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THE WORK OF DMITRY DOLGOPYAT ON PHYSICAL MODELS WITH

MOVING PARTICLES

N. CHERNOV

ABSTRACT. D. Dolgopyat is the winner of the second Brin Prize in Dynami-

cal Systems (2009). This article overviews his remarkable achievements in a

nontechnical manner. It complements two other surveys of Dolgopyat’s work

written by Y. Pesin and C. Liverani and published in this issue. This survey

covers Dolgopyat’s work on various physical models, including the Lorentz

gas, Galton board, and some systems of hard disks.

1. INTRODUCTION

In their surveys, Y. Pesin and C. Liverani have reflected upon the contribu-

tion made by Dmitry Dolgopyat to the theory of dynamical systems. They de-

scribed those as fundamental and far-reaching, capable of affecting the future

development of this field. Dolgopyat’s profound ideas and innovative tech-

niques have indeed made a great impact on the modern theory of chaos and

hyperbolic dynamics.

But Dolgopyat’s scholarly interests are not limited to fundamental mathe-

matical theories. He also takes pleasure in solving applied problems. Those

involve physical models, in which realistic particles (molecules and electrons)

move in various reservoirs, and equations of motion are set according to the

laws of classical mechanics or electromagnetism. Along these lines, Dolgopyat

produced a series of remarkable results. In particular, he found answers to sev-

eral notoriously difficult questions in mathematical physics and statistical me-

chanics.

Physical systems are often inconvenient and unsuitable for direct applica-

tion of conventional theories: the dynamics may have ugly singularities, the

phase space may not be compact (and may have infinite Lebesgue measure),

hyperbolicity may be weak (nonuniform, partial, or coexisting with elliptic is-

lands), natural invariant measures may be infinite, etc. Then standard meth-

ods of ergodic theory and hyperbolic dynamics fail to work or require substan-

tial adaptation. Often one has to develop new approaches and invent clever

tricks to tackle various difficulties. This is where Dolgopyat’s talent is particu-

larly strong.
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2 N. CHERNOV

Here I will overview Dolgopyat’s work on physical models. My presentation

will be nontechnical and will focus on the innovative features of this work.

2. BROWNIAN MOTION IN A SYSTEM OF TWO DISKS

Consider a seemingly simple system of two particles: a heavy disk of radius R

and mass M ; and a small light disk of radius r < R and mass m ≪ M . These par-

ticles move freely in a two-dimensional container and collide elastically with

each other and with the walls. The walls are made of molecules, i.e., small disks

that are fixed (unmovable).

V

v

Q

q

FIGURE 1. Two disks in a box.

Let Q(t ) denote the center and V (t ) the velocity of the heavy disk at time t .

Similarly, let q(t ) denote the position of the light particle and v(t ) its velocity.

Due to the elastic character of interaction between the disks, the total kinetic

energy E = 1
2

(M‖V ‖2 +m‖v‖2) is conserved. The surface of constant energy E 11: OK as is?

in the phase space of this system is a 7-dimensional compact manifold M with

boundary. The dynamics on M is in fact a billiard flow Φ
t .

This is a Hamiltonian system, and it preserves the Liouville measure on M

(which has a uniform density). Systems of hard disks in closed containers have

been shown to be completely hyperbolic and ergodic under various conditions

[10, 33], but those results do not cover this particular model. It remains un-

known whether this model is hyperbolic or ergodic, and such questions seem

to be beyond our abilities.

From a physicist’s point of view, the main feature of this system is not hyper-

bolicity or ergodicity but the character of motion. Let us set, for convenience,

m = 1 and E = 1/2. The heavy disk moves slowly; in fact, ‖V ‖ = O (1/
p

M).

Moreover, at each collision with the small disk, the velocity V (t ) changes very

little. In fact, its increment is ‖∆V ‖ = O (1/M) ≪ ‖V ‖. This indicates that the

velocity V (t ) behaves as a Brownian motion, in the limit M →∞. Then the po-

sition Q(t ) should behave as the integral of the Brownian motion (contrary to

a common belief). The latter is also a stochastic process described by certain

JOURNAL OF MODERN DYNAMICS VOLUME 4, NO. 1 (2010), 1–13



THE WORK OF DMITRY DOLGOPYAT 3

stochastic differential equations, but it is smoother than the classical Brownian

motion (i.e., Wiener process).

So the goal here is to prove (mathematically) that the trajectories of the heavy

disk converge to a certain stochastic process and describe the latter by a system

of stochastic differential equations. The tools required for the proof include

methods of hyperbolic dynamics, averaging theory, probabilistic moment esti-

mates, and elements of stochastic differential equations.

The small light disk moves at a higher speed ‖v‖ = O (1), and its velocity

changes by O (1) at every collision. So the light disk behaves like a billiard

ball that chaotically moves around and bombards the heavy disk from all sides.

Thus the system has fast variables (q and v) and slow variables (Q and V ). It

is natural to fix the initial state (Q0,V0) of the heavy disk and select the state

(q0, v0) of the light disk randomly anywhere in the available part of the phase

space.

Thus our initial distribution µ0 is supported on a 3-dimensional subspace

Σ0 ⊂M (defined by Q =Q0 and V =V0), and on that subspace it is smooth (for

simplicity, it can be chosen uniform). This is a probability measure that does

not stay invariant, its image µt at time t is supported on a 3D surface Σt that

changes with t , as the state of the heavy disk changes (if slowly). But it is exactly

the measure µt that describes the distribution of trajectories (Q(t ),V (t )) of the

heavy disk.

One can visualize the support Σt of the measure µt as a 3D manifold roughly

parallel to Σ0 whose motion in the directions transverse to Σ0 is very slow (as

the heavy particle slowly changes its state). Within Σt there is one strongly

expanding direction and one strongly contracting direction, because the light

particle moves nearly as a billiard ball whose dynamics is known to be strongly

hyperbolic. Roughly speaking, Σt gets stretched in the unstable direction, con-

tracted in the stable direction (and cut by singularities). For large t , it appears

as a collection of thin pieces that are long in the unstable direction and short

(and getting ever shorter) in the stable direction.

This leads to the idea of foliating Σt by unstable curves and studying the evo-

lution of each curve separately. The induced distribution on unstable curves

will be smooth, approaching the Sinai–Ruelle–Bowen (SRB) distribution.

Dolgopyat proposed to study unstable curves with probability density on

them. He called a curve with a density on it a standard pair. He proved that

the images of a standard pair quickly become equidistributed in the available

part of the phase space, and such properties as the decay of correlations and

Central Limit Theorem hold for standard pairs just like they do for invariant

measures.

Standard pairs happen to be a highly efficient and versatile tool in the stud-

ies of physical models. They can describe the evolution of a single curve as well

as that of smooth measures supported on higher-dimensional manifolds (since

the latter can be foliated by smooth unstable curves). Dolgopyat also designed

a flexible method for controlling the evolution of standard pairs—the coupling
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techniques culminating in (now well-known) Coupling Lemma. All these tools

were developed and honed during the work on this ‘simple’ model of two disks

and latter employed in other studies [13, 15, 16, 17, 18].

In the end, it was proved indeed that the velocity process V (t ), after proper

rescaling, converges to a Brownian motion-type process, and the position Q(t )

converges to its integral. See precise statements in [12]. In the most interesting

case V0 = 0 (the heavy disk is initially at rest) and the limiting processes satisfy

the stochastic differential equations

dQ(τ) = Ṽ dτ and dṼ (τ) =σQ d w(τ),

where τ = t M−2/3 is the rescaled time, Ṽ (τ) = M 2/3V (t ) the rescaled velocity,

w(τ) is a standard 2D Wiener process, and σQ is the covariance matrix for the

billiard system where the heavy disk with a fixed center Q plays the role of an

obstacle.

This ‘simple’ system of two particles required a major effort. The work started

in 2002 (when the model was proposed by Y. Sinai) and in its final form it was

published in 2009. It became a 193-page book that appeared as a separate issue

of Memoirs of the AMS.

3. GALTON BOARD

The Galton board [25, Chapter V] introduced by Sir Francis Galton (1822–

1911), also known as quincunx or bean machine, is one of the simplest me-

chanical devices exhibiting stochastic behavior. It consists of an upright (or

inclined) wooden board with rows of pegs. A ball thrown into the Galton board

rolls under gravitation and bounces off the pegs on its way down. If many balls

are thrown into the quincunx, then one can observe a normal distribution of

balls coming to rest on the machine floor. This device can be found on display

in the exhibit “Mathematica: a world of numbers. . . and beyond” by Charles

and Ray Eames that is installed in the Boston Museum of Science, the New York

Hall of Science and the Science and Technology Museum of Atlanta.22: Information from

http://en.wikipedia.org/wiki/Men_of_Modern_Mathematics

OK this way?
In mathematical studies, the board is R

2 with a periodic array of round scat-

terers. The ball moves under a constant external field. It is common to impose

a ‘finite horizon’ condition, i.e., the ball cannot move in any direction indefi-

nitely without hitting a scatterer.

Incidentally, this model is identical to a periodic Lorentz gas [27] that mod-

els the transport of electrons in metals. Without external fields, the periodic

Lorentz gas reduces to a billiard system on its fundamental domain (a torus

minus scatterers). This is a dispersing billiard (Sinai billiard); it preserves a Li-

ouville (equilibrium) measure and has strong ergodic and statistical properties.

In particular, it exhibits diffusive behavior, see [8, 9, 11, 34, 36].

On a Galton board, the ball moves under the gravitational field g = (g ,0)

where we chose the coordinates in such a way that the x axis is aligned with

the field. Let q = (x, y) denote the position and v the velocity of the ball. The

JOURNAL OF MODERN DYNAMICS VOLUME 4, NO. 1 (2010), 1–13

http://en.wikipedia.org/wiki/Men_of_Modern_Mathematics


THE WORK OF DMITRY DOLGOPYAT 5
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FIGURE 2. Galton board.

ball has unit mass, so the equations of motion are

(3.1) dq/d t = v, dv/d t = g,

which preserve the total energy

(3.2) E = 1
2

v2 − g x,

where v = ‖v‖ is the ball’s speed. Accordingly, when the ball rolls down the

board, x → ∞ and v ∼ x1/2 → ∞, so the speed grows to infinity. Thus the

system does not have a finite invariant measure, and its energy surface is an

unbounded 3D manifold, M = {E = const}3, with infinite Lebesgue measure. 3: OK as is?

These features made mathematical studies prohibitively difficult.

Physicists were interested in this model since the 1970s. Numerous heuristic

and numerical studies [26, 28, 29, 30] have indicated that the x-coordinate of

the ball typically grows as t 2/3 and, respectively, its speed is v ∼ t 1/3. But math-

ematically rigorous results were conspicuously lacking, until Dolgopyat’s recent

work [13].

It is natural to select the initial position of the particle randomly in a certain

compact domain and choose the direction of its velocity uniformly on the unit

circle. Then one gets an initial probability distribution µ0 that has a compact

3D support in M . It does not stay invariant as the particle travels in R
2 and

drifts in the direction of the field. So its image µt at time t will slowly change

and spread over M .

Dolgopyat used standard pairs again to study the evolution of µt . The sup-

port of µ0 is foliated by unstable curves with induced densities, and then one

can follow their images. But this system is quite different (and in many ways

more difficult) than the two-disk model of the previous section; see below.

As the ball rolls down the board, its speed increases, and respectively it be-

comes less affected by the field. As a result, its trajectory between collisions

with the obstacles becomes straighter, and its overall motion gets closer to that

of a billiard ball without external field. Observe that the dynamics is inhomo-

geneous in space and time, its features gradually change.
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6 N. CHERNOV

More precisely, when the speed of the ball increases, the scattering effect

produced by collisions gets stronger and the drift in the direction of the field

gets weaker. Due to the stronger scattering effect, the ball bounces back more

sharply and makes longer trips in the direction opposite to the field (where its

speed decreases). This phenomenon is similar to Fermi, or diffusive shock ac-

celeration [24, 37]. It ultimately leads to the recurrent character of the dynam-

ics: the ball travels all the way back from time to time. More precisely,

liminf
t→∞

x(t ) ≤ x(0)

with probability one. Such recurrent behavior is counterintuitive: we all know

that a ball thrown into a real Galton board always rolls down and ends up on

the floor. But on the idealized board, rather paradoxically, the ball will almost

surely bounce all the way back up! (Of course, our idealized model does not

take into account non-elasticity or air resistance or friction.)

Aside from the recurrence phenomenon, it was confirmed that indeed x ∼
t 2/3 and v ∼ t 1/3. More precisely, it was proven [13] that there is a constant c > 0

such that c t−1/3v(t ) converges, as t →∞, to a random variable with density

3z

Γ(2/3)
exp

[

−z3
]

, z ≥ 0.

Accordingly, 2g c2t−2/3x(t ) converges to a random variable with density

3

2Γ(2/3)
exp

[

−z3/2
]

, z ≥ 0.

These mathematical results fully resolved notoriously difficult questions dis-

cussed in the physics community for almost 40 years.

4. SELF-SIMILAR BILLIARDS

Barra, Gilbert, and Romo [4] introduced an interesting model—a channel of

self-similar billiard tables with curved walls and inner obstacles and connected

by passages, see Figure 3. In this infinite channel, a billiard ball travels free (un-

der no external forces). The cells of this channel are similar to each other, and

their sizes grow exponentially. More precisely, each cell is an enlarged copy of

the previous one, expanded by the same factor λ > 1. Under these conditions,

the opening in each cell on the right (into the bigger neighbor) is larger than

the opening on the left (into the smaller neighbor). Since the billiard ball tends

to move chaotically and its natural distribution is uniform in space, it is more

likely that the ball will escape to the right than to the left. One can regard this

model as a nonsymmetric ‘random walk’, thus expecting a steady drift of the

billiard ball from left to right.

Physicists [4] studied the resulting dynamics heuristically and numerically,

and they conjectured that the x coordinate of the ball grows linearly in time,

i.e., x(t )/t converges to a limit distribution (which describes an ‘average cur-

rent’).
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FIGURE 3. The Barra–Gilbert–Romo (BGR) channel.

It normally is physicists who discover new phenomena and laws based on

plausible heuristic reasoning or numerical evidence. But in this particular in-

stance it was mathematics that led to the truth. Dolgopyat’s investigation re-

vealed that x(t )/t did not converge to a limit distribution, but rather fluctuated

over a family of distributions.

More precisely, it was proved that if one chooses a sequence of time mo-

ments tk such that the fractional part
{ ln tk

lnλ

}

→ ρ ∈ [0,1), then the ratio q(tk )/tk

has an asymptotic distribution (which, generally, depends on ρ). The proof

clearly indicates that the limit distribution should depend on ρ.

Later more extensive computer experiments (see [3]) confirmed the depen-

dence on ρ and further investigated properties of the system.

Mathematical studies of this model required further development of Dolgo-

pyat’s standard-pairs techniques. In this case the space and time inhomogene-

ity of the dynamics was even more dramatic than in the Galton board model.

Basically, due to the exponential growth of the cells, the moving ball spends

most of the time in the last few cells, hence averaging over cells does not work.

To handle this situation, Dolgopyat proposed to use a special discrete time

in which only passages of the ball to one of the larger cells where it has not yet

been were recorded. In this discrete time, the dynamics was hyperbolic but it

failed to be one-to-one. This called for an adaptation of some basic definitions,

such as those of Lyapunov exponents and unstable manifolds.

Such systems appeared even more naturally in later studies [14]. There we

study a modification of the Galton board in which the energy of the falling ball

was adjusted (reset) at every collision, to prevent the ball from unrestricted ac-

celeration. In that case, at every collision the past energy is forgotten, so the

system loses its memory. For this reason the past trajectory cannot be recon-

structed uniquely. As it turns out, some phase states have multiple preimages

while others have none. Nevertheless the dynamics have a clearly pronounced

hyperbolicity—a strong expansion in one direction and a strong contraction in

another.
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The lack of invertibility, however, forced us to revise the very basic concepts

of hyperbolic dynamics such as4 unstable manifolds, Lyapunov exponents, and4: OK as is?

SRB measures. We had to redefine and adjust some of these tools in such a

way that they would apply to noninvertible hyperbolic maps. Similar work was

done recently by Baladi and Gouëzel [1, 2].

5. LORENTZ GAS WITH A THERMOSTAT

If we interpret the external field in the Galton board as an electric, rather

than gravitational, field, then we obtain a periodic Lorentz gas [27] that models

the transport of electrons in metals.

A constant electric force should drive electrons and create a current. An elec-

tric current is characterized by a steady drift of electrons in the direction of the

applied field. That is, the electron’s position x(t ) should, on average, grow lin-

early in t , i.e., we should have x(t ) ∼ J t , where J is the numerical value of the

current (in amperes).

The Lorentz gas model does not feature these properties, though, for two

reasons. First, the electron’s speed is unrestricted and tends to grow to infinity.

Second, their drift is not linear in t , but rather ∼ t 2/3, according to our descrip-

tion of the Galton board. These seemingly contradicting features (high speed

and slow drift) were discussed earlier.

To keep the speed of the moving particle fixed and to make its drift propor-

tional to t , Moran and Hoover [28] modified equations (3.1) as follows:

(5.1) dq/d t = v, dv/d t = E−ζv,

where ζ = 〈E,v〉/‖v‖2. (We denote here the field by E because it is regarded

as an electric field.) The friction term ζv is called the Gaussian thermostat, it

ensures that ‖v‖ is constant in time5. This makes the kinetic energy (i.e., the5: OK as is?

temperature) constant, thus the term ‘thermostat’ – a device that prevents the

system from heating up or cooling down.66: OK as is?

The resulting dynamics is homogeneous in space and time—it follows the

same rules in every cell of the Lorentz gas. So it can be projected onto a funda-

mental domain D (with periodic boundary conditions) and we obtain a system

with compact 3D phase space Ω=D×S
1. It has a natural finite invariant mea-

sure.

For these reasons the above system is simpler than all that were described

in the previous sections. No wonder it has been fully investigated in the pre-

Dolgopyat era: it was proved in 1993 [19, 20] that the dynamics is hyperbolic

and preserves a unique Sinai–Ruelle–Bowen (SRB) measure. That measure is

mixing and enjoys an exponential decay of correlations. The average drift is

linear, i.e., 〈q(t )〉 = Jt , where the current J is proportional to the voltage differ-

ence:

(5.2) J = KE+o(‖E‖),
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where K is a constant known as electric conductivity; it is given by

(5.3) K = 1
2

D

where D denotes the corresponding diffusion matrix for the unperturbed (field-

free) Lorentz gas. In physics, (5.2) is known as Ohm’s law and (5.3) as the Ein-

stein relation.

All the above properties of the Lorentz gas have been proved under one as-

sumption: finite horizon. This means that the fixed obstacles (molecules) are

large enough (or dense enough) to block all possible directions in which the

ball (electron) can move freely without collisions.

Systems with infinite horizon are much harder to investigate. There are in-

finite corridors between obstacles where the electron can fly arbitrarily far non-

stop, ballistically. This leads to superdiffusion which has been investigated since

the 1980s. In 1992, Bleher [5] published a partial proof of the long-standing

conjecture that the ball spreads at a rate
√

t log t rather than
p

t . A complete

mathematical proof for discrete time was published by Szasz and Varju in 2007

[35].7 They showed that the position qn of the ball at the nth collision, rescaled 7: OK as is?

as qn/
√

n logn, converged to a normal distribution. Here one has to apply a

Central Limit Theorem to a random variable with infinite second moment. To

cope with this complication Szasz and Varju used nonclassical versions of the

Central Limit Theorem.

Dolgopyat found a different approach: he cleverly truncated the unbounded

random variable with infinite variance. His two-step truncation procedure led

to a more elementary proof of the same fact, and to a proof of its real-time ver-

sion: q(t )/
√

t log t converges to a normal distribution as well. The covariance

matrix Ds of the latter is called superdiffusion matrix.

When an electrical field is present in a Lorentz gas with infinite horizon, cor-

ridors not only cause superdiffusion but also lead to superconductivity. The

current becomes abnormal and electrons travel faster than they do in the con-

ventional case. More precisely, it was proved in the next work of Dolgopyat’s

[16] that

(5.4) J = 1
2

∣

∣log(‖E‖)
∣

∣DsE+o(‖E‖),

where Ds denotes the superdiffusion matrix. Comparing this with (5.2)–(5.3),

one sees8 that in the infinite horizon case Ohm’s law fails, but the Einstein re- 8: OK as is?

lation, suitably interpreted, holds.9 9: I presume that

this is not intended

to have a precise

meaning. . .

The above mathematical theorem may be related to the physical phenome-

non of superconductivity. At low temperatures (near absolute zero), ions tend

to form an almost perfect crystal structure with long corridors in between re-

sembling our infinite horizon model. Thus the electron tends to travel fast and

one observes superconductivity. On the other hand, at normal temperatures,

ions are somewhat agitated, their configuration is more randomized, which

creates an effect of finite horizon, which slows the electron down and one ob-

serves a normal current.
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10 N. CHERNOV

In mathematical terms, this model has a compact phase space and a finite

invariant SRB measure, but its key properties are highly nonuniform in the field

E (and in many senses they deteriorate as E → 0). Many delicate estimates were

necessary to control that nonuniformity.

6. CLASSICAL INFINITE LORENTZ GAS

Lastly we describe joint works by Dolgopyat, Szasz, and Varju on the classi-

cal periodic Lorentz gas without external fields. Due to its periodicity, it can be

reduced to a billiard in a fundamental domain with periodic boundary condi-

tions. That billiard has a finite invariant measure and was investigated by Sinai

[34] and others [6, 7, 8] long ago.

But the properties of the infinite periodic gas, in the entire plane, remain

largely unknown. That system has an infinite invariant measure and thus is

much harder to study. In 1989, Simányi [32] proved that if it is recurrent, then

it is ergodic. The recurrence means that if the ball hits a scatterer, then it will

come back to that scatterer with probability one.

In 1998–1999, Conze [21] and Schmidt [31] proved recurrence independently

and using different methods. Thus the system was proven to be ergodic. Its

mixing properties largely remain obscure, and in fact there is no conventional

definition of mixing for infinite-measure systems.

In 2008–2009, Dolgopyat, Szasz, and Varju10 conducted a detailed study of10: Reference?

the infinite Lorentz gas and derived a series of quantitative results and esti-

mates. First, let the R denote the return time of the bouncing ball to the initial

cell (where it was at time 0). Then a logarithmic tail bound was proved in [22]:

Prob(R > n) ∼
β

log(n)
as n →∞,

where β= 2π
p

detD and D is the corresponding diffusion matrix.

Next, let kn denote the number of collisions that occur in the initial cell dur-

ing the period of the first n collisions. Then [22] for every x > 0

Prob
( βkn

log(n)
< x

)

→ 1−e−x as n →∞,

which means a weak convergence to an exponential distribution with param-

eter 1. These both formulas are standard facts for classical 2D symmetric ran-

dom walks. Thus the Lorentz gas behaves like a random walk, in a global sense.

Next, suppose we naturally label the cells in the Lorentz gas by pairs of in-

tegers (m,n) (in such a way that (0,0) denotes the initial cell). Then for any

(m,n) ∈Z
2 let T (m,n) denote the time when the bouncing ball reaches the cell

(m,n). It is proved in [22] that T (m,n) grows like m2 +n2. More precisely, for

any 0 < x < 1

Prob
( log[T (m,n)]

log(m2 +n2)
< x

)

→ x as m2 +n2 →∞,
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which means a weak convergence to a uniform distribution on the unit interval

(0,1). In addition, the distribution of the first landing point in the cell (m,n)

converges to the natural invariant measure.

In the next paper [23] the same authors studied locally perturbed Lorentz

gases. It was motivated by a old question raised by Sinai: if we change the posi-

tion of a single scatterer in a periodic Lorentz gas, will the diffusive behavior of

the ball be affected? In other words, will the position q(t ) of the ball, rescaled

by q/
p

t , converge to a normal law?

It is a difficult question because after a local perturbation the gas is no longer

periodic and cannot be reduced to a compact billiard. It still preserves an infi-

nite measure and has to be studied as such.

Dolgopyat and his coauthors [23] answered the above question positively.

They proved that if one modifies the location or shape of finitely many scat-

terers in a periodic Lorentz gas in R
2, then q/

p
t still converges to the normal

law N (0,D), where D is the same diffusion matrix as for the unperturbed gas.

They also proved that the trajectory of the ball, properly rescaled, converged to

a Brownian motion.

7. FINAL REMARKS

It must be emphasized that all Dolgopyat’s papers described in this article

involved an enormous amount of work. Most of the physical models are techni-

cally complicated and require lengthy analytic calculations. While many proofs

were based on the same general approach, none could use the results of the

others directly, every model was in a way unique and each required working

through all the stages of the proofs anew.

Not surprisingly, most of the above papers are long—40 or 50 journal pages—

and this is after much effort was spent on optimizing the arguments and com-

pressing the presentation. A notable exception is [12] which spans 193 pages. It

is11 regarded as a first step in a long-term research program, which is why the 11: I don’t know

what is trying to be

said.
numeral one appears in its title. So Dolgopyat’s quest for discoveries in math-

ematical physics has not reached its peak yet—we will hear more from him in

the future.
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