦T ) · · · (gk ◦ T k). Then we can estimate the
correlations between observables f̃ and g̃ as we did in Theorem 3

Theorem 4. There exists Bf̃ ,g̃ > 0, for all n ≥ 0,

∣

∣〈g̃ · (f̃ ◦ T n)〉 − 〈f̃〉 · 〈g̃〉
∣

∣ ≤ Bf̃ ,g̃θ
n
f,g,

where θf,g is the same as in (8.2).

9 Applications to billiards

To illustrate our method, we apply it to two classes of billiards for which
previous methods failed. Since these examples play a secondary role, we
only sketch the arguments.

First we recall standard definitions, see [4, 5, 6, 8]. A 2D flat billiard is
a dynamical system where a point moves freely at unit speed in a domain
Q ⊂ R

2 and bounces off its boundary ∂Q by the law of elastic reflection. We
assume that ∂Q = ∪iΓi is a finite union of piecewise smooth curves, such
that each smooth component Γi ⊂ ∂Q is either convex inward (dispersing),
or flat, or convex outward (focusing). Following Bunimovich, see [3] and [12,
Chapter 8], we assume that every focusing component Γi is an arc of a circle
such that there are no points of ∂Q on that circle or inside it, other than the
arc Γi itself. Under these assumptions the billiard dynamics is hyperbolic,
ergodic, and mixing.

Let M = ∂Q × [−π/2, π/2] be the collision space, which is a standard
cross-section of the billiard system. Canonical coordinates on M are r and ϕ,
where r is the arc length parameter on ∂Q and ϕ ∈ [−π/2, π/2] is the angle
of reflection. The collision map F : M → M takes an inward unit vector at
∂Q to the unit vector after the next collision, and preserves smooth measure
dµ̂ = c · cos ϕ dr dϕ on M, here c is a normalization constant. Furthermore,
∂M∪F−1(∂M) is the singular set of F .

For billiards with focusing boundary components, the expansion and con-
traction (per collision) may be weak during long series of successive reflec-
tions along certain trajectories. To study the mixing rates, one needs to find
and remove the spots in the phase space where expansion (contraction) slows
down. Such spots come in several types and are easy to identify, for example,
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see [13] and [12, Chapter 8]. Traditionally, we denote

∂Q = ∂0Q ∪ ∂±Q,

where ∂Q0 is the union of flat boundaries, ∂Q− contains focusing boundaries
and ∂Q+ corresponds to dispersing boundaries. The collision space can be
naturally divided into focussing, dispersing and neutral parts:

M0 = {(r, ϕ) : r ∈ ∂0Q}, M± = {(r, ϕ) : r ∈ ∂±Q}.

Let

(9.1) M̄ = {x ∈ M− : π(x) ∈ Γi, π(F−1x) ∈ Γj, j 6= i} ∪M+,

Note that M̄ only contains the first collisions with the focusing arcs (the
collisions with the straight lines are skipped altogether) and all collisions
on dispersing boundaries. The map F preserves the measure µ conditioned
on M̄ , which we denote by µ = [µ̂(M̄)]−1µ̂. Furthermore, F has uniform
expansion and contraction, since we skipped all collisions too close to the
“bad spots” in the collision space. But it has a larger singular set than the
original map. Let S0 = ∂M̄ , then S = S0 ∪ F−1S0 is the singular set of F .

Now we turn to two specific classes. The first is a non-smooth stadium.
It is a convex domain Q bounded by two parallel straight segments and two
minor arcs (i.e., arcs smaller than a semicircle) with radius r3 and r4. Let
Q satisfy the standard Bunimovich assumptions [3], i.e. the complement of
each arc in ∂Q to a full circle crosses both straight segments in ∂Q, but does
not cross the other arc; see Fig. 1 (left). As demonstrated in [13], the reduced
map F fails condition (1.3).

Theorem 5. For this type of the stadia, the correlations for the reduced
billiard map F : M̄ → M̄ decay exponentially.

The detailed analysis of Bunimovich stadia was presented in [3, 5] and
[12, Chapter 8], we only focus on the novel parts here, see Fig. 1 (left).

The space M̄ of the reduced map F is shown in Fig. 1 (right). The map F
has two types of infinite sequences of singularity curves, as shown on Fig. 1.
The first type accumulates near the top and bottom vertices x1, x2 of the
parallelograms, they are generated by trajectories nearly “sliding” along the
circular arcs. Denote these curves as S1 := {Sk,n : k = 1, 2, n ∈ N}. And let
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S0 = ∂M̄∪S1, S±1 = F∓1S0. Denote M = M̄\S0. Then F : M\S1 → M\S−1

is a C2 diffeomorphism, which follows from the smoothness of F and S0.
The second type singular curves accumulate near the other two vertices

x3, x4 on the line ϕ = ±ϕ0, they are generated by trajectories experiencing
many bounces off the two straight sides of the stadium. Note that S consists
of countably many curves {Sn,k, n = 0, 1, 2, ...}, k = 1, 2, 3, 4, accumulating
near singular points xk ∈ M . For n ∈ N, denote Mn,k as the connected region
bounded by the adjacent curves Sn,k, Sn−1,k in M \ S1. Mn,k is called a n-
cell. Points in Mn,k, k = 3, 4 experience exactly n reflections off the straight
sides before landing on the opposite arc of ∂Q. By geometric calculation as
explained in [15], one of the long boundaries of Mn,3 can be approximated
by the line segment

r = (ϕ − ϕ0)r3 +
l

2n cos ϕ3

,

where l is the length of the flat boundary segment and ϕk is the angle of
xk. Furthermore, the slanted line through x3 has equation r = 2r3(ϕ − ϕ3).
Geometric structure in the vicinity of x4 is similar.

x1

x2

x3

x4

x3

ϕ3

W

Figure 2: Discontinuity manifolds of stadium

It is also shown in [13, 12] that the expansion factor in Mn,k satisfies

(9.2) J (x) ≥
{

c1n
3

2 , if k = 1, 2;
c1n, if k = 3, 4,

where c1 > 0 is a constant. We note that for k = 1, 2, the reduced map has
an expansion n during the sliding process and another expansion at least of
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order
√

n before the trajectory landing on the opposite arc as explained in
Exercise 8.36 in [12].

To prove the exponential decay of correlations for F , we need to verify
(H.3) and one-step expansion condition. For j = 1, 2, the expansion factors
are strong enough so that the series of their reciprocals converges,

∑

n−3/2 <
∞. Thus they satisfy the ‘old’ one-step expansion condition (1.3), so they
can be easily handled as in [13]. For k = 3, 4, the series of the reciprocals
of the expansion factors diverges,

∑

n−1 = ∞, and this is where our new
one-step expansion condition (3.8) is used.

For a typical unstable manifold W , we need to estimate the expansion
factor on W ∩ Mn,k. It is enough to consider k = 3. Assume x ∈ Wn :=
W ∩Mn,k, then the free path of x is τn(x) = 2nr3 cos ϕ3. Although r3 might
be different from r4, it follows from the existence of two parallel boundaries
that

r3 cos ϕ3 = r4 cos ϕ4.

Let x = (r1, ϕ1) ∈ Wn, and Fx = (r1, ϕ1) ∈ Vn := FWn. It is easy to verify,
see [15]

Λ(x) ≥ 2n cos ϕ0

cos ϕ2
≥ n

A direct geometric calculation shows that Mn,k has dimensions l(2n2rk cos ϕk)
−1

in the stable direction and (nrk cos ϕk)
−1l

√

r2
k + 1 in the unstable direction.

Accordingly, for any unstable curve W that crosses finitely or infinitely many
of Mn,3 and get cut into pieces Wn with length l(2n2r3 cos ϕ3)

−1, the minimal
expansion factor is n Thus,

∞
∑

n=m0

( |W |
|Wn|

)q |Wn|
|W | =

∞
∑

n=m0

( |Wn|
|Vn|

)q( |Wn|
|W |

)1−q

≤
∞

∑

n=m0

Λ−q
n (

|Wn|
|W | )1−q ≤ m1−q

0

∞
∑

n=m0

n−2+q <
1

1 − q

(Here we used the fact that |W | =
∑∞

n=m0
|Wn|). Although the right hand

side above is uniformly bounded, it is not < 1 as required by (3.8). To resolve
the problem, we can select an equivalent norm or consider high iterations of
F as explained in [13] to get (3.8). Thus by Theorem 1, the return map
F : M → M has an exponential mixing rate.

Our second class of billiards is made by Bunimovich tables [3, 12] whose
focusing boundaries contain major arcs (i.e. arcs greater than a semicircle).
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Such arcs add a new type of ‘bad spots’ where the hyperbolicity is weak, see
[13] and [12, Chapter 8]. For simplicity, we assume that the major arcs are
less than 240o, to prevent even further types of bad spots. Also we assume
that the boundary components are either focusing or dispersing, and they
intersect each other transversally (do not make cusps).

Theorem 6. For the above Bunimovich-type billiard tables with major arcs,
the correlations for the reduced billiard map F : M̄ → M̄ decay exponentially.

In this class of billiards, the trouble is caused by long series of collisions
occurring at one focusing arc where |ϕ| is near 0. In this case the trajectory
is close to a periodic orbit running along a diameter of the corresponding arc;
we call such series diametrical (they can occur only on a focusing arc larger
than half-circle).

L2

x1

x2

y1

y2

M̄

L1

Figure 3: Singularities in the collision space of billiards with major arcs

The space M̄ of the reduced map and the structure of singularities is
shown on Figure 3. The singularity set S ∩ M̄ of the map F consists of
two types of infinite sequences of curves. There are four infinite sequences of
almost parallel straight segments running between the nearby sides of M̄ and
converging to x1, x2, y1, y2, see Fig. 3. Curves of the first type accumulate near
the top and bottom vertices y1, y2, they are generated by trajectories nearly
“sliding” along the circular arcs. Curves of the second type accumulate near
two points x1 and x2 (where M̄ intersects the line ϕ = 0). These singularities
are generated by trajectories experiencing arbitrary many collisions with the
large arc while running almost along its diameter. We only concentrate on
singularities near x1, and denote by {Sn} the sequence of singularity curves
converge to x1. Notice that the point x1 has a trajectory of period 2. Thus
points x ∈ M̄ have trajectories running near a diameter of Γ1, they hit Γ1 on
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the opposite side and then come back, so that the points x, F2(x), F4(x), . . .
are close to each other. Then the two sequences {F2m(x)} and {F2m+1(x)}
move slowly along the arc Γ1 until one of them finds an opening in Γ1 and
escapes. So we let Mm denote the m-cell of x1 bounded by Sm, Sm+1, ∂M̂
and ∂F (M̂). It is easy to show the two slanted boundaries L1, L2 of the
parallelogram M̂ have equations r = (π + ω − 2ϕ)r and r = (ω − 2ϕ)r,
Sm has equation r = (ω − 4mϕ)r. Accordingly, for any unstable curve W
that crosses finitely many or infinitely many of Mn’s, the minimal expansion
factor on W ∩ Mn satisfies is ∼ 4nr. Thus for any q ∈ (0, 1),

∞
∑

n=m0

(
|W |

|F (W ∩ Mn,k)|
)q |W ∩ Mn,k|

|W |

≤
∞

∑

n=m0

Λ−q
n (

|W ∩ Mn,k|
|W | )1−q <

m1−q
0

(4r)q

∞
∑

n=m0

n−2+q <
1

(1 − q)(4r)q
.

We use the fact that |W | is (4m0r)
−1 and |W ∩ Mn,k| is of order (4n2r)−1

in the above inequality. Although the right hand side is uniformly bounded,
but maybe not less than one. In this case, we can pick an equivalent norm
or consider high iterations of F as explained in [13] to get (3.8). Thus by
Theorem 1, the return map F : M̄ → M̄ has exponential mixing rate.
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