
Hyperbolic billiards and statistical physics

Nikolai Chernov and Dmitry Dolgopyat1

Abstract. Mathematical theory of billiards is a fascinating subject providing a fertile source
of new problems as well as conjecture testing in dynamics, geometry, mathematical physics
and spectral theory. This survey is devoted to planar hyperbolic billiards with emphasis on
their applications in statistical physics, where they provide many physically interesting and
mathematically tractable models.
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1. Introduction

Let D be a bounded domain on a plane or a 2D torus with piecewise smooth boundary.
A billiard system in D is generated by a single particle moving freely inside D with
specular reflections off the boundary ∂D . The phase space of a billiard is a 3D
manifold �; the corresponding flow �t : � → � preserves the Liouville measure
μ (which is uniform on �). The space of all collision points makes a 2D cross-
section M ⊂ �, and the corresponding return map F : M → M (called billiard
map) preserves a natural smooth probability measure m.

The billiard is hyperbolic if the flow �t and the map F have non-zero Lyapunov
exponents. The first class of hyperbolic billiards was introduced [86] by Sinai in 1970;
he proved that if the boundary of D is convex inward, then the billiard is hyperbolic,
ergodic, mixing and K-mixing. He called such models dispersing billiards, now they
are called Sinai billiards. They are also proven to be Bernoulli [43]. A few years later
Bunimovich discovered [9], [10] that billiards in some domains D whose boundary
is convex outward are also hyperbolic, due to a special ‘defocusing mechanism’; the
most celebrated example of his billiards is a stadium. More general classes of planar
hyperbolic billiards are described in [94], [95], [63], [41]; we refer to [48], [26] for
extensive surveys on hyperbolic billiards.

Billiards differ from classical smooth hyperbolic systems (Anosov and Axiom
A flows and maps) in several respects. First of all, many hyperbolic billiards have
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non-uniform expansion and contraction rates (for example, if the moving particle is
almost tangent to a convex outward arc of the boundary, then it will ‘slide’, and many
reflections will occur in rapid succession during a short interval of time; a similar
phenomenon occurs in a cusp on the boundary). Only dispersing billiards without
cusps have uniform expansion and contraction rates.

Second, and most importantly, the billiard dynamics have singularities – phase
points where both map F and flow �t become discontinuous and have unbounded
derivatives. Singularities come from two sources:

(a) Grazing collisions. In this case nearby trajectories can land on boundary
components that lie far apart.

(b) Corners. In this case two nearby trajectories can hit different boundary pieces
converging to a corner and get reflected at substantially different angles.

Moreover, billiards without horizon (where the length of the free path between
collisions is unbounded) have infinitely many singularity curves in phase space.

Singularities in billiards lead to an unpleasant fragmentation of phase space. More
precisely, any curve in unstable cones gets expanded (locally), but the singularities
may cut its image into many pieces, some of them shorter than the original curve,
which then will have to spend time on recovering. This makes billiards similar to
non-uniformly hyperbolic systems such as quadratic maps or Henon attractors.

In [96], [97]Young has proposed two general methods for studying non-uniformly
hyperbolic systems: tower method and coupling method.

The first one generalizes well-known Markov partitions ([85]). The latter divide
phase space into rectangles (‘building blocks’) that have a direct product structure
and being moved under the dynamics intersect one another in a proper (Markov) way.
In the tower method only one rectangle is used and its images only need to intersect
itself in the Markov way for some (not all) iterations. The tower construction is thus
more flexible than that of Markov partitions, but the symbolic dynamics it provides
is just as good as the one furnished by a Markov partition.

The coupling method is designed to directly control the dependence between the
past and the future. Since points with the same past history form unstable manifolds,
one wants to show that the images of any two curves in unstable cones have asymptot-
ically the same distribution ([84]). To this end one partitions those curves into small
subsets and pairs subsets of the first curve with those of the second one so that the
images of the paired (coupled) points remain close to each other at all times (i.e. lie
on the same stable manifold).

Both methods proved to be very efficient and produced many sharp results, as we
describe below. We observe here that the tower method allows us to use functional
analytic tools, in particular the theory of transfer operators [3], [71], which provide
very precise asymptotic expansions. However the transfer operator approach requires
a suitably defined space of functions (observables), which is sometimes too restrictive
and dependent on the model at hand. For this reason the results obtained by the tower
approach are often less explicit and the dependence on parameters of the model is
less transparent. The coupling approach, being more elementary if less sophisticated,
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gives more explicit bounds and makes it easier to work with several systems at a time.
Our survey is organized as follows. Section 2 describes statistical properties of

dispersing billiards. Section 3 is devoted to systems with slow mixing rates. Sec-
tion 4 deals with billiards in the presence of external forces and discusses transport
coefficients and their dependence on parameters. Section 5 is devoted to interacting
billiard particles, and Section 6 deals with infinite volume billiards.

We will denote by N (0, σ 2) a normal random variable (vector) with zero mean
and variance (covariance matrix) σ 2, and by ρσ 2 its density function.

2. Dispersing billiards

Dispersing billiards make the oldest and most extensively studied class of all chaotic
billiards. They, arguably, have the strongest statistical properties among all billiards.
We need to suppose that all corners have positively measured angles (no cusps) to
guarantee uniform expansion and contraction rates.

The main difficulty in the studies of billiards is to cope with the destructive effect
of fragmentation caused by singularities (we note that fragmentation may badly affect
even relatively simple expanding maps so that they would fail to have good statistical
properties [92]). In billiards, to cope with pathological fragmentation one imposes
the following ‘non-degeneracy’ condition: there exist m ∈ N, δ > 0, and θ0 < 1 such
that for any smooth unstable curve W of length less than δ∑

i

λi,m ≤ θ0, (1)

where the sum runs over all smooth components Wi,m ⊂ F m(W) and λi,m is the
factor of contraction of Wi,m under F −m. Roughly speaking (1) says that there no
too-degenerate singularities such as multiple passages through the corners. (1) always
holds if there are no corners, i.e. if ∂D is smooth, because for grazing collisions the
expansion factor approaches infinity on one side of each singularity line, but in it is
unknown if the condition (1) always holds in dispersing billiards with corners, nor if
it is really necessary for the results presented below.

Let B
d
α be the space of bounded R

d -valued functions which are uniformly α-Hölder
continuous on each component of M where the map F is smooth. We write Bα for

B
1
α. Let B

d

α = {A ∈ B
d
α : m(A) = 0}. For any function A ∈ B

d

α we denote by σ 2(A)

the d × d (diffusion) matrix with components

σ 2
ij (A) =

∞∑
n=−∞

m
(
Ai (Aj � T n)

)
(2)

(if this series converges). Denote Sn(x) = ∑n−1
k=0 A(F kx).
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Theorem 1. The following four results hold under the condition (1):
(a) (Exponential mixing [96], [18], [20]) There is a constant θ < 1 such that for

every A, B ∈ Bα , for all n ∈ Z∣∣m(
A (B � F n)

)∣∣ ≤ const θ |n|,

which, in particular, implies the convergence of the series (2);

(b) (Functional Central Limit Theorem [11], [12], [20]) For A ∈ B
d

α define a
continuous function Wn(t) by letting Wn(k/n) = Sk/

√
n and interpolating linearly

in between. Then Wn(t) weakly converges, as n → ∞, to a Brownian motion (Wiener
process) with covariance matrix σ 2(A).

(c) (Almost sure invariance principle [66], [20]) There exist λ > 0 such that for
any A ∈ Bα we can find (after possibly enlarging the phase space) a Brownian motion
(Wiener process) w(t) with variance σ 2(A) such that for almost all x there is n0 such
that for n ≥ n0

|Sn − w(n)| < n
1
2 −λ

(d) (Local Limit Theorem [90]) Suppose A ∈ B
d

α takes values in a closed subgroup
V ⊂ R

d of rank r and that there is no B ∈ L2
m(M) such that A+B −B �F belongs

to a proper closed subgroup of V. Then for any continuous function G with compact
support and for any sequence {kn} such that kn/

√
n → z ∈ R

d

nr/2m
(
G(Sn − kn)) → ρσ 2(A)(z)

∫
F dl

where l is the Haar measure on V.

Parts (a)–(c) of Theorem 1 can be proved by both tower method and coupling
method ([96], [18], [20], [66]). The only known proof of part (d) uses the tower
construction. It would be useful to derive the last part also by the coupling approach,
since then it would be applicable to systems depending on parameters.

If A is a function on �, then standard reduction methods [73], [67] allow us
to extend parts (b) and (c) to St (X) = ∫ t

0 A(�sX) ds. The corresponding covari-
ance matrix σ̃ 2(A) can be computed as follows. Consider the function A(x) =∫ τ(x)

0 A(�sx) ds on M, where τ(x) is the length of the free path. Then

σ̃ 2(A) = σ 2(A)/τ̄, (3)

where τ̄ = π Area(D)/length(∂D) is the mean free path in the billiard system [16].
It would be also nice to extend the part (c) to multidimensional observables, as the

almost sure invariance principle readily implies other limit laws – the law of iterated
logarithm, integral tests, etc. [20].

Problem 1. Prove almost sure invariance principle for R
d valued observables.an almost,

the almost??
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The above results can be applied to the Lorenz gas in R
2. Consider a particle

moving on the plane between a periodic array of fixed convex disjoint obstacles
(scatterers). The natural phase space of this system is the unit tangent bundle to the
plane minus the scatterers, and the natural invariant measure is infinite (σ -finite). But
since the dynamics commute with the Z

2 action we can factor the latter out and reduce
the system to a dispersing billiard on the unit torus.

Let Sn be the center of the scatterer the particle hits at the nth collision. Then
Sn − Sn−1 factors to a function H(F n−1x) on the collision space M of the toral
billiard. To apply Theorem 1 we need to assume that this billiard has finite horizon
(a uniformly bounded free path), since otherwise H(x) is unbounded and has infinite
second moment. (This is not a technical restriction, the following result actually fails
without the horizon assumption, see Section 3.) Let q(t) be the position of the moving
particle at time t.

Theorem 2. The following five results hold for finite horizon Lorentz gases:

(a) ([11], [12]) Sn/
√

n converges weakly to N (0, σ 2) where

σ 2
ij =

∞∑
n=−∞

m
(
Hi (Hj � F n)

)
. (4)

(b) ([11], [12]) q(t)/
√

t converges to N (0, σ 2/τ̄ ).

(c) ([90]) m(Sn = 0) ∼ 1/(2π det(σ )n).

(d) ([30], [78]) Sn is recurrent.

(e) The Lorenz gas is ergodic with respect to its σ -finite invariant measure.

Parts (c) and (d) are recent. Part (e) follows from part (d) and [79].
Parts (c) and (d) indicate that Sn behaves like a random walk.

Problem 2. Extend the analogy between Sn and random walks (for instance, inves-
tigate the statistics of returns).

Some results in this direction are obtained in [40]. Results for geodesic flows on
negatively curved surfaces can be found in [1].

3. Slow mixing and non-standard limit theorems

Here we describe some hyperbolic billiards with non-uniform expansion and contrac-
tion rates. Such are billiards with convex outward boundary components, semidis-
persing billiards (where the boundary is convex inward, but at some points its curva-
ture vanishes, i.e. the boundary ‘flattens’), as well as dispersing billiards with cusps.
All these billiards have one feature in common - there are arbitrarily long series of
reflections without expansion or contraction, which compromise the hyperbolicity.
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Such series of ‘idle’reflections occur in certain well defined regions in phase space.
If M̂ ⊂ M is their complement, then the return map F̂ : M̂ → M̂ will have uniform
expansion and contraction rates, so Young’s methods will apply. The distribution of
return times to M̂ then determines the rates of mixing:

Theorem 3. (a) ([28]) If D is a Bunimovich stadium (a table with C1 boundary
consisting of two semicircles and two parallel line segments) and A, B ∈ Bα , then∣∣m(

A (B � F n)
)∣∣ ≤ const · (ln |n|)2/|n|. (5)

The same bound holds for modified stadia bounded by two circular arcs and two
non-parallel line segments.

(b) ([28]) If D is a Bunimovich billiard table bounded by several circular arcs
that do not exceed semicircles an A, B ∈ Bα , then∣∣m(

A (B � F n)
)∣∣ ≤ const · (ln |n|)3/|n|2.

(c) ([29]) Let D be a dispersing billiard table except the curvature of ∂D vanishes
at two points P, Q ∈ ∂D such that the segment PQ is a periodic orbit of period two.
More precisely let the boundary ∂D contain two curves y = ±(|x|β + 1), where
β > 2, so that P = (0, 1) and Q = (0, −1). Then for A, B ∈ Bα ,

∣∣m(
A (B � F n)

)∣∣ ≤ const · (ln |n|)a+1/|n|a where a = β + 2

β − 2
.

The logarithmic factors here are an artifact of the method used; they can presum-
ably be removed [22] by approximating the map F on M \ M̂ with a Markov chain
(the region M \ M̂ consists of countably many ‘cells’ that make almost a Markov
partition). The bound (5) is expected for dispersing billiards with cusps [61], but this
case turns out to be much harder; it is currently under investigation [27].

If correlations decay like O(1/n), as in Bunimovich stadia, the series (2) is likely
to diverge, so the central limit theorem is likely to fail. This happens because the main
contribution to the sum Sn comes from long series of (highly correlated) reflections
without expansion or contraction. Again, we can employ the return map F̂ : M̂ → M̂
and replace the given observable A with its ‘cumulative’ version

A(x) =
R(x)−1∑

n=0

A(F nx), (6)

where F̂ (x) = F R(x)(x), i.e. R(x) is the first return time (to M̂), but such A will
usually be unbounded and have heavy tails.

First studies of limit laws for observables with heavy tails were undertaken by
Aaronson and Denker [2] for systems with Markov partitions. Their results were
extended to non-uniformly hyperbolic maps with Young towers by Balint and Gou-
ezel [4]; they gave an abstract criterion for convergence to a Gaussian law under a
non-classical normalization (the case which is most relevant for billiards).
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Balint and Gouezel [4] redefined R(x) in (6) to be the first return time to the
only rectangle in Young’s tower and proved a limit theorem under the assumption
that A has a distribution in a non-standard domain of attraction of Gaussian law. They
applied this criterion to a Bunimovich stadium bounded by two semicircles of radius 1
and two line segments �1 and �2 of length L > 0 each: given a Hölder continuous
observable A ∈ Cα(M), denote by

I (A) = 1

2L

∫
�1∪�2

A(s,n) ds

its average value on the set of normal vectors n attached to �1 and �2. (A slower
decay of correlations for the stadium, compared to other Bunimovich billiards, is
caused by trajectories bouncing between two flat sides of D and I (A) represents the
contribution of such trajectories.)

Theorem 4. The following results hold for Bunimovich stadia:

(a) If I (A) �= 0 then Sn/
√

n ln n → N (0, σ 2(A)), where

σ 2(A) = 4 + 3 ln 3

4 − 3 ln 3
× [I (A)]2L2

4(π + L)
. (7)

(b) If I (A) = 0, then there is σ 2
0 > 0 such that Sn/

√
n → N (0, σ 2

0 ).

As before, the approach of [67] allows us to extend this result to flows.
The abstract criterion of [4] should be applicable to a large number of systems.

One of them is a periodic Lorentz gas without horizon [91]. In this case orbits which
never collide with the scatterers lie in a finite number of families of corridors �i ⊂ R

2.
The projection of each corridor onto the torus is a strip bounded by two periodic orbits
(which in general case correspond to fixed points of the collision map F ). Let wi

denote the vector joining the successive collisions along the bounding orbits for the
corridor �i. Let also fi denote a vector parallel to wi but whose length equals the
width of �i. Consider a nonnegative quadratic form

Q(v) = 1

length(∂D)

∑
i

|wi | 〈fi, v〉2,

it corresponds to a 2 × 2 symmetric positive semidefinite matrix σ 2.

Theorem 5 ([91]). Suppose there are at least two non-parallel corridors in a Lorentz
gas without horizon. Then σ 2 > 0 and

(a) Sn/
√

n ln n → N (0, σ 2);

(b) If kn/
√

n ln n → z then n ln n · m(Sn = kn) → ρσ 2(z);

(c) Sn is recurrent;

(d) the Lorenz gas is ergodic with respect to its σ -finite invariant measure.

Problem 3. Prove a functional central limit theorem in the setting of [4].

Solving this problem would lead to a complete asymptotic description of the flight
process in Lorenz gases without horizon.



8 Nikolai Chernov and Dmitry Dolgopyat

4. Transport coefficients

Here we begin the discussion of billiard-related models of mathematical physics. The
simplest one is a billiard D where the particle moves under an external force

v̇ = F(q, v). (8)

Such systems were investigated in [19] under the assumptions that D is the torus with
a finite number of disjoint convex scatterers and finite horizon. To prevent unlimited
acceleration or deceleration of the particle, it was assumed that there was an integral
of motion (“energy”) E(q, v) such that each ray (q, αv), α ∈ R+ intersects each level
surface {E = c} in exactly one point. To preserve hyperbolicity, it was assumed that
‖F‖C1 is small.

Such forces include potential forces (F = −∇U ), magnetic forces (F = B(q)×v)
and electrical forces with the so called Gaussian thermostat:

F = E(q) − 〈E(q), v〉
‖v‖2 v. (9)

Fix an energy surface {E(q, v) = const} containing a point with unit speed. Under our
assumptions on E this level surface is diffeomorphic to the unit tangent bundle � over
D and the collision space MF is diffeomorphic to M. Denote by FF : MF → MF

the corresponding return map.

Theorem 6 ([19]). FF has a unique SRB (Sinai–Ruelle–Bowen) measure mF , i.e.
for Lebesgue almost every x ∈ MF and all A ∈ C(MF )

1

n

n−1∑
i=0

A(F i
F x) →

∫
MF

A dmF .

The map FF is exponentially mixing and satisfies the Central Limit Theorem (cf.
Theorem 1).

As usual one can derive from this the existence (and uniqueness) of the SRB
measure μF for the continuous time system.

Another interesting modification of billiard dynamics results from replacing the
“hard core” collisions with the boundary by interaction with a“soft” potential near
the boundary. We do not describe such systems here for the lack of space referring
the reader to [60].

Theorem 6 implies the existence of various transport coefficients for planar Lorenz
gas with finite horizon. For example, consider a thermostated electrical force (9) with
a constant field E(q) = E = const, and let mE denote the SRB measure on the
{E = 1/2} energy surface.

Theorem 7 ([24]). There is a bilinear form ω such that for A ∈ Cα(M)

mE(A) = m(A) + ω(A, E) + o(‖E‖).
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To illustrate these results, let qn denote the location of the particle on the plane at
its nth collision, then Theorem 6 implies for almost all x the average displacement
(qn − q0)/n converges to a limit, J (E), i.e. the system exhibits an electrical current.
Theorem 7 implies

J (E) = ME + o(‖E‖) (Ohm’s Law),

where M is a 2 × 2 matrix, see below.
One interesting open problem is to study the dependence of the measure mF

of the force F , for example the smoothness of mE as a function of the electrical
field E. For hyperbolic maps without singularities SRB measure depends smoothly
on parameters [51], [76], [77]. For systems with singularities the results and methods
of [24] demonstrate that the SRB measure is differentiable at points where it has
smooth densities (e.g. E = 0 in the previous example).

In fact there is an explicit expression for the derivative (Kawasaki formula). To
state it let Fε be a one-parameter family of maps such that F0 = F has a smooth SRB
measure and for small ε the map Fε has an SRB measure mε, too, and the convergence
to the steady state mε, in the sense that if ν is a smooth probability measure on M
and A ∈ Cα(M) then ν(A �F n

ε ) → mε(A), is exponential in n and uniform in ε. Let
X = d

dε

∣∣
ε=0(Fε � F −1). Then

d

dε

∣∣∣
ε=0

mε(A) = −
∞∑

n=0

∫
M

divm(X) A(F nx) dm(x). (10)

For the constant electrical field E the Kawasaki formula reads DJ |E=0 = 1
2 σ 2,

where σ 2 is defined by (4). Hence

J = 1

2
σ 2E + o(‖E‖), (11)

which is known in physics as Einstein relation.
On the other hand numerical experiments [8] seem to indicate that J (E) is not

smooth for E �= 0. Similar lack of smoothness is observed in ([44], [45], [47]) for
expanding interval maps, but the billiard case seems to be more complicated. Indeed
the smoothness of SRB measures (or the lack thereof) seems to be intimately related to
the dynamics of the singularity set. For 1D maps the singularity set is finite whereas
for 2D maps the singularity set is one-dimensional, and so one can expect some
statistics for the evolution of that set.

Problem 4. Prove that the SRB measure, as a function of parameters, is not smooth
(generically). Derive relations between its Hölder exponent near a given parameter
value and other dynamical invariants, such as Lyapunov exponents, entropy, etc.

A related issue is the dependence of infinite correlation sums, such as the one
in (10), on the geometry of the billiard table. This issue was addressed in [23]. Given
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a domain D ⊂ T
2, an additional round scatterer is placed in D with a fixed radius

R > 0 and a (variable) center Q; then one gets a family of billiard maps FQ acting
on the same collision space M and having a common smooth invariant measure m.
For any smooth functions A, B on M with zero mean let

σ 2
A,B(Q) =

∞∑
n=−∞

m
(
A (B � F n

Q)
)

(12)

It is proven in [23] that σ 2
A,B(Q) is a log-Lipschitz continuous function of Q:∣∣σ 2

A,B(Q1) − σ 2
A,B(Q2)

∣∣ ≤ const � ln(1/�), where � = ‖Q1 − Q2‖. (13)

Problem 5. Is (13) an optimal bound?

Problem 6. Extend the analysis of [23] to dissipative systems studied in [19].

In particular is it true that the dependence on parameters is typically more regular
for conservative systems?

Problem 7. Consider the class S of all Sinai billiard tables on T
2 and deform a given

table D continuously in C4 so that it approaches the natural boundary of S. Investigate
the limit behavior of the diffusion matrix σ 2(D).

If we only consider generic boundary points of S, then this problem splits into
three subproblems:

(a) What happens when two scatterers nearly touch each other?
(b) What happens when the boundary flattens so that a periodic trajectory with

nearly zero curvature appears?
(c) What happens when one of the scatterers shrinks to a point?
Analogues of Problem 7 were investigated for expanding maps [38] and for geo-

desic flows on negatively curved surfaces [13]. For Sinai billiards, only problem (c)
has been tackled in [23], see Theorem 9(a) below. The first step towards problem (a)
is to establish mixing bounds for billiards with cusps (for problem (b) this task has
been accomplished in [29], see Theorem 3(c)).

One can also study the behavior of other dynamical invariants, such as entropy
and Lyapunov exponents, see [16], [32], [48], [14].

5. Interacting particles

One may hope that after so many results have been obtained for one particle dynamics
in dispersing billiards, a comparable analysis could be done for multi-particle systems,
including models of statistical mechanics where the number of particles grows to
infinity. However not much has been achieved up to now. Recently there has been a
significant progress in the study of stochastically interacting particles [52], [93], but
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the problems involving deterministic systems appear to be much more difficult. One
notable result is [70] where Euler equation is derived for Hamiltonian systems with
a weak noise, however that particular noise is of a very special form, and its choice
remains to be justified by microscopic considerations.

Regarding models with finitely many particles, the most celebrated one is a gas
of hard balls in a box with periodic boundary conditions (i.e. on a torus T

d ). The
ergodicity of this system is a classical hypothesis in statistical mechanics attributed
to L. Boltzmann and first mathematically studied by Sinai [83], [86], see [48]. The
hyperbolicity and ergodicity for this system have been proven in fairly general cases
only recently [80], [81], but a proof in full generality is not yet available.

Problem 8. Prove the ergodicity of N hard balls on a torus T
d for every N ≥ 3 and

d ≥ 2 and for arbitrary masses m1, . . . , mN of the balls.

The existing proofs [80], [81] cover ‘generic’ mass vectors {m1, . . . , mN } (apart
from unspecified submanifolds of codimension one in R

N ). Besides, the existing
proofs heavily rely on abstract algebraic-geometric considerations, and it is important
to find more explicit and dynamical arguments.

A system of N hard balls on T
d can be reduced to semi-dispersing billiards in a

Nd-dimensional torus with a number of multidimensional cylinders removed. Now
the considerations of Section 3 suggest that the rate of mixing for gases of hard balls
is quite slow. Physicists estimated that correlation functions for the flow decay as
O(t−d/2), see [42], [72].

Problem 9. Investigate mixing rate for gases of N hard balls in T
d or N hard disks

on a Sinai billiard table.

An important feature of systems considered in statistical mechanics is that there
are several different scales in space and time. This can complicate the study since
the problem of interest tend to involve several ‘levels’ of parameters, but on the other
hand one can expect certain simplifications; for example, Hamiltonian systems of N

particles which are not ergodic (and this is, generically, the case due to the KAM
theory) may behave as ergodic in the thermodynamical limit N → ∞ (see e.g. [31],
Chapter 9). Another example is that some pathologies slowing the mixing rates can
be suppressed on large time-space scales, thus the system may behave as strongly
chaotic.

A significant progress in the study of multi-scale systems with chaotic fast motion
has been achieved recently, see [39] and references wherein. In this section we
describe the first rigorous result on multi-scale billiard systems [23].

Consider a system of two particles moving on a 2D torus with a finite number
of fixed convex scatterers (we assume that the resulting region D ⊂ T

2 has finite
horizon). Particles collide with the scatterers and with each other elastically. The
first particle called P is a heavy disk of mass M � 1 and radius R ∼ 1. The second
particle called p is a dimensionless point of unit mass.
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In equilibrium, the kinetic energies of P and p are comparable, and then P will
move practically with constant velocity, without noticing p. A more interesting de-
velopment occurs if the initial velocity of P is zero. Assume that the initial speed of p
is 1 and that its initial state is chosen randomly from the unit tangent bundle over D .
Then the position Q of P at time t becomes a random process QM(t). We want to
describe the motion of P in the interior of D (before it has chance to reach ∂D), so
we fix a small δ > 0 and stop P once it comes within distance δ from ∂D . Under a
non-degeneracy condition on D , see below, the following is proved:

Theorem 8 ([23]). As M → ∞, the process QM(τM2/3) converges weakly to the
solution of the following stochastic differential equation

Q̈ = σ̃ (Q) ẇ (14)

where ẇ is the white noise and the 2 × 2 matrix σ̃ (Q) is the positive square root of

σ̃ 2(Q) = σ 2(Q)/τ̄,

compare this to (3); here τ̄ = π(Area(D) − Area(P))/(length(∂D) + length(∂P))

is the mean free path for the fast particle p and

σ 2(Q) =
∞∑

n=−∞
m

(
A (A � F n

Q)T
)

where FQ is defined before Eq. (12) and A ∈ B
2 is defined by (18) below.

The non-degeneracy condition mentioned above is σ 2(Q) > 0 for all Q. This
condition allows us to ‘promote’ the log-Lipschitz continuity of σ 2 given by (13) to
the log-Lipschitz continuity of σ̃ and then show that the equation (14) is well posed.
This illustrates the importance of Problems 5 and 6 for homogenization theory. The
fact that σ 2(Q) is non-degenerate, apart from a codimension infinity subset of S,
follows from [12].

To understand (14) observe that when P collides with p the tangential component
of its velocity remains unchanged while the normal component changes as follows

V ⊥
new = M − 1

M + 1
V ⊥

old + 2

M + 1
v⊥

old = V ⊥
old + 2

M
v⊥

old + O

(
1

M3/2

)
(15)

where v⊥
old is the normal component of the velocity of p (the estimate on the remainder

term uses the fact that due to the energy conservation M‖V ‖2 + ‖v‖2 = 1 the speed
of P never exceeds 1/

√
M). Hence velocity of P after n collisions equals

Vn = 2

M

n∑
i=1

v⊥
i + O

(
n

M3/2

)
(16)
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there v⊥
i is the normal component of the velocity of p before the i-th collision of P

with p. As we need to count all the collisions of p, both with P and ∂D , then (16)
takes form

Vn = 2

M

n∑
i=1

A � F i + O

(
n

M3/2

)
(17)

where F is the collision map in our system of two particles and

A = 2v⊥ if p collides with P and 0 otherwise. (18)

As M → ∞, our system approaches the limit where P does not move (Q ≡ const)
and p bounces off ∂D ∪ P elastically, thus its collision map is FQ. For this limiting
system, Theorem 1(c) says that if n = Mαdτ , then

n∑
i=1

A � F i
Q ∼ Mα/2 σ(Q) dw(τ) (19)

where w(τ) is the standard Brownian motion. Since Q = ∫
V dt and the integral

of the Brownian motion grows as t3/2, it is natural to take α = 2/3 in (19), so that
M3α/2/M ∼ 1, cf. (16), and expect the limiting process to satisfy (14).

In the proof of Theorem 8 we had to show that the two-particle collision map F in
(17) could be well approximated by the limiting billiard map FQ in (19). While the
trajectories of individual points under these two maps tend to diverge exponentially
fast, the images of curves in unstable cones tend to stay close together, and we proved
this by a probabilistic version of the shadowing lemma developed in [37]. Then we
decomposed the initial smooth measure into one-dimensional measures on unstable
curves (each curve W with a smooth measure ν on it was called a standard pair) and
adapted Young’s coupling method to relate the image of each standard pair (W, ν)

under the map F n and that under F n
Q, as n grows.

The system described above is a very simplified version of the classical Brownian
motion where a macroscopic particle is submerged into a liquid consisting of many
small molecules. In our model the liquid is represented by a single particle, but its
chaotic scattering off the walls effectively replaced the chaotic motion of the molecules
coming presumably from inter-particle interactions.

One feature of Theorem 8 which may be surprising at first glance is that the diffu-
sion matrix σ 2 is position dependent – the feature one does not expect for the classical
Brownian particle. The reason is that the size of P is comparable to the size of the
container D , so that typical time between successive collisions of p with P is of order
one, hence p has memory of the previous collisions with P giving rise to a location de-
pendent diffusion matrix. This dependence disappears if P is macroscopically small
(but microscopically large!):

Theorem 9 ([23]). As R → 0 we have

σ̃ 2(Q) = 8R

3Area(D)
I + P (Q) R2 + o(R2), (20)



14 Nikolai Chernov and Dmitry Dolgopyat

where P (Q) is a weighted Poincaré series. Furthermore, there is a function M0(R)

such that if M → ∞ and R → 0 with M > M0(R), then Q(τR−1/3M2/3) converges
weakly to the process √

8

3Area(D)

∫ τ

0
w(s) ds

where w(s) is the standard Brownian Motion.

Observe that the formula (20) would easily follow if the collisions between p and
P made a random Poisson process with intensity proportional to 2R/Area(D) (the
inverse of the mean intercollision time).

We remark that since we have a single fast particle p, its collisions with the
boundary ∂D are the only source of chaos. If D is a convex smooth table, for
example, then due to the presence of caustics [53] there is a positive probability that p
and P will never meet, so Theorem 8 fails in that case.

Problem 10. Prove Theorems 8 and 9 for two particles in a square box.

In a square box, the fast particle may bounce off between two parallel sides for
a long time without running into the disk, so the dynamics has slow mixing rates,
cf. Section 3. According to the results of [4], see Theorem 4, one expects a non-
standard normalization for most observables. However the observable given by (18)
vanishes on ∂D (since the velocity of P does not change during the collisions of p
with the walls), so we are actually in the context of Theorem 4(b), hence Central Limit
Theorem may hold despite the overall slow mixing rates.

The extension of Theorem 9 to a square box leads (by using a standard reflection
of the box across its boundary) to a new model – a fast particle moving on a plane
with a periodic configuration of identical circular scatterers of radius R → 0. This
system is interesting in its own rights, but not much is known about its asymptotic
properties as R → 0. A lot of work has been done on the case where scatters are
placed at random (see [7], [82] and references wherein) but the periodic case is much
more complicated, see [46]. Even the distribution of the free path is a non-trivial task
accomplished only recently [6].

The results of [23] extend, without much changes, to systems with several heavy
disks and one fast particle, as long as the disks do not collide with each other or with
the boundary of the table (of course this restricts the analysis to a fairly short interval
of time). Let us, for example, formulate an analogue of Theorem 8 in this situation.
Let k be the number of heavy disks which are initially at rest. Then, after rescaling
time by τ = M−2/3t , the velocity of the limiting process satisfiesin the

display, can
the dot be
set only
above v, i.e.
ẇ(τ ) (looks
strange as is
now)

d

dτ

⎛
⎜⎝

V1
...

Vk

⎞
⎟⎠ = σQ1...Qk

˙w(τ),
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where ẇ is a standard k-dimensional white noise. Note that even though the heavy
disks are not allowed to interact with each other directly, each one “feels” the presence
of the others through the diffusion matrix σQ1...Qk

, which depends on the positions of
all the disks.

A much more difficult problem arises if there are several fast particles.

Problem 11. Extend Theorems 8 and 9 to systems with several fast particles.

In this case the limiting (M → ∞) system consists of several non-interacting
particles moving on the same dispersing billiard table (the heavy disk(s) will be
“frozen” as M = ∞). Such a system can be reduced to a semidispersing billiard in
a higher dimensional container, however that billiard will have very poor statistical
properties. In fact, it will not be even fully hyperbolic – several of its Lyapunov
exponents corresponding to the flow directions of the particles will vanish.

A more promising strategy for this case is to deal directly with the continuous
time dynamics. Then the limiting system of several non-interacting fast particles is
a direct product of one-particle billiard flows. To extend the results of [23] to this
model we need to generalize their methods to the continuous time setting, and we
also need good estimates for mixing rates of dispersing billiard flows.

Problem 12. Estimate the decay of correlations for dispersing billiard flows.

The studies of flow correlations are notoriously difficult (the main reason is that
there is no expansion or contraction in the flow direction). Even for classical Anosov
flows no estimates on correlations were available until the late 1990s. Only recently
various estimates were obtained on the decay of correlations for smooth uniformly
hyperbolic flows [17], [35], [59]. Some of them were just extended to nonuniformly
hyperbolic flows [65], including Sinai billiards: it was shown [65] that for a ‘preva-
lent’ set of Sinai billiards with finite horizon, flow correlations decay faster than any
polynomial function.

We expect that the flow correlations for Sinai billiards with finite horizon actually
decay exponentially fast. Moreover, it appears that a sub-optimal (‘stretched expo-
nential’) bound developed in [17] can be extended to billiard flows, and this is our
work in progress. With some of these estimates, albeit less than optimal, we might
be able to handle the above system of several fast particles.

Interestingly, the mixing rates of the billiard flow may not match those of the
billiard map. For instance, in Sinai billiards without horizon the billiard map has
fast (exponential) decay of correlations [18], but the flow is apparently very slowly
mixing due to long flights without collisions [5]. On the contrary, in Sinai tables
with cusps, the billiard map appears to have polynomial mixing rates, see Section 3,
but the flow may very well be exponentially mixing, as the particle can only spend a
limited time in a cusp. The same happens in Bunimovich billiards bounded only by
circular arcs that do not exceed semicircles – the billiard map has slow mixing rates
(Theorem 3), but the flow is possibly fast mixing, as sliding along arcs (which slows
down the collision map) does not take much flow time.
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The next step toward a more realistic model of Brownian motion would be to study
several light particles of a positive radius r > 0. (If there is only one light particle, such
an extension is immediate since ‘fattening’the light particle is equivalent to ‘fattening’
the disk P and the scatterers by the same width r .) It is however reasonable to assume
that the light particles are much smaller than the heavy one, i.e. r � R. In this case
one can presumably treat consecutive collisions as independent, so that in the limit
r → 0 the collision process becomes Markovian. An intermediate step in this project
would be

Problem 13. Consider a system of k identical particles of radius r � 1 moving on a
dispersing billiard table D . Let Ei(t) denote the energy of the ith particle at time t.

Prove that the vector

{E1(τ/r), E2(τ/r), . . . , Ek(τ/r)}
converges, as r → 0, to a Markov process with transition probability density given by
the Boltzmann collision kernel [15]. This means that if particles i and j collide so that
the angles between their velocities and the normal are in the intervals [φi, φi + dφi]
and [φj , φj + dφj ], respectively, with intensity∣∣√2Ei cos φi − √

2Ej cos φj

∣∣ dφi dφj

4π2Area(D)
,

and then the particle i transfers energy Ei cos2 φi − Ej cos2 φj to the particle j.

The proof should proceed as follows. As long as the particles do not interact,
the evolution of the system is a direct product of dynamics of individual parti-
cles. This holds true whenever the particle centers q1, . . . , qk are > 2r units of
length apart. Hence we need to investigate the statistics of visits of phase orbits to
�r = {mini �=j ‖qi − qj‖ ≤ 2r}, which is a set of small measure. Visits of orbits of
(weakly) hyperbolic systems to small measure sets have been studied in many papers,
see [36], [50] and the references wherein We observe that Theorem 9(a) is the first
step in the direction of Problem 13.

Next, recall that in Theorem 8 we did not allow the disk P to come too close to the
boundary ∂D ; this restricted our analysis to intervals of time t = O(M2/3). During
these times the speed of P remains small, ‖V ‖ = O(M−2/3), thus the system is still
far from equilibrium, as M‖V ‖2 = O(M−1/3) � 1.

Problem 14. Investigate the system of two particles P and p beyond the time of
the first collision of P with ∂D . In particular, how long does it take this system to
approach equilibrium (where the energies of the particles become equal)?

There are two difficulties here. First, when P comes too close to the wall ∂D , the
mixing properties of the limiting (M → ∞) billiard system deteriorate, because a
narrow channel forms between P and the wall. Once the fast particle p is trapped in
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that channel, it will bounce between P and the wall for quite a while before getting out;
thus many highly correlated collisions between our particles occur, all pushing P in the
same direction (off the wall). Thus we expect ‖σ(Q)‖ → ∞ as the channel narrows.
The precise rate of growth of ‖σ(Q)‖ is important for the boundary conditions for
equation (14), hence Problem 7 is relevant here.

The second difficulty is related to the accuracy of our approximations. The two
particle system in Theorem 8 can be put in a fairly standard slow-fast format. Namely
let (q, v) denote the position and velocity of p and (Q, V ) those of P. Put ε = 1/

√
M

and denote x = (q, v/‖v‖) and y = (Q, V ) (note that ‖v‖ can be recovered from x

and y due to the energy conservation). Then x and y transform at the nth collision by

xn+1 = Tyn(xn) + O(ε)

yn+1 = yn + B(xn, yn) + O(ε2)
(21)

If Ty(x) is a smooth hyperbolic map, the following averaging theorem holds [39].
Let W � (x0, y0) be a submanifold in the unstable cone, almost parallel to the x-
coordinate space (i.e. y ≈ y0 on W ), and such that dim W equals the dimension
unstable subspace. Then for | ln ε| � n � 1/ε and any smooth observable A we
have ∫

W

A(xn, yn) dx0 =
∫

A(x, y) dmy0(x) + ε ω(A, y0) + o(ε), (22)

where my0 denotes the SRB measure of the map Ty0(x). This result is a local version
of Theorem 7 (consider the case yn ≡ y0!). In the presence of singularities, however,
only a weaker estimate is obtained in [23]:∫

W

A(xn, yn) dx0 −
∫

A(x, y) dmy0(x) = O(ε | ln ε|). (23)

The extra factor | ln ε| appears because we have to wait O(| ln ε|) iterates before the
image of W under the unperturbed (billiard) map becomes sufficiently uniformly
distributed in the collision space, and at each iteration we have to throw away a subset
of measure O(ε) in the vicinity of singularities where the shadowing is impossible.
The weak estimate (23) was sufficient for time intervals O(M2/3) considered in [23]
since the corresponding error term in the expression for Vn, see (17), is

O

(
n

M
× ln M√

M

)
= O

(
ln M

M5/6

)

because n = O(M2/3). This error term is much smaller than the typical value of the
velocity, Vn ∼ M−2/3.

However for n ∼ M the above estimate is not good as the error term would far
exceeds the velocity itself. To improve the estimate (23) we have to incorporate the
vicinity of singularities into our analysis. As the singularities are one-dimensional
curves, we expect points falling into their vicinities to have a limit distribution, as
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ε → 0, whose density is smooth on each singularity curve. Finding this distribution
requires an accurate counting of billiard orbits passing near singularities. Such count-
ing techniques have been applied to negatively curved manifolds [62], and we hope
to extend them to billiards.

Another interesting model involving large mass ratio is so-called piston problem.
In that model a container is divided into two compartments by a heavy insulating pis-
ton, and these compartments contain particles at different temperatures. If the piston
were infinitely heavy, it would not move and the temperature in each compartment
would remain constant. However, if the mass of the piston M is finite the tempera-
tures would change slowly due to the energy and momenta exchanges between the
particles and the piston. There are several results about infinite particle case (see [21]
and references wherein) but the case when the number of particles is finite but grows
with M is much more complicated (see [54]). On the other hand if the number of
particles is fixed and M tends to infinity then it was shown in [88], [69] under the
assumption of ergodicity of billiard in each half of the container that after rescaling
time by 1/

√
M the motion of the piston converges to the Hamiltonian system

Q̈ = �P := K−�

2πArea(D−)
− K+�

2πArea(D+)

where D−(D+) is the part of the container to the left(right) of the piston K−(K+)

is the energy of the particles in D−(D+) and � is the length of the piston so that �P

is the pressure difference. In particular if �P = 0 and piston is initially at rest then
the system does not move significantly during the time

√
M and the question is what

happens on a longer time scale. For the infinite system it was shown in [21] that the
motion converges to a diffusion process with the drift in the direction of the hotter
gas. In the finite system (for example in a stadium container) this process will be
accompanied by simultaneous heating of the piston so that the system may develop
rapid (Q̇ ∼ 1√

M
) oscillations. A similar phenomenon was observed numerically

in [25] for a system of M2/3 particles in a 3D container. Those oscillations may be
responsible for the fact that the system of [25] approaches its thermal equilibrium in
t ∼ Ma units of time with some 1 < a < 2 (computer experiments showed that
a ≈ 1.7).

If there is only one particle on either side of the piston the formula (17) suggests
that the time of relaxation to equilibrium is of order M , as in n ∼ M collisions the
heavy disk will reach its maximum velocity ‖Vn‖ ∼ √

n/M = 1/
√

M; to prove this
we need to improve our approximations along the above lines.

6. Infinite measure systems

Here we discuss several systems with infinite invariant measure, which can serve as
tractable models of some non-equilibrium phenomena.
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In ergodic theory, systems with infinite (σ -finite) invariant measure are often re-
garded as exotic and attract little attention. However, hyperbolic and expanding maps
with infinite invariant measure appear, more and more often, in various applications.
Recently Lenci [55], [56] extended Pesin theory and Sinai’s (fundamental) ergodic
theorem to unbounded dispersing billiard tables (regions under the graph of a positive
monotonically decreasing function y = f (x) for 0 ≤ x < ∞), where the collision
map, and often the flow as well, have infinite invariant measures.

Another example that we already mentioned is the periodic Lorenz gas with a
diffusive particle, but this one can be reduced, because of its symmetries, to a finite
measure system by factoring out the Z

2 action (Section 2). The simplest way to
destroy the symmetry is to modify the location (or shape) of finitely many scatterers
in R

2. We call these finite modifications of periodic Lorentz gases.

Theorem 10. Consider a periodic Lorentz gas with finite horizon. Then

(a) ([57]) its finite modifications are ergodic;

(b) ([40]) its finite modifications satisfy Central Limit Theorem with the same
covariance matrix as the original periodic gas does.

The proof of part (a) is surprisingly short. Every finite modification is recurrent,
because if it was not, then the particle would not come back to the modified scatterers
after some time, so it would move as if in a periodic domain, but every periodic
Lorentz gas is recurrent (Theorem 2). Ergodicity then follows by [79].

The proof of (b) uses an analogy with a simple random walk (already observed
in Section 2). Recall the proof of Central Limit Theorem for finite modifications of
simple random walks [89]. Let ξn be a simple random walk on Z

2 whose transition
probabilities are modified at one site (the origin). Define ξ̃ n as follows: initially we
set ξ̃0 = ξ0 = 0, for every n ≥ 0 we put

ξ̃ n+1 − ξ̃ n =
{

ξn+1 − ξn if ξn �= 0,

Xn if ξn = 0,

where Xn = ±ei , i = 1, 2, is a random unit step independent of everything else.
Then ξ̃ n is a simple random walk and

|ξn − ξ̃ n| ≤ Card{k ≤ n : ξk = 0}. (24)

Since the number of visit to the origin depends only on the behavior of the walk outside
of the origin the RHS of (24) is O(ln n) (see e.g. [33]) so Central Limit Theorem for ξ̃ n

implies Central Limit Theorem for ξn.

The analogue of (24) for Lorenz gas if the following. Let B̃α denote the space of
α Hölder continuous functions on the collision space of our periodic Lorentz gas with
a finite modification, such that every A ∈ B̃α differs from a periodic function only
on a compact set and the periodic part has zero mean. Then if xn = (qn, vn) denotes
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the position and velocity of the particle after the nth collision and x0 has a smooth
distribution ν with compact support, then for A ∈ B̃α∣∣E(A(xn))

∣∣ ≤ c ν
(∃k ∈ [n − c ln n, n] : qk is on a modified scatterer

) + O(n−100),

where c > 0 is a constant. The proof of Theorem 1(d) given in [90] allows us to
estimate the first term here by O(lnβ n/n) for some β > 0. The ln n factor is perhaps
an artifact of the proof; on the other hand even for the much simpler case of a modified
random walk one has E

(
A(ξn)

) ∼ c(A)/n. This implies E
(
A(ξ0)A(ξn)

) ∼ c(A)/n.

Also there is a quadratic form q(A) such that

E
(
A(ξm)A(ξm+n)

) ∼ q(A)/(nm), m, n → ∞. (25)

Here we see a new feature of non-stationary systems which does not happen in finite
ergodic theory. The correlation series

∑∞
n=1 E(A(ξm)A(ξm+n)) diverges for all m but

Central Limit Theorem still holds, since the contribution of the off-diagonal terms to
E(ξ2

n ) is much smaller than the contribution of near diagonal terms.
Finite modifications of periodic Lorentz gases are among the simplest billiards

with infinite invariant measures, so we hope to move further in their analysis:

Problem 15. Extend (25) to finite modifications of periodic Lorentz gases (with finite
horizon).

The reason for this simplicity is that finite modifications are restricted to a ‘codi-
mension two’ subset of R

2. The particle runs into modified scatterer very rarely, so
that its limit distribution is the same as for the unperturbed periodic gas. The situation
appears to be different for ‘codimension one’ modifications.

For example, consider a periodic Lorenz gas and make the particle move in the
N × N box bouncing off its sides and off the scatterers in the box. Denote by qN(t)

the position of the particle at time t .

Problem 16. Prove that qN(τN2)/N converges, as N → ∞, to the Brownian motion
on the unit square with mirror reflections at its boundary.

If the box boundaries are symmetry axis of the Lorenz gas then the result follows
easily from Theorem 1(b) but the general case appears more difficult. In fact if the
boundaries of the box are not straight lines (so called rough boundaries) then one
can expect the limit to be different due to trapping and it is an interesting problem to
construct such counterexample.

As a more sophisticated example, consider a ‘one-dimensional’ Lorentz gas – a
particle moving in an infinite strip I = {(x, y) : 0 ≤ y ≤ 1} (with identification
(x, 0) = (x, 1)) and a periodic (in x) configuration of scatterers in I . Suppose a small
external force F acts by (8) in a compact domain xmin ≤ x ≤ xmax. Denote by qF (t)

the position of the moving particle at time t .

Problem 17. Find the limit distribution of qF (τN)/
√

N as N → ∞.
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The analogy with the random walk [89] suggests that qF (τN)/
√

N should con-
verge to |ζ |η where ζ and η are independent, ζ is a one-dimensional normal distribu-
tion N (0, σ 2) where σ 2 is the same as for the system without the field, and η takes
values ±1, so that P(η = 1) ∼ P(qn > 0) depends on the evolution in the region
xmin ≤ x ≤ xmax. One can further conjecture a functional limit theorem, namely that
qF (τN)/

√
N converges to the so-called skew Brownian motion [49].

While the problems described above could be attacked along the lines of [40], the
situation becomes much more difficult if modifications are less regular. In particular
very little is known if the location of all scatterers is purely random (if there are
infinitely many independent particles in a random Lorentz gas, ergodicity was proven
by Sinai [87]).

Problem 18. Do the results of Theorem 10 hold for random Lorenz gas?

The key question is the recurrence of the random Lorenz gas (this issue is irrelevant
for infinite particle systems since if one particle wonders to infinity then another one
comes to replace it, cf. [31], Chapter 9).

Lenci [58] uses Theorem 10 to show that recurrence holds for an ‘open dense set’
of Lorenz gases, but this remains to be shown for ‘almost every’ gas in a measure-
theoretic sense.

Problem 17 brings us back to billiards with external forces, see Section 4. We
assumed that (8) had an integral of motion. Without this assumption, the system would
typically heat up (the particle accelerates indefinitely) or cool down (the particle slows
down and stalls). It is interesting to determine which scenario occurs. Denote by
K(t) = ‖v(t)‖2/2 the particle’s kinetic energy at time t .

Problem 19. Consider a Sinai billiards with a velocity-independent external force
v̇ = F(q). Is lim inf t→∞ K(t) finite or infinite for most initial conditions?

The particular case of a constant force F = const is long discussed in physics
literature, see [74] and the references therein, but it is yet to be solved mathematically.
This model is known in physics as Galton board – a titled plane with a periodic array
of pins (scatterers) and a ball rolling on it under a constant (gravitational) force
and bouncing off the pins. Due to the conservation of the total energy, the particle
accelerates as it goes down the board. Physicists are interested in finding the limit
distribution of its position (in a proper time-space scale).

To address this problem observe that if we have a fast particle, i.e. K(0) = 1
2ε

,
then by rescaling the time variable by s = t/

√
ε and denoting the rescaled velocity

by u = dx/ds we obtain a new equation of motion

du

ds
= εF (q). (26)

This system is of type (21) with fast variables (q, u/‖u‖) and a slow variable T =
‖u‖2/2. For random Lorenz gases heuristic arguments [74] suggests that in a new
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time variable τ = const · ε−2s the limit evolution of T will be given by

Ṫ = 1

2
√

2T
+ (2T )1/4ẇ (27)

where ẇ is a white noise. The same conclusion is reached in [34] for the geodesic
flow on a negatively curved surface in the presence of a weak external force.

As a side remark, observe that the fast motion is obtained here by projecting the
right hand side of (26) onto the energy surface, which gives us a thermostated force.
In particular (11) plays an important role in the derivation of (27). This shows that
the Gaussian thermostat (9), even though regarded as ‘artificial’ by some physicists,
appears naturally in the analysis of weakly forced systems.

We return to the conjecture (27). In terms of our original variables, equation (27)
says that [K(t)]3/2 is the so called Bessel square process of index 4/3, see [75,
Chapter XI]. This indicates that ‖v(t)‖ ∼ t1/3 so the energy conservation implies
‖q(t)−q(0)‖ ∼ t2/3 (cf. [68]). Since Bessel square process of index 4/3 is recurrent,
it is natural to further conjecture that there is a threshold K0 > 0 such that for almost
all initial conditions lim inf t→∞ K(t) ≤ K0. This conclusion apparently contradicts
a common belief that the particle on the Galton board, see above, generally goes down
and accelerates. Rather paradoxically, it will come back up (and hence slow down)
infinitely many times! It appears that rigorous mathematics may disagree here with
physical intuition, in a spectacular way. The first step in solving this startling paradox
would be to extend the averaging theorem (22) to billiards.
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