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Abstract. We study electrical current in two-dimensional pe-
riodic Lorentz gas in the presence of a weak homogeneous elec-
tric field. When the horizon is finite, i.e. the free flights between
collisions are bounded, the resulting current J is proportional to
the voltage difference E, i.e. J = 1

2
D∗E + o(‖E‖), where D∗ is

the diffusion matrix of the Lorentz particle moving freely without
electrical field (see a mathematical proof in [11]). This formula
agrees with classical Ohm’s law and the Einstein relation. Here
we investigate the more difficult model with infinite horizon. We
find that infinite corridors between scatterers allow the particles
(electrons) move faster resulting in an abnormal current (caus-
ing ‘superconductivity’). Precisely, the current is now given by
J = 1

2
DE

∣

∣log ‖E‖
∣

∣+ O(‖E‖), where D is the ‘superdiffusion’ ma-
trix of the Lorentz particle moving freely without electrical field.
This means that Ohm’s law fails in this regime, but the Einstein
relation (suitably interpreted) still holds. We also obtain new re-
sults for the infinite horizon Lorentz gas without external fields,
complementing recent studies by Szasz and Varju [28].

1. Introduction

Lorentz gas is a popular model in mathematical physics introduced
in 1905, cf. [20], for the purpose of describing the motion of elec-
trons in metals. The original model consisted of small (point-like)
non-interacting particles moving in space and bouncing off fixed rigid
bodies (scatterers). In mathematical studies the scatterers are usually
positioned at sites of a periodic lattice, and the particles make specular
reflections off their surfaces.

We study a two-dimensional periodic Lorentz gas, which reduces to a
dynamical system generated by a point-like particle moving on a plane
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R
2 and bouncing off a periodic array of fixed convex figures (playing the

role of scatterers). In most of this paper, we assume that the ‘horizon’
is infinite, i.e. there are infinitely long corridors stretching between the
scatterers; see Figure 1 in Section 2.

Mathematical studies of the 2D periodic Lorentz gases, without ex-
ternal fields, i.e. where the particle moves freely between collisions, be-
gan in 1970 by Sinai [27]. Due to the lack of external forces, this model
is a Hamiltonian system preseving an equilibrium (Liouville) measure.
The speed of the particle remains constant and is traditionally set to
one. Due to the periodicity of the array of scatterers, the dynamics
reduces to a billiard on a torus with a finite set of fixed scatterers.

Sinai [27] proved that if the scatterers are convex domains with C3

smooth boundaries with nonvanishing curvature, then the resulting
billiard flow and collision map are hyperbolic (i.e. have non-zero Lya-
punov exponents), ergodic, and K-mixing. Later they were shown to
have Bernoulli property [19]. Thus this model is highly chaotic in every
mathematical sense.

However, global statistical properties of the periodic Lorentz gas hap-
pen to depend on whether the horizon is finite or infinite, i.e. whether
the free path between collisions with scatterers is bounded or not. The
finite horizon case is much better understood, we review its main prop-
erties below.

Let D̃ denote the area available to the moving particle (the plane
R

2 minus the union of scatterers). Since the scatterers are located
periodically, the whole plane can be covered by replicas of a certain
region (fundamental domain) K ⊂ R

2 so that D̃ is in turn the union
of copies of bounded domain D = D̃ ∩ K. Now the field-free Lorentz
gas reduces to a planar billiard on the finite table D with periodic
boundary conditions.

For the billiard in D, we denote by q(t) ∈ D and v(t) ∈ S
1 the

position and velocity of the moving particle at time t. The billiard
generates a flow Φt on compact phase space Ω = D×S

1, which preserves
Liouville measure µ0 (the latter is just a uniform measure on Ω). The
collision space is defined by

M =
{

(q,v) : q ∈ ∂D, ‖v‖ = 1, v points inside D
}

and the collision map F : M → M takes a collision point to the next
collision point.

Let (r, ϕ) denote the standard coordinates in M, where r is the arc
length parameter on ∂D and ϕ ∈ [−π/2, π/2] the angle between the
outgoing velocity vector v and the outward normal vector to ∂D at the
collision point q, cf. [4, 13]. The map F preserves a smooth probability
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measure ν0 on M given by

(1.1) dν0 = cν cos ϕ dr dϕ, cν =
[

2 · length(∂D)
]−1

here cν is the normalizing factor. For every X ∈ M let

(1.2) τ(X) = min{t > 0: Φt(X) ∈ M}
denote the time of the first collision of the trajectory starting at X.

For the particle moving in the infinite domain D̃, we denote by q̃(t)
its position at time t and by q̃n its position at its nth collision with ∂D̃.
Let ∆n = q̃n+1− q̃n denote the displacement vector between collisions.
(Note that we use tildas for notation related to the dynamics in the
unbounded region D̃.)

In all theorems, except Theorem 3, we assume that the initial po-
sition q̃(0) and the initial velocity v(0) are chosen according to the
Liouville measure µ0 in D × S

1. All the results remain valid if the
initial distribution is smooth and has compact support.

Theorem 1 ([3, 4]). Suppose that the particle moves freely without
external fields.
(a) q̃(t)/

√
t converges, as t → ∞, to a normal distribution, i.e

q̃(t)/
√

t ⇒ N (0,D∗)

with a non-degenerate covariance matrix D∗ called diffusion matrix.
(b) The latter is given by Green-Kubo formula:

(1.3) D∗ =
1

τ̄0

∞
∑

n=−∞
ν0

(

∆0 ⊗∆n

)

where τ̄0 = ν0(τ) is the mean free path given by

(1.4) τ̄0 = ν0(τ) =
π Area(D)

length(∂D)

and u ⊗ v denotes the ‘tensor product’ of two vectors, i.e. the product
of the column-vector u and the row-vector v.

This theorem was derived in [3, 4]. Young [31] showed that the
series (1.3) converges exponentially fast. See a recent exposition in [13,
Chapter 7]; for the proof of (1.4) see [13, Section 2.13].

Next consider 2D periodic Lorentz gases with finite horizon where
the particle is subject to a small homogeneous (i.e. constant in time
and space) external field E. To keep the particle’s energy fixed, one
couples the field E with Gaussian thermostat [11, 12, 24], so that the
motion between collisions is governed by equations

(1.5) dq̃/dt = v, dv/dt = E− ζv,
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where ζ = 〈E,v〉/‖v‖2. The friction term ζv is called the Gaussian
thermostat, it ensures ‖v‖ = const at all times; again we will assume
that ‖v‖ = 1.

Let us fix the direction of E and regard ε = ‖E‖ as a small parameter
of the model. Again, due to periodicity of the scatterers, we get a new
flow, call it Φt

ε, on the same phase space Ω = D×S
1, and a new collision

map, Fε : M → M; the spaces Ω and M remain independent of E.
The collision time function (1.2) now depends on ε, i.e. τ = τε. Also,
for every X ∈ M we denote by

(1.6) ∆ε(X) = q̃1 − q̃0

the displacement of the particle moving in the infinite domain D̃ before
its next collision at ∂D̃.

Theorem 2 ([11, 12]). Let q̃(t) be the position of the particle in the
finite horizon Lorentz gas with a small external field E coupled with a
Gaussian thermostat (1.5). Then
(a) For small enough ε = ‖E‖, the map Fε is hyperbolic; it preserves a
Sinai-Ruelle-Bowen (SRB) measure (a steady state) νε, which is ergodic
and mixing. It is singular but positive on open sets. The flow Φt

ε also
preserves an SRB measure µε on Ω, which is ergodic, mixing, and
positive on open sets. The electrical current

J = lim
t→∞

q̃(t)/t = µε(v) = νε(∆ε)/τ̄ε

is well defined; here τ̄ε = νε(τε) is the mean free path (or the average
intercollision time), for which we have τ̄ε = τ̄0 + O(ε) as ε → 0.
(b) We have

(1.7) J = 1
2
D∗E + o(ε),

where D∗ is the diffusion matrix of Theorem 1.
(c) We have the following weak convergence, as t → ∞:

q̃(t) − Jt√
t

⇒ N (0,D∗
ε),

where D∗
ε is the corresponding diffusion matrix.

(d) The diffusion matrix is continuous in ε at ε = 0:

(1.8) D∗
ε = D∗ + o(1).

This theorem was proved in [11, 12] and extended to more general
external forces in [6, 7].

Note that (1.7) can be regarded [11, 12] as classical Ohm’s law: the
electrical current J is proportional to the voltage E (to the leading
order). The fact that the electrical conductivity, i.e. 1

2
D∗ in (1.7), is
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proportional to the diffusion matrix D∗ is known in physics as Einstein
relation [11, 12]. Observe that due to (1.8) the Einstein relation can
be also restated as

(1.9) J = 1
2
D∗

εE + higher order terms.

According to Theorem 2, the position of the particle can be roughly
approximated by

(1.10) q̃(t) ≈
[

1
2
D∗ + o(1)

]

E t +
[

(D∗)1/2 + o(1)
]

Z
√

t,

where Z denotes the 2D standard normal random vector. The first term
in (1.10) represents the steady drift of the particle, and the second –
its chaotic diffusion.

Next we turn to the Lorentz particle moving in an external field
without thermostat, i.e. the equations of motion are now very simple:

(1.11) dq̃/dt = v, dv/dt = E.

However, this case is far more difficult than the previous one, because
the particle is allowed to accelerate (‘heat up’), so that the system no
longer preserves a finite measure. If we choose the coordinate frame so
that the x axis is directed along the field E, i.e. E = (ε, 0), then we can
expect that x(t) → ∞ and ‖v(t)‖ → ∞, as t → ∞. More precisely, as
the total energy

H = 1
2
‖v(t)‖2 − 〈E, q̃(t)〉 = 1

2
‖v(t)‖2 − εx(t)

is conserved, we have x(t) ∼ ‖v(t)‖2. It was long conjectured in physics
literature that x(t) ∼ t2/3 and ‖v(t)‖ ∼ t1/3, see references in [10, 9],
but mathematically this model was investigated only very recently [9].

Assume that the particle is confined to the half plane {x ≥ 0} and
experiences mirror reflections off the line x = 0. This model is actually
known in physics as Galton board [18].

Theorem 3 ([9]). Suppose that the initial condition of the particle has
a smooth compactly supported density on an energy surface {H = H0}
where H0 is sufficiently large.
(a) There is a constant c⋄ > 0 such that c⋄t

−2/3x(t) converges, as t →
∞, to a random variable with density

3

2Γ(2/3)
exp

[

−z3/2
]

, z ≥ 0.

(b) The constant c⋄ is given by

c⋄ =

(

32 ‖E‖5

81〈D∗E,E〉

)1/3

.
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Remark. (c) There exists a limiting distribution for t−2/3y(t), too, but
it is given by a more complicated formula [10].

Thus, depending on the type of external forces, the particle moving
in the finite horizon Lorentz gas can exhibit different scaling behavior.
However in all cases the transport coefficients satisfy simple relations
and are expressed in terms of the diffusion matrix D∗. We note that
the matrix D∗, given by (1.3), is a highly non-explicit function of the
geometry of the scatterers. In fact, there are indications [8] that D∗

cannot be differentiable with respect to the geometric characteristics
of the scatterers (e.g., their centers or diameters). But given D∗, one
can compute other transport coefficients quite easily.

This concludes our introductory review of the Lorentz gases with
finite horizon. In the next section we turn to the more difficult case of
infinite horizon.

2. Statements of results

This paper is a part of a larger project to extend all the above results
to the infinite horizon periodic Lorentz gases. In this paper we present
analogues of Theorems 1 and 2, leaving the extension of Theorem 3 for
a later publication.

E

Figure 1. A particle moving along an infinite corridor
between scatterers: due to the external field E its trajec-
tory bends and hits a scatterer.

Field-free Lorentz gas. In the infinite horizon case the particle can
move freely without collisions along infinite corridors stretching be-
tween the scatterers, see Figure 1. Now its long-term behavior is quite
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different from the one described in Theorem 1. The first manifestation
of this difference is that the Green-Kubo series (1.3) defining the diffu-
sion matrix in the finite horizon case, now diverges because its central
term is infinite:

ν0

(

∆0 ⊗ ∆0

)

= ∞.

(The main technical result of our paper, however, asserts that all the
other terms, ν0

(

∆0⊗∆n

)

for n 6= 0, are finite and decay exponentially
in n; see Proposition 9.1.)

Because the diffusion matrix defined by (1.3) turns infinite, the
particle exhibits an abnormal diffusion (often called ‘superdiffusion’).
Namely the correct scaling factor in the Central Limit Theorem is now√

t log t, rather than
√

t. This fact was conjectured long time ago, and
a partial proof was published by Bleher [2] in 1992. A complete math-
ematical proof, for the discrete time, appeared in 2007 due to Szasz
and Varju [28]. Their main result is

Theorem 4 ([28]). Let q̃n be the position of the particle, at its nth
collision, in the infinite horizon Lorentz gas without external fields.
(a) We have the following weak convergence, as n → ∞:

q̃n√
n log n

⇒ N (0, D̂),

where D̂ will be called discrete-time superdiffusion matrix.
(b) The matrix D̂ is non-degenerate iff there are two non-parallel cor-
ridors.

The matrix D̂ is given by a simple explicit formula in terms of the
geometric characteristics of the infinite corridors. Namely, suppose
that each infinite corridor in D̃ is bounded by two straight lines, each
of which is tangent to an infinite row of scatterers that are copies of
a scatterer in D; then such lines are trajectories of some fixed points
X ∈ M : F(X) = X. Now we have

(2.1) D̂ =
∑ cνw

2
X

2 ‖∆(X)‖ ∆(X) ⊗ ∆(X).

where the sum is over all corridors, ∆(X) = ∆0(X) is the displacement
vector of X introduced earlier and wX is the width of the corridor
bounded by the trajectory of X.

Our first result is the continuous time version of this theorem, which
also includes the Weak Invariance Principle. We remind the reader
that the initial position q̃(0) and the initial velocity v(0) are always
chosen according to a smooth compact supported distribution.
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Theorem 5. Let q̃(t) be the position of the particle in the infinite
horizon Lorentz gas without external fields.
(a) We have the following weak convergence, as t → ∞:

q̃(t)√
t log t

⇒ N (0,D),

where D will be called superdiffusion matrix.
(b) The latter is D = τ̄−1

0 D̂, where τ̄0 is the mean free path given by
(1.4). In particular, D is non-degenerate iff there are two non-parallel
corridors.
(c) Furthermore, in the latter case (when D is non-degenerate), we
have the Weak Invariance Principle, i.e. the process

q̃(sT )√
T log T

, 0 < s < 1,

converges, as T → ∞, to the Brownian Motion with zero mean and
covariance matrix D.

The case of parallel corridors will be treated separately, see below.
In the course of proving Theorem 5 will also provide a different proof
of Theorem 4 than the one published in [28].

Lorentz gas under an external field. Our main goal is to show
that in the 2D periodic Lorentz gas with infinite horizon and a small
constant external field E coupled with a Gaussian thermostat, the elec-
trical current is abnormal, too. Namely if again we denote ε = ‖E‖,
then the current J will be proportional to ε| log ε|, rather than ε.

To be precise, there are two distinct cases now. First, if the field
E happens to be parallel to one of the infinite corridors, then with
positive probability the particle falls into that corridor and then keeps
moving ‘ballistically’, without collisions. In that case q̃(t)/t converges,
as t → ∞, to 1 (independently of ε), and this is a trivial case.

A more interesting is a generic situation where the field E is not
parallel to any of the corridors. Now the free paths happen to be
bounded, as the particle’s trajectory bends under the action of the
field and is bound to exit any corridor; see Figure 1. We will actually
show that the longest free path between collisions is O(ε−1/2).

As before, we fix the direction of E and regard ε = ‖E‖ as a small
parameter of the model. Due to the periodicity, we get a flow Φt

ε on
Ω = D × S

1 and a collision map Fε : M → M. Recall that τ = τε

denotes the first collision time (1.2) and ∆ε denotes the displacement
before the first collision (1.6). Our main result is
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Theorem 6. Let q̃(t) be the position of the particle in the infinite hori-
zon Lorentz gas with a small external field E coupled with a Gaussian
thermostat (1.5). Assume that E is not parallel to any of the infinite
corridors.
(a) For small enough ε, the collision map Fε is hyperbolic; it preserves
an SRB measure (steady state) νε, which is ergodic, mixing, and posi-
tive on open sets. The flow Φt

ε also preserves an SRB measure µε on
Ω, which is ergodic, mixing, and positive on open sets. The electrical
current

(2.2) J = lim
t→∞

q̃(t)/t = µε(v) = νε(∆ε)/τ̄ε

is well defined; here τ̄ε = νε(τε) is the mean free path (the average
intercollision time).
(b) The current J satisfies

(2.3) J = 1
2
| log ε|DE + δJ,

where D is the superdiffusion matrix of Theorem 5. The remainder
term δJ in (2.3) is bounded as follows:

(2.4) ‖δJ‖ ≤ Auε,

where Au > 0 only depends on the direction u = E/‖E‖ of the field.
(c) We have the following weak convergence, as t → ∞:

(2.5)
q̃(t) − Jt√

t
⇒ N (0,Dε),

where Dε is the corresponding diffusion matrix.
(d) The latter satisfies

(2.6) Dε = | log ε|D + δD

where ‖δD‖ ≤ Bu is a constant depending on u only.

Furthermore, the position process {q̃(t) − Jt} satisfies the standard
Weak Invariance Principle (WIP), Almost Sure Invariance Principle
(ASIP), and Law of Iterated Logarithms (LIL), see e.g. [13, Section 7.9].

We remark that the scalars Au and Bu, as functions of u, are not
uniformly bounded. In fact we expect that they grow to infinity when
the field becomes almost parallel to one of the infinite corridors (this
happens because the current J then seems to be of order one, as we
noted above, but we do not investigate this case here).

Theorem 6 suggests that, analogously to (1.10), the position of the
particle can be roughly approximated by

(2.7) q̃(t) ≈
[

1
2
| log ε|D + O(1)

]

E t +
[

(| log ε|D)1/2 + O(1)
]

Z
√

t,
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where Z denotes the 2D standard normal random vector.
Observe that since the convergence in Theorem 6 is not uniform,

(2.7) is only valid for sufficiently large t. More precisely we have

Proposition 2.1. Suppose that t → ∞ and ε → 0. Then

q̃(t) − Jt
√

t log min{t, ε−1}
⇒ N (0,D).

Comparing the finite and infinite horizon cases we make the following
observations:
• The classical Ohm’s law fails in the infinite horizon case because

the electrical conductivity becomes infinite.
• Einstein relation, in the form (1.9), remains valid.
• The continuity of the diffusion matrix loses its meaning since the

diffusion matrix (1.3) turns infinite in the absence of fields. Instead,
we have the superdiffusion matrix D that depends on the geometry of
the infinite corridors only, and so we observe the following behavior.
The field bends the billiard trajectories and caps the longest free path
at the level O(ε−1/2). Such high values of the free path are achieved by
typical field-free (billiard) trajectories at times t ∼ ε−1. Therefore for
t ≪ ε−1 the field can be neglected and the effective covariance matrices
are about the same, with and without the field. But at larger times,
t ≫ ε−1, the presence of the field leads to much smaller fluctuations
compared to those in the field free case. This explains why we have a
diffusion when a field is present and a superdiffusion without fields.
• The superdiffusion matrix D admits a simple and explicit descrip-

tion in terms of the geometric parameters of the infinite corridors, see
(2.1), which is in stark contrast with the diffusion matrix D∗ given by
an infinite series (1.3). However, if the scatterers become so small that
the number of corridors becomes large, then the evaluation of D by
(2.1) may be also very complicated; see also [21, 22].

Special case of parallel corridors. The results of the previous
section are valid for any number and configuration of corridors, but
they present an incomplete picture when all corridors are parallel, since
the matrix D will be then degenerate. For example, Theorem 5 will
only say in this case that typical fluctuations of the particle in the
direction perpendicular to the corridors are o(

√
t log t). On the other

hand, it easily follows from [5] that the correct scaling in the Central
Limit Theorem in this case is

√
t. Below we present a special theorem

tailored for the case of parallel corridors.
For convenience, in this theorem and subsequent propositions the

coordinate frame is chosen so that all the infinite corridors are parallel
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to the x-axis. Note: this is different from our previous convention that
the x-axis is parallel to the field E. This new choice of the coordinate
frame is only adopted within the current subsection, then we return to
the old choice where the x direction is parallel to E.

Theorem 7. Let q̃(t) = (x(t), y(t)) be the position of the particle in
the infinite horizon Lorentz gas without external fields, where all the
infinite corridors are parallel to the x axis.
(a) We have a weak convergence, as t → ∞,

(

x(t)√
t log t

,
y(t)√

t

)

⇒ N
(

0,

(

Dxx 0
0 D∗

yy

))

.

Here Dxx is the first component of the superdiffusion matrix D in The-
orem 5 and D∗

yy is the last component of the diffusion matrix D∗ in
Theorem 1.
(b) Furthermore, we have the Weak Invariance Principle, i.e. the pro-
cess

(

x(sT )√
T log T

,
y(sT )√

T

)

, 0 < s < 1,

converges, as T → ∞, to the Brownian Motion with zero mean and

covariance matrix

(

Dxx 0
0 D∗

yy

)

.

We note that a discrete version of Theorem 7(a) was conjectured in
[28, p. 70].

Next we modify Proposition 2.1 in the case where all the corridors
are parallel.

Proposition 2.2. Under the assumptions of Theorem 6, suppose that
all the corridors are parallel to the x axis. Then the diffusion matrix
Dε satisfies

(Dε)xx = | log ε|Dxx + O(1),

(Dε)xy = D∗
xy + o(1),

(Dε)yy = D∗
yy + o(1).

Proposition 2.2 implies that the diffusion matrix Dε has two eigen-
values: the larger is ∼ | log ε|Dxx and the smaller is ∼ D∗

yy, and the cor-
responding eigenvectors are O(| log ε|−1)-close to the coordinate axes.

Proposition 2.3. Under the assumptions of Theorem 6, suppose that
all the corridors are parallel to the x axis. Let t → ∞ and ε → 0
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simultaneously. Then
(

x(t)
√

t log min{t, ε−1}
,
y(t)√

t

)

⇒ N
(

0,

(

Dxx 0
0 D∗

yy

))

.

Related issues. There is a set of further interesting properties of
the Lorentz gas under a small external field with the Gaussian thermo-
stat. For the finite horizon case, they were derived in [11, 12]; for the
infinite horizon case, the arguments carry over without change. We list
all these results here, referring for the proofs to [11].

First, let λ−
ε < 0 < λ+

ε denote the positive and negative Lyapunov
exponents of the flow Φt

ε (it also has one zero Lyapunov exponent).
Their sum λ+

ε + λ−
ε represents the average rate of volume contraction

under the flow Φt. Precisely, if Ẋ = V(X) denote the equations of

motion (X stands for the point in the phase space of the flow, Ẋ for
its time derivative, and V(X) for the velocity vector field), then

λ+
ε + λ−

ε = µε

(

∇X · V(X)
)

,

where ∇X ·V(X) is the divergence of V see [11, p. 572]. The peculiar
feature of our equations of motion (1.5) is that

∇X · V(X) = −〈E,v〉,
in the notation of (1.5). Therefore

λ+
ε + λ−

ε = −〈E,J〉.
In the context of Theorem 2 (i.e., for finite horizon) we get

(2.8) λ+
ε + λ−

ε = −1
2
ETD∗E + o(‖E‖2),

and in the context of Theorem 6 (infinite horizon)

(2.9) λ+
ε + λ−

ε = −1
2
ETDE

∣

∣log ‖E‖
∣

∣+ O(‖E‖2).

Likewise, let λ̂−
ε < 0 < λ̂+

ε denote the Lyapunov exponents of the
collision map Fε. Their sum represents the average rate of volume
contraction by the map, i.e.

λ̂+
ε + λ̂−

ε = νε(ln g),

where g = dF−1
ε ν0/dν0 is the Jacobian of the map Fε with respect to

the billiard invariant measure ν0. Again a direct calculation shows that
g = e−〈E,∆ε〉, hence

λ̂+
ε + λ̂−

ε = −τ̄ε 〈E,J〉.
Thus we get

(2.10) λ̂+
ε + λ̂−

ε = −1
2
τ̄0 ETD∗E + o(‖E‖2)
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for the finite horizon case and

(2.11) λ̂+
ε + λ̂−

ε = −1
2
τ̄0 ETDE

∣

∣log ‖E‖
∣

∣+ O(‖E‖2)

for the infinite horizon. We used the fact that τ̄ε = τ̄0 +O(εa) for some
a > 0, which will be proved in Proposition 3.1.

The formulas (2.8)–(2.11) allow us to estimate the fractal (informa-
tion) dimension (denoted by HD) of the invariant measures µε and νε.
First, HD(µε) = HD(νε) + 1, and by Young’s formula [30]

HD(νε) = hνε(Fε)

(

1

λ̂+
ε

− 1

λ̂−
ε

)

,

where hνε(Fε) is the Kolmogorov-Sinai entropy of the map Fε. By

Pesin’s formula hνε(Fε) = λ̂+
ε . This implies

HD(µε) = 2 − λ+
ε

λ−
ε

= 3 − λ+
ε + λ−

ε

λ−
ε

.

Therefore

(2.12) HD(µε) = 3 − τ̄0
2h0

ETD∗E + o(‖E‖2)

in the finite horizon case and

(2.13) HD(µε) = 3 − τ̄0
2h0

ETDE
∣

∣log ‖E‖
∣

∣+ o
(

‖E‖2
∣

∣log ‖E‖
∣

∣

)

in the infinite horizon case. Here h0 = hν0
(F0) denotes the Kolmogorov-

Sinai entropy of the billiard map F0, and we used the continuity of
hνε(Fε) = λ̂+

ε at ε = 0; see [11]. We note also that h0/τ̄0 = hµ0
(Φt) is

the Kolmogorov-Sinai entropy of the billiard flow Φt.
Our formulas (2.12)–(2.13) imply that the measure µε is singular

with respect to the Lebesgue volume for small ε 6= 0, and the same
is true for νε. On the other hand, the support of µε is the entire
phase space Ω, and the support of νε is the entire space M, because
every open set has positive measure (Theorem 6); such a situation is
common for SRB measures that are obtained by perturbations of a
smooth measure, i.e. for non-equilibrium stationary steady states that
are close to equilibrium [11, 12].

This completes the statements of our results.

Structure of the paper. The paper is organized as follows. In Sec-
tion 3 we pass to discrete time, i.e. restate our main theorems in terms
of the respective collision maps. Then we start proving Theorem 6,
which will take seven sections. To help the reader, Section 4 presents
a skeleton of our arguments leaving technical calculations for the fol-
lowing six sections. Then in Section 5 we make certain preparations –
describe the geometry of trajectories in the infinite corridors and the
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resulting structure of the collision space M. In Sections 6–7 we review
standard tools for the studies of hyperbolic systems with singularities.
In Sections 8–10 we perform the bulk of the technical analysis.

Next, in Section 11 we prove the relatively simpler Theorems 5 and
7. Section 12 contains some technical estimates needed for Section 11,
and it concludes with the proofs of Propositions 2.1–2.3.

3. Passing to discrete time

It is standard in the studies of continuous time dynamical systems
(flows) to convert them to discrete time by using the return map on a
suitably constructed cross-section in phase space.

3.1. Lorentz gas without external forces. We start with the rela-
tively simpler field-free Lorentz gas. As usual, we represent the contin-
uous time dynamics Φt : Ω → Ω by a suspension flow over the collision
map F : M → M under the ceiling function τ . Now our Theorems 5
and 7 can be restated for the resulting discrete time process as follows.

Theorem 8. Let q̃n = (xn, yn) be the position at the nth collision of
the particle in the infinite horizon Lorentz gas (without external fields).
(a) If there are two non-parallel corridors, then the following Weak
Invariance Principle holds: the process

q̃sn√
n log n

, 0 < s < 1,

converges, as n → ∞, to the Brownian Motion with zero mean and
covariance matrix D̂ given by (2.1).
(b) If all the infinite corridors are parallel (and the coordinate frame
is chosen so that the x axis is aligned with the corridors), then the
following Weak Invariance Principle holds: the process

(

xsn√
n log n

,
ysn√

n

)

, 0 < s < 1,

converges, as n → ∞, to the Brownian Motion with zero mean and

covariance matrix

(

D̂xx 0

0 D̂∗
yy

)

, where D̂∗ = τ̄0D
∗, cf. (1.3).

Here, as usual, q̃sn is a continuous function of s such that q̃sn = q̃m

whenever sn = m is an integer and obtained by linear interpolation
between integers.

Now we can derive Theorems 5 and 7 from Theorem 8. The general
results, like [23], do not apply because our functions ∆ and τ are
unbounded and grow rapidly (actually their second moments diverge:
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ν0(τ
2) = ν0(‖∆‖2) = ∞), hence we need to provide a problem-specific

argument, see next.
In our model, the function ‖∆‖ = τ takes large values when the

trajectory enters an infinite corridor for a long free flight without col-
lisions. It is known (see [13, Section 4.10] and [28]) that for all A > 1

(3.1) ν0

(

τ > A) = O(A−2).

Now given T > 0 and s ∈ (0, 1), let m1 = m1(s, T ) = [sT/τ̄0] and let
m2 = m2(s, T, X) be the integer such that tm2

(X) ≤ sT < tm2+1(X),
where tm(X) denotes the time of the m-th collision. The bound (3.1)
implies that

(3.2) ν0

(

max
m≤2T/τ̄0

|tm+1 − tm| ≤
√

T ln ln T
)

→ 1

as T → ∞. Note that ‖q̃(t′) − q̃(t′′)‖ ≤ |t′ − t′′| because ‖v(t)‖ = 1.
Thus, it suffices to show that

max0<s<1 |q̃m1
− q̃m2

|√
T log T

→ 0

in probability. The Ergodic Theorem implies that tm(X)/m → τ̄0 a.e.,
as m → ∞. Hence, given ε1, ε2 > 0 we have that for large enough T
and for all s ∈ (0, 1)

(3.3) ν0

(

tm1−ε1T < sT and tm1+ε1T > sT
)

≥ 1 − ε2.

Clearly, (3.2) and (3.3) imply that

ν0

(

|m2 − m1| < ε1T
)

> 1 − 2ε2.

On the other hand, due to Theorem 8(a) the process q̃sT /
√

T log T is
tight, which means that for any ε1 > 0 there exists ε2 > 0 such that if
|m1 − m2| < ε2T , then

ν0

(

|q̃m1
− q̃m2

| < ε1

√

T log T
)

≥ 1 − ε1.

This implies the Weak Invariance Principle in Theorem 5(c), and the
Central Limit Theorem in part (a) immediately follows from (c). The
derivation of Theorem 7 from Theorem 8(b) is very similar, and we
omit it.

Theorem 8, in turn, is an extension of recent results by Szasz and
Varju [28] (Theorem 4); it is proved in Section 11.
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3.2. Lorentz gas under external field. Now we turn to our main
objective – the Lorentz gas under a small external field E. Recall that
we fix the direction of E and regard and ε = ‖E‖ as a small parameter of
the model. Again we represent the continuous time dynamics Φt

ε : Ω →
Ω by a suspension flow over the collision map Fε : M → M under the
ceiling function

τε(X) = min{t > 0: Φt
ε(X) ∈ M}.

Now Theorem 6 can be restated for the discrete time as follows:

Theorem 9. Let q̃n be the position at the nth collision of the particle
in the infinite horizon Lorentz gas with a small external field E coupled
with a Gaussian thermostat (1.5). Assume that E is not parallel to any
of the infinite corridors.
(a) For small enough ε, the collision map Fε is hyperbolic; it preserves a
Sinai-Ruelle-Bowen (SRB) measure (steady state) νε, which is ergodic,
mixing, and positive on open sets. The discrete-time electrical current

(3.4) Ĵ = lim
n→∞

q̃n/n = νε(∆ε),

is well defined.
(b) The current Ĵ satisfies

(3.5) Ĵ = 1
2
| log ε|D̂E + δĴ,

where

(3.6) D̂ = τ̄0D,

here τ̄0 is given by (1.4) and D is the matrix of Theorem 5. The

remainder term δĴ in (3.5) is bounded by:

(3.7) ‖δĴ‖ ≤ Âuε,

where Âu > 0 only depends on the direction u = E/‖E‖ of the field.
(c) We have the following weak convergence, as n → ∞:

(3.8)
q̃n − Ĵn√

n
⇒ N (0, D̂ε),

where D̂ε is the discrete-time diffusion matrix.
(d) The latter satisfies

(3.9) D̂ε = | log ε| D̂ + δD̂

where ‖δD̂‖ ≤ B̂u, a constant depending on u only.

To derive our main Theorem 6 from Theorem 9, we need the following
technical estimate:
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Proposition 3.1. The mean free path τ̄ε = νε(τε) is a Hölder contin-
uous function at ε = 0, i.e.

(3.10)
∣

∣τ̄ε − τ̄0

∣

∣ ≤ Ĉuεa

for some constants Ĉu, a > 0, where Ĉu depends on u only.

Now the derivation of Theorem 6 from Theorem 9 is straightfor-
ward. We only note that the continuous time Central Limit Theorem
(2.5) follows from its discrete time counterpart (3.8) according to gen-
eral results, cf. [23] or [13, Theorem 7.68], because (as we will show
in Section 5) the functions ∆ε and τε are bounded and regular (more
precisely, they are dynamically Hölder continuous, as defined in Sec-
tion 7).

It remains to prove Theorem 9, and this will be done in the next
seven sections.

4. Plan of proof of Theorem 9

Here we outline the structure of our arguments leaving the technical
calculations for the following six sections.

The map Fε is a small perturbation of the billiard map F , which is
known to have strong hyperbolic and ergodic properties. In the case of
finite horizon, a perturbative argument was developed in [11, 12, 6, 7] to
prove the existence of the SRB measure νε and its ergodic and statistical
properties, including exponential decay of correlations.

In our case, there is a more serious distinction between Fε and F .
The latter has countably many singularity lines which accumulate near
fixed points X ∈ M : F(X) = X (corresponding to the borders of
the infinite corridors; cf. (2.1)). The singularity lines near the fixed
points form a characteristic structure of regions (called cells; see e.g.
[13, Section 4.10]) which determine global properties of the map F .

Our map Fε, on the other hand, has only finitely many singularity
lines, and the structure of the corresponding cells is quite different.
While our situation is simpler, because of finiteness of the singularity
lines, our cells must be carefully analyzed in order to derive properties
of Fε similar to those of F . This analysis is done in Section 5; there
we will show that τε and ‖∆ε‖ are bounded by const·ε−1/2.

Now the perturbative argument developed in [11, 12, 6, 7] can be
used again to construct a unique SRB measure νε and prove its ergodic
and statistical properties; this will be done in Sections 6–7.

One of the basic properties of the SRB measure νε is that it is a weak
limit νε = limn→∞Fn

ε ν0. Furthermore, for any smooth function f on



18 N. CHERNOV AND D. DOLGOPYAT

M we have a Kawasaki-type formula

νε(f) = lim
n→∞

ν0(f ◦ Fn
ε )

= ν0(f) + lim
n→∞

n
∑

k=1

ν0

[

(f ◦ Fk
ε ) − (f ◦ Fk−1

ε )
]

= ν0(f) +
∞
∑

k=1

ν0

[

(f ◦ Fk
ε )(1 − g)

]

,(4.1)

where

g = dF−1
ε ν0/dν0 = e−〈E,∆ε〉

is the Jacobian of the map Fε with respect to the billiard invariant
measure ν0. We will show that the series in (4.1) converges exponen-
tially fast and uniformly in ε. It is useful to note that ν0(1 − g) = 0,
because g is the density of a probability measure.

Again, for convenience we choose the coordinate frame so that the
direction of the field E coincides with the positive x axis, then E =
(ε, 0). Denoting the components of the displacement vector by ∆ε =
(∆ε,x, ∆ε,y) we get

(4.2) g = e−〈E,∆ε〉 = e−ε∆ε,x .

According to (3.4), we need to apply (4.1) to the functions ∆ε,x

and ∆ε,y, which are only piecewise-smooth and not uniformly bounded
(more precisely, supM ‖∆ε‖ ∼ ε−1/2). Still, the Kawasaki formula (4.1)
applies, and the convergence of the series is uniform in ε; this will be
proven in Section 8.

Next we use the invariance of νε to write (meaning ∆ε = ∆ε,x or
∆ε,y)

νε(∆ε) = 1
2

(

νε(∆ε) + νε(∆ε ◦ F−1
ε )
)

= 1
2

(

ν0(∆ε) + ν0(∆ε ◦ F−1
ε )
)

+
∞
∑

k=1

ν0

[

(∆ε ◦ Fk
ε )(1 − g)

]

+ 1
2
ν0

[

∆ε (1 − g)
]

.(4.3)

Due to the time-reversibility of our dynamics, the first term vanishes,
i.e. ν0(∆ε)+ν0(∆ε◦F−1

ε ) = 0, see also [11, p. 585]. Next, we use Taylor
expansion

(4.4) 1 − g = ε∆ε,x + εRε,

where Rε denotes the remainder term. We will show in Section 8 that
Rε = O(1) uniformly in ε. Also, Rε has the same degree of regularity
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as the function ∆ε,x itself, and Rε → 0, as ε → 0, pointwise. Thus the
contribution of Rε will be easy to suppress. Now

(4.5)
∞
∑

n=1

ν0

[

(∆ε ◦ Fn
ε )(1 − g)

]

= ε
∞
∑

n=1

ν0

[

(∆ε ◦ Fn
ε )(∆ε,x + Rε)

]

.

On the right-hand side we have the sum of correlation-like terms, which
will be shown to be uniformly bounded, thus the left-hand side is O(ε).
Uniform bounds on correlations constitute our main technical results;
they are presented in Section 9.

We now see that the main contribution to the current Ĵ comes from
the last term in (4.3), which is

ν0

[

∆ε(1 − g)
]

= εν0(∆ε∆ε,x) + εν0(∆εRε).

The last term is negligible, as we will show that

(4.6) ν0(∆ε,xRε) = ν0(∆ε,yRε) = O(
√

ε).

Lastly, we will show, by direct calculation (see Section 10), that

(4.7) ν0(∆
2
ε,x) = D̂xx| log ε| + O(1)

and

(4.8) ν0(∆ε,x∆ε,y) = D̂xy| log ε| + O(1)

D̂xx and D̂xy are the respective components of the superdiffusion ma-

trix D̂ given by (2.1). This will complete our proof of (3.5)–(3.7).
Next we turn to (3.8)–(3.9). The convergence to a normal law

N (0, D̂ε) is just a central limit theorem proved by standard arguments
[5, 6] (which apply because the function ∆ε is bounded and Hölder

continuous). The covariance matrix D̂ε is given by the sum of correla-
tions

(4.9) D̂ε =

∞
∑

n=−∞

(

νε

[

(∆ε ◦ Fn
ε ) ⊗ ∆ε

]

− νε(∆ε) ⊗ νε(∆ε)
)

.

We will show that the above series, with the exception of its central
term n = 0, converges exponentially fast and uniformly in ε, and we
will show that νε(∆ε) = O(1) uniformly in ε. Hence we arrive at

D̂ε = νε(∆ε ⊗∆ε) + O(1).

Next we verify that

(4.10) νε(∆ε ⊗ ∆ε) = ν0(∆ε ⊗∆ε) + O(1)

(note that this expression, along with (4.3)–(4.5), implies the Einstein
relation between the electrical conductivity and the diffusion matrix).
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To this end we apply the Kawasaki-type formula (4.1) to each compo-
nent of the matrix

∆ε ⊗ ∆ε =

[

∆2
ε,x ∆ε,x∆ε,y

∆ε,x∆ε,y ∆2
ε,y

]

.

They are treated similarly, and we only show the formulas for ∆2
ε,x:

νε(∆
2
ε,x) = ν0(∆

2
ε,x) +

∞
∑

k=1

ν0

[

(∆2
ε,x ◦ Fk

ε )(1 − g)
]

,

= ν0(∆
2
ε,x) + ε

∞
∑

n=1

ν0

[

(∆2
ε,x ◦ Fn

ε )(∆ε,x + Rε)
]

.(4.11)

We will prove that the series is bounded by ε−a for some a < 1, hence
we obtain (4.10). Now the components of ν0(∆ε ⊗ ∆ε) have been
computed in (4.7)–(4.8), thus we arrive at (3.9). This will complete
the proof of Theorem 9.

Lastly, to prove Proposition 3.1 we need to estimate |νε(τε)− ν0(τ)|.
We start by applying Kawasaki formula (4.1) to τε:

(4.12) νε(τε) = ν0(τε) + ε
∞
∑

k=1

ν0

[

(τε ◦ Fk
ε )(∆ε,x + Rε)

]

,

where the series will be shown to converge exponentially and uniformly
in ε. Thus it is enough to estimate ν0(|τε − τ |), and we will show that

(4.13) ν0

(

|τε − τ |
)

= O(εa),

for some a > 0, which will be done by direct geometric estimation in
Section 10.

5. Geometric analysis

The equations of motion (1.5) have an explicit solution: since ‖v‖ =
1, we can put v = (cos θ, sin θ), then (1.5) takes form

(5.1) ẋ = cos θ, ẏ = sin θ, θ̇ = −ε sin θ

(where ẋ = dx/dt, etc.), and its solution is

x = x0 +
1

ε
log

sin θ0

sin θ

y = y0 +
θ0 − θ

ε
(5.2)

θ = 2 arctan
(

c0e
−εt
)
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where c0 = tan(θ0/2) and (x0, y0, θ0) denote the initial values. When
the particle collides with a scatterer, θ changes according to the rule
of specular reflection.

The subsequent results can be derived from (5.2) by direct analytic
calculations, but we present a more geometric argument using Wo-
jtkowski’s transformation [29]. It is based on a change of variables that
transforms curved trajectories (5.2) into straight lines. Let z = x + iy

be a complex variable replacing x and y and let us transform D̃ by the
rule

(5.3) z 7→ w = T (z) =

∫

e−εz dz =
1

ε

[

eεz − 1
]

(the term −1 is introduced to keep the origin fixed). In real variables,
if we denote w = u + iv, this transformation acts as T (x, y) = (u, v),
where

u = ε−1
[

eεx cos εy − 1
]

v = ε−1eεx sin εy.
(5.4)

One readily checks that in the uv plane the trajectories are straight
lines. Furthermore, since the transformation (5.3) is conformal, the
specular reflections are mapped into specular reflections. In the new
coordinates the particle is moving with a variable speed, but this is
irrelevant as we are only interested in the collision map. Thus our
problem reduces to a billiard in a new domain, T (D̃) = Q ⊂ R

2.
The periodic convex scatterers in the xy plane are mapped into scat-

terers in the uv plane, which are not located periodically and whose size
grows with x (due to the eεx factor in (5.4)). If κ is the curvature of the
boundary of a scatterer in the xy plane, then direct calculation shows
that the curvature of its image in the uv plane is e−εx

(

κ+O(ε)
)

, i.e. it
does not change sign for sufficiently small ε; hence the new scatterers
are still convex.

Next we examine how an infinite corridor in the xy is transformed
on the uv plane. Consider a sequence of identical scatterers forming
the ‘border’ of a corridor, see grey disks in Fig. 2. Each scatterer is
obtained by shifting the previous one by a constant vector (a, b) parallel
to the corridor; we assume for simplicity that a ≥ 0 and b > 0, as in the
figure. Consider a sequence of points (xm, ym), m = 1, 2, . . ., related by

xm+1 = xm + a, ym+1 = ym + b.

Their images (um, vm) = T (xm, ym) are related as follows:

um+1 = eεa(um cos εb − vm sin εb) + ε−1(eεa cos εb − 1),

vm+1 = eεa(um sin εb + vm cos εb) + ε−1eεa sin εb
(5.5)
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x

y
(a,b)

w

Figure 2. A row of scatterers forming the border of an
infinite corridor.

This shows that the respective scatterers in the uv plane, see Fig. 3,
can be described recursively as follows. Each scatterer Bn+1 is obtained
from the previous one, Bn, in three steps:
1. Bn is rotated counterclockwise about the origin by angle εb.
2. Then it is expanded homotetically about the origin by factor eεa.
3. Lastly it is shifted by a constant vector

(a′, b′) =
(

ε−1(eεa cos εb − 1), ε−1eεa sin εb
)

.

This sequence of operations produces the next scatterer Bn+1 from Bn.

u
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B

B

B

B

1
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m
to

ta
l

m
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X

Figure 3. The transformed scatterers in the uv plane
block the corridor.
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Because of rotations, the row of scatterers in the uv plane ‘curves
up’ so the corridor between them is not straight anymore. Only a finite
number of scatterers are ‘visible’ from the neighborhood of the origin,
hence the billiard in the new domain Q has finite horizon. The mth
scatterer is a distance ∼ cm from the origin, where c =

√
a2 + b2, hence

rotating it by angle εb will further block the view along the corridor by
the distance ∼ cmεb in the direction orthogonal to the corridor. The
total blockage caused by m scatterers now is

cbε(1 + 2 + · · ·+ m) ∼ 1
2
cbεm2.

If w is the width of the corridor, then the maximal number of scat-
terers visible from the initial region in the given corridor is mmax ∼
√

2w/(cbε), i.e.

(5.6) mmax ∼ C/
√

ε.

We will denote by C various absolute constants (independent of ε)
whose values are irrelevant. Note that the growth of the size of the
scatterers is negligible – the last visible scatterer is only

eεammax ∼ eO(
√

ε) ∼ 1 + O(
√

ε)

times larger than the closest one.
Since the billiard in Q is dispersing and has finite horizon, it has

all standard properties [13], in particular uniform expansion and con-
traction, and a finite number of singularity curves. We note that the
expansion in Q does not automatically imply an expansion in D̃, be-
cause the map T rescales distances (by the factor eεx), but the max-
imum rescaling factor in the course of one run between collisions is
eO(

√
ε) ≈ 1, hence we still have a uniform expansion for the collision

map in the original domain D̃.
Next we examine the singularity curves of the collision map. Tra-

jectories leaving the initial region into an infinite corridor can land on
∼ mmax different scatterers, on either side of the corridor. More pre-
cisely, let mU denote the number of visible scatterers on the upper side
of the corridor, and by mL on the lower side; see Fig. 3. A careful
estimation shows that

mU ∼ C1/
√

ε, mL ∼ C2/
√

ε, 0 < C1 < C2

thus both mU and mL are of order mmax. Thus there are mU + mL ∼
mmax singularity curves. Their number is not uniform, it grows as
ε → 0, thus they require a careful analysis.

Since the trajectories in Q are straight lines, our analysis goes along
the same lines as in billiards with infinite horizon [13, Section 4.10]; it
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is standard and elementary and we only present final results. The sin-
gularity lines near the point marked by X in Fig. 3 are shown in Fig. 4.
The long singularity curve S corresponds to grazing collisions with the
very next scatterer in the corridor (marked by B2 in Fig. 3). The short
singularity curves are made by grazing collisions with other scatterers in
the corridor. The regions between singularity curves are usually called
cells, they are made by trajectories landing on a particular scatterer.
Thus, the cells can be naturally numbered by 1, . . . , mU (correspond-
ing to the upper scatterers) and 1, . . . , mL (for the lower scatterers).

Accordingly, we denote the cells by D
(U)
1 , . . . , D

(U)
mU and D

(L)
1 , . . . , D

(L)
mL

(here U and L stand for ‘Upper’ and ‘Lower’, respectively).

1
m2

1
m

1√
m

1
m2

L

m
m2

L

√
m

mL

SS

D
(U)
m

D
(L)
m

XX
ϕ = π/2ϕ = π/2

Figure 4. Singularity curves and cells. On the left, an

‘upper’ cell D
(U)
m is shown, with all its dimensions, in light

grey; the union of all the ‘lower’ cells D
(L)
m ’s is painted

dark grey. On the right, a ‘lower’ cell D
(L)
m is shown,

with all its dimensions, in dark grey; the union of all the

‘upper’ cells D
(U)
m ’s is painted light grey.

In Fig. 4 the cells are depicted as follows. First (farther from S)

come the cells D
(U)
1 , . . . , D

(U)
mU (in this order). The height of D

(U)
m is

O(1/
√

m) and its width is O(1/m2), just like in classical billiards with
infinite horizon, see e.g. [13, Section 4.10]. Here and in the rest of this
section R = O(ma) means that c1m

a < R < c2m
a for some constants

0 < c1 < c2 < ∞. Unstable curves inside D
(U)
m are expanded by a

factor Λ
(U)
m = O(m3/2).
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Second (closer to S) come the cells D
(L)
mL , . . . , D

(L)
1 (in the reverse

order; the cell D
(L)
1 is adjacent to the point X). The height of D

(L)
m

is O(
√

m/mL) and its width is O(1/m2
L). Unstable curves inside D

(L)
m

are expanded by a factor Λ
(L)
m = O(mL

√
m). We note that the collision

map Fε transforms each cell D into a similar-looking cell, see Fig. 5,
except it expands shorter sides of D and contracts its longer sides, so
that the expansion factor can be approximated by

Λ ∼ height of D

width of D
,

this relation is standard in the studies of dispersing billiards [13].

1 42

13

2
4

3

Fε

Figure 5. The map Fε transforms a cell D
(U)
m into a

similar-looking domain. The corners of D
(U)
m and their

respective images are numbered to indicate the action of
Fε.

We record the following formulas for the measures of the cells:

(5.7) ν0

(

D(U)
m

)

= O(1/m3), ν0

(

D(L)
m

)

= O(m/m4
L).

Indeed, the billiard measure ν0 is smooth and has density cosϕ, thus the
measure of each cell is of the same order of magnitude as the product
width×(height)2.

6. Growth lemmas

Our map Fε : M → M is a small perturbation of a dispersing billiard
map. The latter enjoys uniformly strong expansion, which is counter-
balanced by some mild singularities. The studies of such maps are now
well developed, see [11, 5, 6, 7, 8, 9, 14], but there are no axiomatic
theory yet that would cover all such models – each new case appears
slightly different from others – so we will need to adapt the general
arguments to our particular case at some points. We only sketch com-
mon steps of this procedure that do not need adaptation, referring to
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the original papers for details, and focus on the features novel for our
model.

Unstable and stable cones, and respectively unstable and stable
curves, for the collision map in dispersing billiards are defined in a
standard way [13, Chapter 4]. So we have those objects for the bil-
liard in Q, and transforming them back to D under T−1 gives all such
objects for our map Fε. Alternatively, unstable curves for Fε can be
constructed directly, e.g. by using ‘strongly divergent families of flow
lines’ defined in [6, p. 213].

Next, we may assume as in [6, p. 215] that the curvature of unstable
and stable curves is uniformly bounded. To ensure distortion control
we construct homogeneity strips in a standard way:

Hj = {(r, ϕ) : π/2 − j−2 < ϕ < π/2 − (j + 1)−2} ∀j ≥ j0

H0 = {(r, ϕ) : − π/2 + j−2
0 < ϕ < π/2 − j−2

0 },
H−j = {(r, ϕ) : − π/2 + (j + 1)−2 < ϕ < −π/2 + j−2} ∀j ≥ j0

(6.1)

where j0 > 1 is a large constant, see [6, p. 216] and [13, Section 5.3].
We cut M along their boundaries, so that all our stable and unstable
curves will be automatically homogeneous. The images and preimages
of those boundaries become discontinuity lines (singularities) of F−1

ε

and Fε, respectively. For any unstable curve W and a point X ∈ W
denote by JWFn

ε (X) the Jacobian of the map Fn
ε restricted to W at

X. If F i
ε(W ) is an unstable curve for all 0 ≤ i ≤ n, then we have the

following distortion bound, see [6, Lemma 4.2]:

(6.2) | lnJWFn
ε (X) − lnJWFn

ε (Y )| ≤ C|Fn
ε (W )|1/3, X, Y ∈ W

where |W | denotes the length of W . Accordingly, if W u is a homoge-
neous unstable manifold (called h-fiber in [6]) and ρW u is the u-SRB
density on W u, i.e. the unique probability density satisfying

(6.3)
ρW u(X)

ρW u(Y )
= lim

n→∞

JW uF−n
ε (X)

JW uF−n
ε (Y )

, X, Y ∈ W u,

then (6.2) implies
∣

∣

d
dX

ln ρW u(X)
∣

∣ ≤ C|W u|−2/3; see [13, Section 5.6]
and [7].

If W1, W2 are unstable curves and ξ a stable manifold crossing each
Wi in a point Xi, then the Jacobian of the holonomy map h : W1 → W2

at X1 satisfies

(6.4) e−C(β+δ1/3) ≤ Jh(X1) ≤ e−C(β+δ1/3)
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where δ = |ξ(X1, X2)| is the length of the segment of ξ between X1 and
X2, and β is the angle between the tangent vectors to W1 and W2 at
X1 and X2, respectively, see [6, Lemma 4.3], [13, Theorem 5.42], or [7].

The singularity set S ⊂ M of the map Fε is a countable union of
stable curves with uniformly bounded curvature. They have the usual
‘continuation’ and ‘alignment’ properties, see [13, Chapter 4], i.e. they
partition M into curvilinear polygons with interior angles < π.

Given X, Y ∈ M, denote by s+(X, Y ) ≥ 0 the future separation
time (the first time when the images Fn

ε (X) and Fn
ε (Y ) land on dif-

ferent scatterers or in different homogeneity strips; i.e. the first time
when Fn−1

ε (X) and Fn−1
ε (Y ) belong to different connected components

of M\ S), and similarly let s−(X, Y ) ≥ 0 denote the past separation
time. Observe that if X and Y lie on one unstable curve W ⊂ M, then
|W (X, Y )| ≤ CΛ−s+(X,Y ), where Λ > 1 is the hyperbolicity constant
for Fε, cf. [13, Eq. (5.32)]. Now (6.4) implies (see, e.g. [13, Proposi-
tion 5.48]) that for any X, Y ∈ W1

(6.5) | lnJh(X) − lnJh(Y )| ≤ Cϑs+(X,Y ),

where ϑ = Λ−1/6 < 1. Following Young [31, p. 597], we call the property
(6.5) the ‘dynamically defined Hölder continuity’ of Jh.

Next we derive a key fact about the growth of unstable curves, known
as Growth Lemma. Given an unstable curve W , let us denote by
Wi ⊂ W the connected components of W \ S, i.e. the segments of W
on which Fε is smooth, and by Λi the (minimal) factor of expansion
of Wi under Fε. Then there is a metric in M, uniformly equivalent to
the Euclidean metric dl2 = dr2 + dϕ2, such that

(6.6) lim inf
δ0→0

sup
W : |W |<δ0

∑

i

Λ−1
i < 1,

where the supremum is taken over unstable curves W of length < δ0.
The bound (6.6) is called the one-step expansion estimate [14, Sec-
tion 5], it shows how much unstable curves stretch under one iteration
of the map.

For dispersing billiards with finite horizon, the proof of (6.6) is stan-
dard (see [13, Lemma 5.56]), and it readily carries over to perturbed
billiards (see [8, Lemma 4.10]) such as systems with small external
forces. In our case, infinite corridors add new complications – it is
possible that a short unstable curve W intersects many cells described
in the previous section (this happens when the images of the pieces
Wi move into an infinite corridor and land on different and remote
scatterers). Suppose W intersects cells D

(U)
p , p0 ≤ p ≤ mU , and D

(L)
q ,
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q0 ≤ q ≤ mL, (the indices are introduced in the previous section), then

∑

i

Λ−1
i ≤

mU
∑

p=p0

C

p3/2
+

mL
∑

q=q0

C

mLq1/2

≤ C

p
1/2
0

+
C

m
1/2
L

.

If W is small, then p0 must large, and the above bound is ≪ 1. This
completes the proof of (6.6).

The one-step expansion estimate (6.6) implies several properties known
collectively as Growth Lemmas, see [13, Chapter 5], [13, Section 4.7],
[6, Proposition 5.3], [8, Lemma 4.10], and the proofs therein. We state
their most common version below.

Given an unstable curve W , we denote by mW the Lebesgue measure
on it. For every n ≥ 0, its image Fn

ε (W ) is a finite or countable union
of homogeneous unstable curves called h-components, and for every
X ∈ W we denote by Wn(X) the h-component containing the point
Fn

ε (X). Now let

(6.7) rn(X) = rWn(X)(Fn
ε X)

denote the distance from Fn
ε (X) to the nearest endpoint of Wn(X).

Clearly, rn is a function on W that characterizes the size of the h-
components of Fn

ε (W ). We also denote by Λ > 1 the hyperbolicity
constant, i.e. the minimal expansion factor of unstable curves.

Lemma 6.1 (“Growth lemma”). (a) There are constants ϑ0 ∈ (0, 1)
and c1, c2 > 0, such that for all n ≥ 0 and ǫ > 0

mW (rn(X) < ǫ) ≤ c1(ϑ0Λ)n mW (r0 < ǫ/Λn) + c2ǫ mW (W )

(b) There are constants c3, c4 > 0, such that if n ≥ c3

∣

∣ ln mW (W )
∣

∣,
then for any ǫ > 0 we have mW (rn(X) < ǫ) ≤ c4ǫ mW (W ).
(c) There are constants ϑ1 ∈ (0, 1) c5, c6 > 0, a small ǫ0 > 0 such that
for any n2 > n1 > c5

∣

∣ ln mW (W )
∣

∣ we have

mW

(

max
n1<n<n2

rn(X) < ǫ0

)

≤ c6ϑ
n2−n1

1 mW (W ).

For the proof and implications of this lemma we refer to [13, 14].
We emphasize that the lim inf in (6.6) and all the constants in Growth
Lemma are independent of ε, i.e. the respective properties hold uni-
formly in our model parameter ε.

Next we define a class of probability measures supported on unstable
curves. A standard pair ℓ = (W, ρ) is an unstable curve W ⊂ M with
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a probability measure Pℓ on it, whose density ρ (with respect to the
Lebesgue measure on W ) satisfies

(6.8) | ln ρ(X) − ln ρ(Y )| ≤ Cr Λ−s+(X,Y ).

Here Cr > 0 is a sufficiently large constant (independent of ε). For any
standard pair ℓ = (W, ρ) and n ≥ 1 the image Fn

ε (W ) is a finite or
countable union of h-components on which the density of the measure
Fn

ε (Pℓ) satisfies (6.8); hence the image of a standard pair under Fn
ε is

a family of standard pairs (with a factor measure).
More generally, a standard family is an arbitrary (countable or un-

countable) collection G = {ℓα} = {(Wα, ρα)}, α ∈ A, of standard pairs
with a probability factor measure λG on the index set A. Such a family
induces a probability measure PG on the union ∪αWα (and thus on M)
defined by

PG(B) =

∫

Pα(B ∩ Wα) dλG(α) ∀B ⊂ M.

Any standard family G is mapped by Fn
ε into another standard family

Gn = Fn
ε (G), and PGn = Fn

ε (PG).
For every α ∈ A, any point X ∈ Wα divides the curve Wα into two

pieces, and we denote by rG(X) the length of the shorter one. Now the
quantity ZG = supǫ>0 ǫ−1

PG(rG < ǫ) reflects the ‘average’ size of curves
Wα in G, and we have

(6.9) ZG ≤ C

∫

dλG(α)

|Wα|
see [13, Exercise 7.15]. We only consider standard families with ZG <
∞. The growth lemma implies that for all n ≥ 0 and some constant
θ ∈ (0, 1)

(6.10) ZGn ≤ C(θnZG + 1),

see a proof in [13, Proposition 7.17]; this estimate effectively asserts
that standard families grow under Fn

ε exponentially fast.
A standard pair (W, ρ) is proper if |W | ≥ δp, where δp > 0 is a small

but fixed constant. A standard family G is proper if ZG ≤ Cp, where
Cp is a large but fixed constant (chosen so that a family consisting of
a single proper standard pair is proper, as a family). The image of a
proper standard family under Fn

ε is proper for every n ≥ 1.
A smooth foliation of M by (long enough) unstable curves gives us

a proper standard family G0 such that PG0
= ν0, the billiard invariant

measure, see [13, p. 172]. Also, there is a special standard family E
consisting of (maximal) unstable manifolds W u for the map Fε with
the SRB densities ρW u on them and the factor measure generated by νε;
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in that case PE = νε, the family E is proper (due to [6, Proposition 5.6])
and obviously Fε-invariant.

7. Ergodic and statistical properties

Our next task is the existence and uniqueness of the Sinai-Ruelle-
Bowen (SRB) measure νε on M, which is, by definition, an Fε-invariant
ergodic measure whose conditional distributions on unstable manifolds
are absolutely continuous (and then their conditional densities are given
by (6.3)).

The growth lemma can be used to estimate the Lebesgue measure
of the ǫ-neighborhood of the singularity set and its pre-images, see
details in [6, p. 228], and then standard results, e.g. [25, 26], imply the
existence and finitude of SRB measures. The finitude means that there
are at most finitely many of SRB measures, and each one is mixing
and Bernoulli, up to a finite cycle. It also follows from general results
that for each SRB measure ν there is a set B = Bν ⊂ M of positive
Lebesgue measure (‘the basin of attraction’) such that for every X ∈ B
and any continuous function f : M → R

1

n

[

f(X) + f(TX) + · · ·+ f(T n−1X)
]

→
∫

M
f(X) dν

as n → ∞, i.e. the SRB measure ν describes the distribution of ran-
domly selected trajectory with a positive probability; for this reason
every SRB measure is said to be physically observable.

The uniqueness and mixing of the SRB measure require a more elab-
orate argument; it is based on the fact that our map Fε is a small per-
turbation of a strongly mixing map F with a smooth invariant measure
ν0. This argument is presented in full detail in [6, pp. 229–233], we only
recall its principal steps.

First one finds a domain R ⊂ M bounded by two stable and two
unstable curves (a curvilinear ‘rhombus’) such that the images of every
unstable curve W ⊂ M under the billiard map F cross R fully (inter-
secting both of its stable sides) at a sufficiently high rate; such an R
was constructed in [4], see a more recent account of this construction
in [13, Section 7.12]. The growth lemma also guarantees that there are
plenty of stable and unstable manifolds crossing the domain R fully,
i.e. R is ‘saturated’ with stable and unstable manifolds.

Then one uses a perturbative argument, see [11, Lemma 13] and
[6, p. 230], to extend the above property to the maps Fε with all
sufficiently small ε. The rate at which the images of W return to R is
bounded below by a constant uniform in ε. Now for any two unstable
manifolds W1, W2 ⊂ M for the map Fε their images under Fn

ε for all
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sufficiently large n fully cross R, hence they can be connected by plenty
of stable manifolds of Fε. This readily implies the uniqueness and
mixing property of the SRB measure νε, hence its Bernoulli property.

As a side result, the basin of attraction of νε has full Lebesgue mea-
sure, and due to the mixing property of νε we have νε = limn→∞Fn

ε ν0,
in the sense of the weak convergence; here ν0 denotes the F -invariant
measure, which has a smooth density, but one can replace ν0 with any
other measure with a smooth positive density on M. An even stronger
version of this property will be given shortly.

Now we address the statistical properties of the system (M,Fε, νε).
One can use the stable and unstable manifolds that fully cross the
rhombus R as a basis for Young’s tower and then prove an exponential
tail bound for the return times via the growth lemma, as it is done in
[5, 14, 16]. This yields exponential decay of correlations.

Alternatively, one can use stable manifolds in R to couple images of
unstable curves and prove the so-called coupling lemma, again using
the growth lemma as the main tool. This approach is employed in [8,
13, 7, 16]. We state the most important implications of these techniques
below.

We say that a function f : M → R is dynamically Hölder continuous
if there are ϑf ∈ (0, 1) and Kf > 0 such that for any X and Y lying
on one unstable curve

(7.1) |f(X) − f(Y )| ≤ Kfϑ
s+(X,Y )
f

and for any X and Y lying on one stable curve

(7.2) |f(X) − f(Y )| ≤ Kfϑ
s−(X,Y )
f .

We denote the space of such functions by H. It contains every piecewise
Hölder continuous function whose discontinuities coincide with those
of F±m

ε for some m > 0. For example, the components ∆ε,x, ∆ε,y of the
vector displacement function ∆ε belong in H (see the next section).

Theorem 10 (Equidistribution). Let G be a proper standard family.
For any dynamically Hölder continuous function f ∈ H and n ≥ 0

(7.3)

∣

∣

∣

∣

∫

M
f ◦ Fn

ε dPG −
∫

M
f dνε

∣

∣

∣

∣

≤ Bfθ
n
f

where Bf = 2C
(

Kf + ‖f‖∞
)

and θf =
[

max{ϑ1, ϑf}
]1/2

< 1; here
C > 0 and ϑ1 ∈ (0, 1) are constants independent of G and ε.

In other words, iterations of measures on standard pairs weakly con-
verge to the SRB measure νε, and the convergence is exponentially fast
in the sense of (7.3).
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Theorem 11 (Exponential bound on correlations). For any pair of
dynamically Hölder continuous functions f, g ∈ H and n > 0

(7.4)
∣

∣νε

(

f · (g ◦ Fn
ε )
)

− νε(f)νε(g)
∣

∣ ≤ Bf,g θn
f,g

where

θf,g =
[

max
{

ϑ2, ϑf , ϑg

}]1/4
< 1,

(here ϑ2 ∈ (0, 1) is a constant independent of ε), and

Bf,g = C
(

Kf‖g‖∞ + Kg‖f‖∞ + ‖f‖∞‖g‖∞
)

.

Remark. The invariant measure νε in (7.4) can be replaced with any
measure PG supported on a proper standard family (in particular, by
the F -invariant measure ν0). In that case (7.4) takes form

∣

∣PG
(

f · (g ◦ Fn
ε )
)

− PG(f)νε(g)
∣

∣ ≤ Bf,g θn
f,g.

The proof of this is just a simple adaptation of the standard proof of
the above theorem, see e.g. the proof of Theorem 3.37 in [13].

The last theorem can be extended to multiple correlations and it
implies, via a standard argument, Central Limit Theorem (CLT), Al-
most Sure Invariance Principle (ASIP), and Law of Iterated Logarithm
(LIL) for the map Fε, see [13, Chapter 7] and [7]. An argument given
in [7, Section 3] also yields the Bernoulli property for the flow Φt

ε, i.e.
for the continuous time dynamics of the moving particle in the domain
D.

Lastly we derive the Kawasaki-type formula (4.1) for any dynami-
cally Hölder continuous function f ∈ H. Recall that

(7.5) νε(f) = ν0(f) + lim
n→∞

n
∑

k=1

ν0

[

(f ◦ Fk
ε ) − (f ◦ Fk−1

ε )
]

.

Also recall that ν0 = PG0
for a proper standard family G0, see the end

of Section 6. Thus, due to Equidistribution property (Theorem 10),
ν0(f ◦ Fk

ε ) converges to νε(f) exponentially fast. Therefore the series
in (4.1) converges at an exponential rate, and we have the following
tail bound:

(7.6)

∣

∣

∣

∣

∞
∑

k=n

ν0

[

(f ◦ Fk
ε )(1 − g)

]

∣

∣

∣

∣

≤ 2Bfθ
n
f /(1 − θf ).

We note that if the Hölder exponent log ϑf of the function f , its Hölder
norm Kf , and its ∞-norm ‖f‖∞ are independent of ε, then the above
estimate is uniform in ε, too.
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8. Properties of the ∆ε function

The results in the previous two sections were standard, and so we
omitted proofs. From now on our considerations will be quite specific
for the model at hand, so we present detailed proofs.

First we estimate the measures of our cells D
(U)
m and D

(L)
m introduced

in Section 5, generalizing (5.7).

Lemma 8.1. For each n ≥ 0 we have

(8.1) (Fn
ε ν0)

(

D(U)
m

)

∼ C

m3
, (Fn

ε ν0)
(

D(L)
m

)

∼ Cm

m4
L

.

and the same estimates hold for the limit measure νε.

Proof. For n = 0, these were given in (5.7). Recall that the Jacobian
of the transformation Fε is exp(−ε∆ε,x), cf. (4.2), hence the Jacobian
of Fn

ε is

dF−n
ε /dν0 = e−ε

Pn−1

k=0
∆ε,x◦Fk

ε .

Since ‖∆ε,x‖∞ ≤ C/
√

ε, due to (5.6), the Jacobian of Fn
ε will be, say,

in the interval [0.5, 2] for all n ≤ c/
√

ε provided c > 0 is a sufficiently
small constant. This proves (8.1) for all n ≤ c/

√
ε.

For larger n’s we use Equidistribution property (Theorem 10); we
apply it to the function f = 1D, where 1D denotes the indicator func-

tion of the cell D = D
(U)
m or D = D

(L)
m . Clearly, f is dynamically

Hölder continuous with any ϑf < 1 and Kf = 1, therefore due to (7.3)
∣

∣(Fn
ε ν0)(D) − νε(D)

∣

∣ ≤ Cθn

for some absolute constants C > 0 and θ ∈ (0, 1). Now for n = c/
√

ε
the right hand side is θc/

√
ε, and for all small ε we have

θc/
√

ε ≪ ε3/2 ≤ C

m3
U

≤ min

{

C

m3
,
Cm

m4
L

}

,

which completes the proof of the lemma. �

Next we verify that the components ∆ε,x and ∆ε,y of the vector dis-
placement function ∆ε are dynamically Hölder continuous, i.e. belong
in H.

Lemma 8.2. Let X, Y ∈ M be two nearby points such that their tra-
jectories in D̃ land, at the next collision, on the same scatterer in R

2.
Then we have

‖∆ε(X) −∆ε(Y )‖ ≤ C
√

‖∆ε(X)‖ · dist(X, Y ),

where C > 0 is a constant independent of ε.
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Proof. Suppose for a moment that we deal with a dispersing billiard
with smooth boundary in R

2, i.e. a particle moving between infinitely
many smooth convex scatterers whose curvature κ is bounded between
two constants,

0 < κmin ≤ κ ≤ κmax < ∞.

Let X = (q1,v1) and Y = (q2,v2) be two nearby phase points orig-
inating from one scatterer such that their images under the collision
map land on the same scatterer. By elementary geometry we have

‖∆ε(X) −∆ε(Y )‖ ≤ C
√

κ
−1
min‖∆ε(X)‖ · dist(X, Y ).

Hence this bound can be applied to the billiard in domain Q = T (D̃).
It is easy to see that κmin ∼ e−ε∆ε,x , thus the above bound will have a
factor eε∆ε,x/2. But when we transform the images of X and Y back to
D̃, then the distance between them will shrink by a factor of e−ε∆ε,x,
which will cancel eε∆ε,x/2. This proves the lemma. �

Thus the components ∆ε,x, ∆ε,y of ∆ε restricted to each cell are
Hölder continuous, in the ordinary sense, with Hölder exponent = 1/2
and Hölder norm

Kε = max
X∈M

‖∆ε(X)‖ ∼ C/
√

ε,

see (5.6). This implies that ∆ε,x, ∆ε,y belong in H, with a fixed value
of the parameter ϑ∆ < 1 (independent of ε), and with K∆ ∼ 1/

√
ε.

We note also that

‖∆ε,x‖∞ ∼ ‖∆ε,y‖∞ ∼ 1/
√

ε.

Thus the Kawasaki-type formulas (7.5)–(7.6) apply and give

(8.2)

∣

∣

∣

∣

∫

M
∆ ◦ Fn

ε dν0 −
∫

M
∆ dνε

∣

∣

∣

∣

≤ Cε−1/2θn,

where ∆ is a shorthand notation for ∆ε,x and ∆ε,y. Furthermore, for
every k ≥ 2 we have ‖∆k‖ ∼ ε−k/2 and

(8.3)

∣

∣

∣

∣

∫

M
∆k ◦ Fn

ε dν0 −
∫

M
∆k dνε

∣

∣

∣

∣

≤ Cε−k/2θn.

For k = 1, we can get a uniform bound, independent of ε:

Proposition 8.3. For some constants C > 0 and θ < 1, independent
of ε,

(8.4)

∣

∣

∣

∣

∫

M
∆ ◦ Fn

ε dν0 −
∫

M
∆ dνε

∣

∣

∣

∣

≤ Cθn,

where ∆ is a shorthand notation for ∆ε,x and ∆ε,y.
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Proof. Define ∆′ = ∆ · 1{|∆|<H} and ∆′′ = ∆ − ∆′, where H a certain
‘cut-off’ value to be selected below. Applying our previous analysis to
∆′ shows that the latter is dynamically Hölder continuous with param-
eters ϑ∆ < 1 (uniform in ε) and KH ∼ H . Thus (7.3) implies

(8.5)

∣

∣

∣

∣

∫

M
∆′ ◦ Fn

ε dν0 −
∫

M
∆′ dνε

∣

∣

∣

∣

≤ CHθn

for some absolute constants C > 0 and θ < 1.
Now for every n ≥ 0 we have

(8.6)

∣

∣

∣

∣

∫

M
∆′′ ◦ Fn

ε dν0

∣

∣

∣

∣

≤ C

H
,

see below. Taking the limit n → ∞ gives
∣

∣

∫

M ∆′′dνε

∣

∣ ≤ C/H, and thus

(8.7)

∣

∣

∣

∣

∫

M
∆′′ ◦ Fn

ε dν0 −
∫

M
∆′′ dνε

∣

∣

∣

∣

≤ 2C

H
.

To prove (8.6) note that ∆ ∼ Cm on every cell D
(U)
m (see Section 5)

for some C > 0, and using the first estimate in (8.1) we get the sum
mU
∑

m=H/C

Cm

m3
∼ C

H
.

Similarly, ∆ ∼ Cm on every cell D
(L)
m , and using the second estimate

in (8.1) we get the sum
mL
∑

m=H/C

Cm2

m4
L

≤ C

mL

≤ C

H

in the case H < CmL, and otherwise the sum is vacuous.
Combining (8.5) and (8.7) gives, for some C > 0,

∣

∣

∣

∣

∫

M
∆ ◦ Fn

ε dν0 −
∫

M
∆ dνε

∣

∣

∣

∣

≤ C(Hθn + 1/H).

Now choosing H = θ−n/2 produces the desired uniform tail bound (8.4).
�

We conclude this section by examining the ‘remainder’ function in-
troduced in (4.4):

(8.8) Rε =
1 − e−ε∆ε,x − ε∆ε,x

ε
=

∞
∑

k=1

(−1)k

(k + 1)!
εk∆k+1

ε,x .

One can easily see that Rε is dynamically Hölder continuous with the
same characteristics ϑRε = ϑ∆ and KRε = K∆ as the function ∆ε,x.
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On the other hand, since |∆ε,x| = O(ε−1/2), the function Rε is
bounded (uniformly in ε), i.e.

(8.9) |Rε| ≤ C

Also, Rε → 0 pointwise, as ε → 0, see [11, p. 585]. For all these reasons
its contribution to (4.5) will be much easier to handle than that of ∆ε,x,
hence we will first focus on the main sum

(8.10)

∞
∑

k=1

ν0

[

(∆ ◦ Fk
ε )∆ε,x

]

in (4.5), and then adapt our arguments to Rε. The sum (8.10) consists
of correlation-like terms, which will be analyzed in the next section.

9. Correlation bounds

We rewrite (8.10) as

(9.1)

∞
∑

n=1

ν0

[

(∆ε ◦ Fn
ε )∆ε

]

where each ∆ε can be replaced with either ∆ε,x or ∆ε,y, and our es-
timates in this section will apply to all four combinations (though we
only deal with two in (4.5)). Also, ∆0 will mean the displacement
when ε = 0, i.e. under the field-free (billiard) dynamics (recall that ∆0

is truly unbounded).
The sum (9.1) contains correlation-like terms, but they are not ex-

actly correlations, as the measure ν0 is not Fε-invariant. To clarify
our ideas, first we bound true correlations for the billiard displacement
function ∆0, which is a new result by itself (it is related to the recent
studies in [28], but it is not stated or used there).

Proposition 9.1. For some constants C > 0 and θ ∈ (0, 1) and all
n ≥ 1

(9.2)
∣

∣

∣
ν0

[

(∆0 ◦ Fn)∆0

]

∣

∣

∣
≤ Cθn,

where each ∆0 can be replaced with either ∆0,x or ∆0,y (under the bil-
liard map F). Note that the restriction n ≥ 1 is essential here, as
ν0(∆

2
0) = ∞.

Proof. The collision space M is divided by the singularity curves of the
map F into cells Dm, such that ∆0 ∼ Cm on Dm. Their measures are
ν0(Dm) ∼ C/m3, their dimensions are ∼ C/

√
m in the stable direction

and ∼ C/m2 in the unstable direction (just like the ‘upper’ cells D
(U)
m

in our case); these are all standard facts [13, 14, 15, 28].
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Just like in the previous section, let ∆′
0 = ∆0 · 1{|∆0|<H} and ∆′′

0 =
∆0 − ∆′

0, where H a certain ‘cut-off’ value to be selected below. We
also put ∆′′′

0 = ∆0 · 1{|∆0|<H3} and ∆′′′′
0 = ∆0 −∆′′′

0 . As we have shown
before, ∆′

0 and ∆′′′
0 are dynamically Hölder continuous with parameters

ϑ∆ < 1 and KH = O(H) and KH3 = O(H3), respectively. Thus the
standard bound on correlations [13, Section 7.7] implies

(9.3)
∣

∣ν0

[

(∆′′′
0 ◦ Fn)∆′

0

]
∣

∣ ≤ CH4θn

for some C > 0 and θ < 1 (we note that to the time-reversibility of our
dynamics, ν0(∆0) = ν0(∆

′
0) = ν0(∆

′′
0) = 0). Next we have

∣

∣ν0

[

(∆′′′′
0 ◦ Fn)∆′

0

]
∣

∣ ≤ C
H
∑

m=1

∞
∑

k=H3

mkν0

[

Dm ∩ F−n(Dk)
]

≤ C

H
∑

m=1

∞
∑

k=H3

mk/k3

≤ C/H.(9.4)

It remains to estimate the quantity

(9.5) A : =
∣

∣ν0

[

(∆0 ◦ Fn)∆′′
0

]
∣

∣ ≤ C

∞
∑

m=H

∞
∑

k=1

mkν0

[

Dm ∩ F−n(Dk)
]

.

To estimate the measure ν0

[

Dm∩F−n(Dk)
]

we foliate Dm by unstable
curves W ⊂ Dm; they have length ∼ C/m2. The image F(Dm) is a
domain of length ∼ Cm−1/2 in the unstable direction adjacent to the
line ϕ = ±π/2 bounding the space M (see e.g. [13, Section 4.10]).
Thus the curves F(W ) are divided into pieces by the boundaries of
the homogeneity strips (6.1); those pieces have lengths ∼ 1/j3 for j ≥
Cm1/4, and their pre-images on W have lengths ∼ 1/(mj5), because
these pieces are contracted under the map F−1 by a factor ∼ mj2.
The curve W equipped with the conditional density ρ induced by ν0

is a standard pair ℓ = (W, ρ), and its image F(W ) equipped with the
induced measure is a standard family, Gℓ,1, whose Z-value (6.9) is

ZGℓ,1
≤ C

∞
∑

j=Cm1/4

m2j3

mj5
≤ Cm3/4.

As this applies to every curve W in our foliation of Dm, the measure ν0

conditioned on Dm is represented by a measure PG on the corresponding
standard family G, for whose image G1 = F(G) we have ZG1

= O(m3/4).
Due to (6.10) we also have ZGn ≤ Cm3/4 for all n ≥ 1. Since each cell
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Dk has length ∼ Ck−2 in the unstable direction, we have

(9.6) ν0

[

Dm ∩ F−n(Dk)
]

≤ Cν0(Dm)ZGnk−2 ≤ Cm−9/4k−2.

We also have

(9.7) ν0

[

Dm ∩ F−n(Dk)
]

≤ ν0(Dk) = Ck−3.

Combining (9.6) and (9.7) we estimate (9.5) as follows:

A ≤ C

∞
∑

m=H

m3

∑

k=1

mkm−9/4k−2 + C

∞
∑

m=H

∞
∑

k=m3

mkk−3

≤ C

∞
∑

m=H

m−5/4 ln m + C

∞
∑

m=H

mm−3

≤ C/H1/5.(9.8)

Now collecting our estimates (9.3), (9.4), (9.8), and choosing H = θ−n/5

(to suppress the factor H4 in (9.3)) proves Proposition 9.1. �

The main difficulties in the proof are caused by the unboundedness
of the function ∆0. If we replace it by a bounded version

(9.9) ∆
(H)
0 = ∆0 · 1{|∆0|<H},

then the proof can be easily modified and we obtain the following:

Corollary 9.2. For some constants C > 0 and θ ∈ (0, 1) and all n ≥ 1

(9.10)
∣

∣

∣
ν0

[

(∆
(H1)
0 ◦ Fn)∆

(H2)
0

]

∣

∣

∣
≤ Cθn,

We note again that to the time-reversibility of our dynamics

(9.11) ν0

(

∆
(H)
0

)

= 0

for any H > 0. The bound (9.10) fails for n = 0. In fact we have

(9.12) ν0

([

∆
(H)
0

]2)
= O

( H
∑

m=1

m2

m3

)

= O(ln H).

Next we extend Proposition 9.1 to the perturbed map Fε:

Proposition 9.3. For some constants C > 0 and θ ∈ (0, 1) indepen-
dent of ε and all n ≥ 1

(9.13)
∣

∣

∣
νε

[

(∆ε ◦ Fn
ε )∆̃ε

]

− νε(∆ε)νε(∆̃ε)
∣

∣

∣
≤ Cθn

and

(9.14)
∣

∣

∣
ν0

[

(∆ε ◦ Fn
ε )∆̃ε

]

− νε(∆ε)ν0(∆̃ε)
∣

∣

∣
≤ Cθn

where each of ∆ε and ∆̃ε can be replaced with either ∆ε,x or ∆ε,y.
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Proof. The proof of (9.13) is very similar to that of Proposition 9.1.

The ‘upper’ cells D
(U)
m have shape, size, and νε-measure given by the

same formulas as those of the cells Dm in the field-free Lorentz gas.

There are now ‘lowers’ cells D
(L)
m whose characteristics can be com-

puted directly, and then one can follow the lines of the proof of Propo-
sition 9.1, it is straightforward, albeit quite involved, so we omit details.

One can also convince oneself that our argument works by making

the following observation. The ‘lower’ cells D
(L)
m are located in the

place in M where the ordinary cells Dk for the field-free Lorentz gas
are, compare our Figure 4 with Figure 4.15 in [13]; except our ‘lower’
cells are thicker. They are also mapped by Fε in the same way as
the ordinary cells Dk are mapped by F , compare our Figure 5 with

Figure 4.16 in [13]. Thus we can refine the ‘lower’ cells D
(L)
m replacing

each one with a union of thinner domains shaped as ordinary cells Dk

(as one can see, k should take values m2
L/m ≤ k < m2

L/(m−1), and the

last cell D
(L)
1 will be replaced with a countable union of Dk’s with all

k ≥ m2
L). We can also redefine the map Fε on D

(L)
m so that it acts as F

on the corresponding Dk’s. Then our analysis of the curves W foliating

Dk’s (and thus also foliating D
(L)
m ’s will apply, and we will have similar

estimates on the Z-values as in the proof of Proposition 9.1. The
only substantial difference is that our observables ∆ε are substantially

smaller than ∆0, because ∆ε ∼ m on D
(L)
m , while ∆0 ∼ k on the

‘replacement’ cells Dk, and k ≫ m. Thus our observables ∆ε cause
much less trouble than ∆0, and all the bounds established in the proof
of Proposition 9.1 will remain valid.

Next we turn to the proof of (9.14). Since the measure ν0 is not
Fε-invariant, we first need to apply the remark after Theorem 11, and
then repeat the above proof of (9.13). �

We now return to (4.5). Due to Proposition 8.3 (see also (7.5)–(7.6)),
the series (4.5) converges exponentially fast and uniformly in ε, hence

∣

∣

∣

∣

∣

∞
∑

n=L| log ε|
ν0

[

(∆ ◦ Fn
ε )(1 − g)

]

∣

∣

∣

∣

∣

= O(ε2)

for a sufficiently large L > 0, so it remains to handle n < L| log ε|.
Next we will deal with the series on the right hand side of (4.5), i.e. we
split off the factor of ε.

The values of ν0

[

(∆ε ◦Fn
ε )∆ε

]

in (9.1) can be estimates by (9.14) in
Proposition 9.3:

(9.15) ν0

[

(∆ε ◦ Fn
ε )∆ε

]

= ν0(∆ε)νε(∆ε) + O(θn)
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and similarly, replacing one ∆ε with a much milder function Rε we get

(9.16) ν0

[

(∆ε ◦ Fn
ε )Rε

]

= ν0(Rε)νε(∆ε) + O(θn)

(it may seem strange that we approximate terms of the convergent
series (9.1) by two non-zero constants, but in fact

ν0(∆ε)νε(∆ε) + ν0(Rε)νε(∆ε) = 0

which follows from the relation ν0(1 − g) = 0, cf. Section 4). Now
the contribution of all the O(θn) terms in (9.15)–(9.16) to the sum
(4.5) will total to O(ε), which is acceptable. But the contribution
of ν0(∆ε)νε(∆ε) and ν0(Rε)νε(∆ε) cannot be directly assessed as it
contains the unknown quantity νε(∆ε). To bypass this complication
we observe that

ν0(∆ε) = O
( mU
∑

m=1

m

m3

)

+ O
( mL
∑

m=1

m2

m4
L

)

= O(1).

(In fact, we believe that a more careful estimation would produce
ν0(∆ε) = O(

√
ε), but we will not need it here.) Next, ν0(Rε) = O(1),

since Rε is uniformly bounded due to (8.9). Thus we can rewrite (4.3)
and (4.5) as

νε(∆ε) = 1
2
ν0

[

∆ε (1 − g)
]

+ Lε| log ε|
(

ν0(∆ε) + ν0(Rε)
)

νε(∆ε) + O(ε).

Solving this equation for νε(∆ε) gives

(9.17) νε(∆ε) = 1
2
ν0

[

∆ε (1 − g)
](

1 + O(ε| log ε|)
)

+ O(ε).

It remains to compute ν0

[

∆ε (1− g)
]

and prove Proposition 3.1, which
will be done in the next section.

10. Finishing the proof of Theorem 9

Here we prove the remaining formulas (4.6)–(4.8) and (4.13).
To verify (4.6) we note that for any k ≥ 1

ν0

(

∆k+2
ε,x

)

= O
( mU
∑

m=1

mk+2

m3

)

+ O
( mL
∑

m=1

mk+3

m4
L

)

= O
(

ε−
k
2

)

.

Then using the series (8.8) gives

(10.1) ν0(∆ε,xRε) = O
( ∞
∑

k=1

εk/2

(k + 1)!

)

= O
(

ε1/2
)

.
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As for (4.7), we have

(10.2) ν0(∆
2
ε,x) = O

( mU
∑

m=1

m2

m3

)

+ O
( mL
∑

m=1

m3

m4
L

)

= O
(

| log ε|
)

+ O(1),

and a similar estimate readily applies to ν0(∆ε,x∆ε,y). To obtain a
more precise asymptotics claimed in (4.7)–(4.8) we need to return to
the geometric analysis of Section 5.

x

y

(a,b)

w L1

2

1

L

B

γ

(-aw,bw)

Figure 6. An infinite corridor bounded by two lines
tangent to the scatterers.

First we note that the contribution from the lower cells D
(L)
m is O(1),

according to (10.2), hence they can be ignored. Second we can choose a
large constant M ≫ 1 and ignore all phase points with ‖∆ε‖ ≤ M . So
we only consider trajectories that shoot from the initial scatterer facing
an infinite corridor (see B1 in Fig. 6) and landing on distant scatterers
on the opposite side of that corridor (the upper row in Fig. 6).

Next, let L1 and L2 denote two parallel lines bordering our corri-
dor, i.e. the two common tangent lines to all the scatterers along our
corridor, see Fig. 6. Our trajectories leave the scatterer B1, cross L1

first, then after a long trip in the corridor they cross L2 and land very
shortly on the next scatterer in the top row. Let ∆̂ε = (∆̂ε,x, ∆̂ε,y)
denote the vector between the two crossing points, on L1 and L2 re-
spectively. Note that ∆ε,x = ∆̂ε,x + O(1) and ∆ε,y = ∆̂ε,y + O(1),
thus

ν0(∆
2
ε,x) = ν0(∆̂

2
ε,x) + O(1), ν0(∆ε,x∆ε,y) = ν0(∆̂ε,x∆̂ε,y) + O(1),

and so we can replace ∆ε,x, ∆ε,y with ∆̂ε,x, ∆̂ε,y.
We again use the transformation T that straightens all our trajecto-

ries and transforms the domain D̃ into Q = T (D̃). The lines L1 and
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L2 will be mapped into curves T (L1) and T (L2) in the uv plane, see
Fig. 7. Let us choose the coordinate system so that the line L1 passes
through the origin, and denote, as before, the width of the corridor by
w and the angle between the corridor and the field direction (i.e., the
x axis) by γ. Then the other line L2 is given by parametric equations
x = as− bw and y = bs+ aw, where a = cos γ and b = sin γ (note that
s is the arclength parameter on L1). The curve T (L2) is now given by
parametric equations

u = ε−1
[

eε(as−bw) cos ε(bs + aw) − 1
]

v = ε−1eε(as−bw) sin ε(bs + aw).
(10.3)

Recall that the expansion factor of the transformation T is eεx = 1 +
O(

√
ε), hence we have ∆̂ε,x = u+O(1) and ∆̂ε,y = v +O(1), hence we

can further replace ∆̂ε,x, ∆̂ε,y with u, v. In the subsequent calculation
s will parameterize the intersections of our trajectories with L1 and L2.

u

v

B1

Figure 7. A transformed infinite corridor in the uv
plane bounded by two curves tangent to the scatterers.

Let θ denote the angle between the (straight) trajectory on the uv
plane and the horizontal u axis. Let D denote the distance between
the consecutive scatterers tangent to the line L1. Our trajectories then
originate on the segment of length D on the line L1 and make an angle
ϕ = θ− γ with it. Let us denote this segment by L̂1. We can regard it
as an ‘artificial’ part of the boundary of our billiard table Q, and then
the image of the measure ν0 on it would be a smooth measure with
density

cν cos ϕ dr dϕ = cν sin(θ − γ) dr dθ,
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where r is the length parameter on L̂1 and ϕ = π/2−(θ−γ) is the angle

made by the outgoing trajectories with the normal to L̂1, cf. (1.1). Now
the contribution of all the above trajectories to ν0(∆

2
ε,x) will be

(10.4) I = cνD

∫ smax

smin

u2 sin(θ − γ) dθ + O(1)

for some smin = O(1) and smax ∼ C/
√

ε. To deal with ν0(∆ε,x∆ε,y), we
just replace u2 with uv in (10.4).

Now by elementary geometry

sin(θ − γ) =
av − bu + O(1)

[u2 + v2]1/2
,

as well as

dθ =
v du

ds
− u dv

ds
+ O(1)

u2 + v2
ds

=

[

av − bu + O(1)

u2 + v2
− εb

]

ds.

These formulas can be easily derived assuming that the starting point
is (0, 0), then the term O(1) is not needed; it only accounts for the

variation of the starting point on the segment L̂1 of length D = O(1).
Now using Taylor expansion gives us the following: u = as + O(1),

v = bs + O(1), u2 + v2 = s2 + O(s), and

av − bu = w + 1
2
bεs2 + O(

√
ε).

Substituting these formulas into (10.4) and integrating from 0 to smax ∼
C/

√
ε readily gives

I = 1
2
cνa

2w2D| ln ε| + O(1),

and to deal with ν0(∆ε,x∆ε,y), we just replace a2 with ab. It remains
to sum up over all the infinite corridors and all the segments between
consecutive scatterers on their borders. Then we obtain exactly

ν0(∆
2
ε,x) = D̂x,x| ln ε| + O(1)

ν0(∆ε,x∆ε,y) = D̂x,y| ln ε| + O(1),
(10.5)

where D̂··· denote the corresponding components of the superdiffusion
matrix D̂ given by (2.1). This completes the proof of (4.6)–(4.8).

Next we prove (3.8)–(3.9) following our plan in Section 4. First we
check that the convergence of the series (4.9), with the exception of the
term n = 0, is exponential and uniform in ε. This follows from (9.13) in
Proposition 9.3. Second, we already established that νε(∆ε) = O(1);
see e.g. (9.17).
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It remains to bounds the series

∞
∑

k=1

ν0

[

(∆2
ε,x ◦ Fk

ε )(1 − g)
]

= ε
∞
∑

n=1

ν0

[

(∆2
ε,x ◦ Fn

ε )(∆ε,x + Rε)
]

that appears in (4.11). We will apply the same argument as in (9.15)–
(9.16). First, due to (8.3) we have

∞
∑

k=n

ν0

[

(∆2
ε,x ◦ Fk

ε )(1 − g)
]

≤ Cε−1θn

for all n ≥ 1, with a constant θ < 1. Setting n = L| log ε| with a
sufficiently large L > 0 gives a tail bound O(1), so it remains to deal
with n < L| log ε|. To this end we use Hölder inequality

∣

∣ν0

[

(∆2
ε,x◦Fn

ε )(∆ε,x+Rε)
]
∣

∣ ≤
[

(ν0◦Fn
ε )
(

|∆3
ε,x|
)]2/3[

ν0

(

|∆ε,x+Rε|3
)]1/3

,

and each of these integrals is bounded by

C

mU
∑

m=1

m3

m3
+ C

mL
∑

m=1

m4

m4
L

≤ C(mU + mL) ≤ C/
√

ε,

recall Lemma 8.1 and the proof of Proposition 8.3. Summing over
n ≤ L| log ε| gives

ε

L| log ε|
∑

n=1

ν0

[

(∆2
ε,x ◦ Fn

ε )(∆ε,x + Rε)
]

≤ C
√

ε | log ε|,

which completes the proof of Theorem 9.
We turn to the proof of Proposition 3.1 following our plan in the

end of Section 4. First, one can check directly that the collision time
function τε has all the same properties as the displacement function
∆ε, hence the series (4.12) converges exponentially and uniformly in ε.
So it is enough to prove (4.13), and this requires geometric analysis.

It is easy to see by (5.1) that if a trajectory starts from a phase point
(q,v) and moves without collisions for a time τ , then it deviates from
a billiard trajectory starting from the same phase point by O(ετ 2).
Thus, on most part of the space M we have |τε − τ | = O(ε). The only
exceptions will be (i) the O(ε)-neighborhood of singularity lines (where
the images of points under F and Fε may land on different scatterers

so that |τε − τ | = O(1)) and (ii) the cells Dm, D
(U)
m , and D

(L)
m (which

were described earlier), on which either τ or τε, respectively, is large.
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Let b > 0 be a small constant. The contribution to (4.13) from all

the cells Dm, D
(U)
m with m ≥ ε−b will be bounded by

C

∞
∑

m=ε−b

m

m3
= Cεb,

because τ ∼ Cm on Dm and τε ∼ Cm on D
(U)
m ; thus all such cells can

be discarded. The ‘lower’ cells D
(L)
m can be discarded altogether, as

mL
∑

m=1

m2

m4
L

= O(m−1
L ) = O(ε1/2).

Let X ∈ D
(U)
m . If the images of X under the maps Fε and F land

on the same scatterer, then they will be O(m
√

ε) apart, because their
trajectories will run O(m2ε)-close. Hence such points make a total
contribution of

C
ε−b
∑

m=1

m
√

ε

m3
≤ C

√
ε.

If the images of X ∈ D
(U)
m under the maps Fε and F land on different

scatterers, then one of them lands in the O(m
√

ε)-vicinity of the edge
of M (defined by ϕ = ±π/2), and thus X must be in the O(

√
ε)-

vicinity of the boundary of the cell D
(U)
m (as the expansion factor is

at least ≥ Cm). For m < ε−b, the width of the cells D
(U)
m and Dm

is ∼ Cm−2 ≫ √
ε, thus X belongs to Dm′ with m′ = m ± 1, i.e.

|τε − τ0| = O(1). Thus the contribution of all such points is

C

ε−b
∑

m=1

√
ε

m
≤ C

√
ε | ln ε|.

Combining all our estimates proves (4.13), and hence we complete the
proof of Proposition 3.1. �

11. Proof of Theorem 8

Here we prove the discrete-time Theorem 8 on superdiffusion in field-
free Lorentz gases, modulo some technical moment estimates to be
completed in the next section. We begin with part (a) and then describe
the modifications needed for part (b).

Recall that

q̃n − q̃0 = ∆0 + ∆1 + · · · + ∆n−1
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where ∆j = q̃j+1− q̃j denotes the displacement vector between succes-
sive collisions. First we cut off the unbounded function ∆ as follows:

(11.1) ∆̂j = ∆j1‖∆j‖<R, R =
√

n/ ln100 n.

Lemma 11.1. We have the following convergence in probability:

max
m≤n

q̃m −∑m−1
j=0 ∆̂j√

n log n
→ 0.

All the lemmas will be proved in the next section. We continue the
proof of Theorem 8. Lemma 11.1 allows us to replace the unbounded
function ∆ with its trimmed version ∆̂.

Next we shall use standard Bernstein’s method based on the ‘big
small block’ technique. That is, we divide the time interval [1, n] into
big blocks of length N ∼ n0.6 alternating with small blocks of length
∼ n0.01 (starting with a small block). Accordingly let

Qk =

n0.01k+N(k−1)−1
∑

j=(n0.01+N)(k−1)

∆̂j ,

Zk =

j=(n0.01+N)k−1
∑

n0.01k+N(k−1)

∆̂j .

Thus Zk are sums over the big blocks and Qk are the sums over the
small blocks.

Lemma 11.2. We have the following convergence in probability:
∑

k Qk√
n log n

→ 0.

Thus it is enough to analyze the big blocks only. They are separated
by gaps (made by small blocks), which make the sums Zk in different
big blocks nearly independent. To make this statement precise, let

m′
k = (n0.01 + N)k + 1

3
n0.01

be a moment within a small block, 1
3
n0.01 collisions away from the

previous big block. The measure ν0 can be represented as PG0
for a

proper standard family; see the end of Section 6. The preimages of
curves W ∈ G0 are exponentially small at time (n0.01 + N)k, i.e. at

the end of the previous big block; hence the function ∆̂ measured at
times j ≤ (n0.01 + N)k can be replaced with a constant, up to an

exponentially small (more precisely, O
(

θn0.01
R
)

) error, on such curves.
Now, at the time

m′′
k = (n0.01 + N)k + 2

3
n0.01
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all the curves W ∈ G0 of length ≥ θ
1

3
n0.01

will grow to proper families
(the curves of length < θ

1

3
n0.01

make a set of exponentially small mea-

sure). Then we will take averages of the function ∆̂ measured at times
j ≥ (n0.01 + N)k + n0.01, corresponding to the next big block, with
respect to measures PG on proper families at time m′′

k. Those averages
are expressed by formulas independent of G (see Lemma 11.3), hence
the dynamics on different big blocks are practically independent.

Lemma 11.3. Let Z denote a shifted big block

(11.2) Z =

1

3
n0.01+N
∑

j= 1

3
n0.01

∆̂j .

Then for any proper standard family G at time zero

PG(Z) = O(θ
1

4
n0.01

)(11.3)

PG(Z ⊗ Z) = 2ND̂ ln R + O(N)(11.4)

PG
(

‖Z‖4
)

= O
(

NR2 ln3 n + N2 ln2 n
)

.(11.5)

Here D̂ is the discrete-time superdiffusion matrix given by (2.1).

Next we derive Theorem 8(a) from this lemma by using characteristic
functions. Let

φm(ξ) = ν0

(

exp

(

m
∑

k=1

i〈ξ,Zk〉√
n ln n

))

.

According to our discussion before Lemma 11.3, the dynamics within
different big blocks is nearly independent in the sense that

φm(ξ) =
m
∏

k=1

PGk

(

exp

(

i〈ξ,Zk〉√
n lnn

))

+ O
(

θn0.01

1

)

,

for some θ1 < 1 and some proper standard families Gk, each taken at
the time m′′

k−1, i.e. 1
3
n0.01 collisions prior to the big block Zk. Now we

use Taylor expansion

exp

(

i〈ξ,Zk〉√
n ln n

)

= 1 +
i〈ξ,Zk〉√

n lnn
− 〈ξ,Zk〉2

2n ln n
+ O

( ‖Zk‖3

(n lnn)3/2

)

and by Lemma 11.3 the PGk
-average of the first three terms is

1 − 2〈D̂ξ, ξ〉N lnR

2n ln n
+ o
(N

n

)

= 1 − 〈D̂ξ, ξ〉N
2n

+ o
(N

n

)

.
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The average of the last term is estimated by the Cauchy-Schwartz in-
equality:

PGk
(‖Zk‖3) ≤

[

PGk
(‖Zk‖2) PGk

(‖Zk‖4)
]1/2

= O
(

NR ln2 n + (N ln n)3/2
)

so its contribution will be negligible. Note that our estimates are inde-
pendent of the standard family PGk

. Hence we obtain

ln φm(ξ) = −m〈D̂ξ, ξ〉N
2n

+ o
(mN

n

)

and taking m = n/(N + n0.01) we get

ν0

(

exp

(

i〈ξ, q̃n〉√
n ln n

))

→ exp

(

−〈D̂ξ, ξ〉
2

)

as n → ∞. This implies the weak convergence to a normal distribution
claimed in Theorem 4. Our proof is different from the one given in
[28]; the latter uses spectral properties of the corresponding transfer
operator.

To prove the weak convergence to a Brownian motion claimed in
Theorem 8(a) we need two more properties: (i) the weak convergence
of finite-dimensional distributions of qsn√

n lnn
to those of the Brownian

Motion, and (ii) the tightness, see below. To derive (i) let
n1

n
→ s1,

n2

n
→ s2, . . . ,

nk

n
→ sk,

then the same argument as above shows that for any ξ1, ξ2, . . . , ξk

ν0

(

exp

(

i
∑k

j=1〈ξj, q̃nj
〉√

n ln n

))

→
k
∏

j=1

exp

(

−〈D̂ηj , ηj〉(sj − sj−1)
2

2

)

where s0 = 0 and ηj =
∑j

p=1 ξp. This convergence implies (i).
It remains to show that the family of functions

{Wn(s)} = {Sns/
√

n lnn}, 0 < s < 1

is tight, where Sn =
∑

j≤n ∆̂j . By the standard argument (see e.g. [1],

Chapter 2) it is enough to show that there exists a sequence {δk} with
∑

k δk < ∞ such that ν0(MK,n) → 0 as K → ∞ uniformly in n, where

(11.6) MK,n =
{

∃j, k : j
2k < 1 and

∣

∣Wn

(

j+1
2k

)

− Wn

(

j
2k

)
∣

∣ > Kδk

}

.

Let δk = 1/k2. We need to estimate the probability that

(11.7) |Sn2
− Sn1

| ≥ K
√

n lnn

k2
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where n2 −n1 ∼ n/2k. Observe that |Sn2
−Sn1

| ≤ Rn/2k, hence (11.7)
is impossible if k2/2k < 1/n, in particular if k > C ln n, where C ≫ 1
is a large constant. For k < C ln n, we use Lemma 11.3(c) and the
Markov inequality to estimate the probability of (11.7) by

k8ν0

(

[Sn2
− Sn1

]4
)

K4n2 ln2 n
≤ Ck8 (n2 − n1)R

2 ln3 n + (n2 − n1)
2 ln2 n

K4n2 ln2 n

=
Ck8

K4

(

1

2k ln99 n
+

1

4k

)

.

Since (11.6) includes 2k intervals of size 2−k we get

ν0(MK,n,k) ≤
Ck8

K4

(

1

ln99 n
+

1

2k

)

.

where M(K, n, k) denotes the part of the set (11.6) corresponding to
a particular k. Summing over k ≤ C ln n we see that ν0(MK,n) ≤
C/K → 0, as K → ∞, uniformly in n, which implies the tightness.
This completes the proof of Theorem 8(a).

The proof of part (b) proceeds along the same lines as the proof
of part (a), with some modifications that we describe next. First,
only the x-component of the displacement vector ∆ = (∆x, ∆y) is
unbounded, its y-component is bounded and quite regular (dynamically

Hölder continuous). Thus we redefine ∆̂j in (11.1) as follows:

(11.8) ∆̂j =
(

∆j,x1|∆j,x|<R, ∆j,y

)

,

i.e. we only trim the x-components. Now the components of the vector
Z = (Zx,Zy) in Lemma 11.3 will play different roles, and the lemma is
modifies as follows (see the proof in the next section):

Lemma 11.4. Under the assumptions of Theorem 8(b), and in the
notation of Lemma 11.3

PG(Z) = O
(

θ
1

4
n0.01)

PG(Z2
x) = 2ND̂xx ln R + O(N)

PG(Z2
y) = ND̂∗

yy + O(1)

PG(ZxZy) = O(N)

PG
(

Z4
x

)

= O
(

NR2 ln3 n + N2 ln2 n
)

.

PG
(

Z4
y

)

= O(N2).

Then the proof Theorem 8(b) proceeds as the proof of part (a). �
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12. Moment Estimates

Here we prove the four lemmas from the previous section by using
standard moment estimates. First, due to (9.11)–(9.12) and Corol-
lary 9.2 we have

(12.1) ν0(∆̂j) = 0, ν0(∆̂j ⊗ ∆̂j) = O(ln R),

and, for i 6= j

(12.2) ν0(∆̂i ⊗ ∆̂j) = O
(

θ|i−j|).

Moreover, the second formula in (12.1) can be specified as follows:

(12.3) ν0(∆̂j ⊗ ∆̂j) = 2D̂ ln R + O(1),

where D̂ is the discrete-time superdiffusion matrix given by (2.1). The
proof of (12.3) goes by direct integration similar to our calculations in
Section 10; in fact the present case is much simpler because the struc-
ture of the scatterers is periodic; we leave the details to the reader (the
formula (12.3) is effectively obtained in [28], but without an explicit
proof).

Proof of Lemma 11.2. We estimate the second moment. Let Q =
∑

k Qk. Note that the total number of terms in the small blocks is
n1.01/N . Due to (12.3)–(12.2) we have

ν0(Q ⊗Q) = O
[

(ln R) n1.01/N + R−2n2.02/N2 + n1.01/N
]

,

the last term comes from the convergent series
∑

m θm. Thus

ν0(Q ⊗ Q)

n log n
→ 0 as n → ∞,

and Lemma 11.2 follows from Chebychev’s inequality. �

Next, the function ∆̂ defined by (11.1) is dynamically Hölder contin-
uous with parameters θ∆̂ < 1 (independent of the cut-off value R) and

K∆̂ = O(R); we also have ‖∆̂‖∞ = O(R). Thus, due to Theorem 10,
for any proper standard family G and i ≥ 0

(12.4) PG(∆̂i) = ν0(∆̂i) + O(θiR) = O(θiR)

for some constant θ < 1. Similarly, the multiple-time version of The-
orem 10 (see, e.g. [13, Theorem 7.33]) implies that for any p ≥ 1 and
i1 ≤ i2 ≤ · · · ≤ ip we have

(12.5) PG(∆̂i1 ⊗ · · · ⊗ ∆̂ip) = ν0(∆̂i1 ⊗ · · · ⊗ ∆̂ip) + O(θi1Rp).

We will only need this estimate for p = 2 and p = 4.
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Proof of Lemma 11.3. The first moment estimate (11.3) follows from
(12.4):

PG(Z) = O
(

θ
1

3
n0.01

R
)

= O
(

θ
1

4
n0.01)

The second moment estimate (11.4) follows from (12.2)–(12.5):

PG(Z ⊗ Z) =
∑

i,j

PG(∆̂i ⊗ ∆̂j)

=
∑

i,j

ν0(∆̂i ⊗ ∆̂j) + O
(

N2R2θ
1

3
n0.01)

∼ 2ND̂ ln R + O(N).

where the summation runs over i, j given by (11.2).

To prove the fourth moment estimate (11.5) we put ∆̂j = (∆̂j,x, ∆̂j,y);
then by Cauchy-Schwarz inequality

‖Z‖4 ≤ 2
(

∑

j

∆̂j,x

)4

+ 2
(

∑

j

∆̂j,y

)4

,

where the summation runs over j specified by (11.2). Since both ∆̂j,x

and ∆̂j,y will be treated similarly, we will drop the indices x and y.
Expanding the fourth powers we get the sums of various products

(12.6) ∆̂j1∆̂j2∆̂j3∆̂j4, j1 ≤ j2 ≤ j3 ≤ j4.

Due to (12.5) we have

PG
(

∆̂j1∆̂j2∆̂j3∆̂j4

)

= ν0

(

∆̂j1∆̂j2∆̂j3∆̂j4

)

+ O(θ
1

3
n0.01

R4)

We fix a large constant C1 ≫ 1 and divide the products (12.6) into
three categories depending on the gaps between indices

D1 = j2 − j1, D2 = j3 − j2, D3 = j4 − j3.

Case 1 (most significant): |Di| ≤ C1 ln n for all i = 1, 2, 3. Then by
Hölder inequality

∣

∣ν0

(

∆̂j1∆̂j2∆̂j3∆̂j4

)
∣

∣ ≤ ν0(∆̂
4) ≤ C

R
∑

m=1

m4

m3
≤ CR2,

thus the total contribution of such terms is O
(

NR2 ln3 n
)

.

Case 2 (of moderate significance): |D2| > C1 ln n and |Di| ≤ C1 ln n
for i = 1, 3. Then by standard correlation estimates [13, Section 7.7]
and again Hölder inequality we have

ν0

(

∆̂j1∆̂j2∆̂j3∆̂j4

)

=
[

ν0

(

∆̂2
)]2

+ O(R4θC1 ln n)

= O
(

ln2 R
)

+ O
(

n−100
)

.
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Thus the total contribution of such terms is O
(

N2 ln2 n
)

.

Case 3: (least significant): |D1| > C1 ln n or |D3| > C1 ln n. In this

case, since ν0(∆̂) = 0, the correlation estimates will easily give an upper
bound of O

(

n−100
)

.

Lemma 11.3 is proven. �

Proof of Lemma 11.1. The reason why q̃n 6= ∑n−1
j=0 ∆̂j is that some ∆j

take large values exceeding R. We split our argument into two parts.
First we set

R′ =
√

n ln ln n

and show that values of ∆j exceeding R′ can be disregarded since their
probabilities are negligibly small. Indeed, due to (3.1)

ν0

(

∃j ≤ n : ‖∆j‖ > R′) = O
(

(ln ln n)−2
)

→ 0.

Next we show that moderately large values of ∆j (those between R
and R′), albeit rather frequent, tend to cancel each other. Let

∆̃j = ∆j1R≤‖∆j‖≤R′ , S̃m =
m−1
∑

j=0

∆̃j .

Note that

ν0(∆̃j) = 0, ν0(∆̃j ⊗ ∆̃j) ≤ C
R′

∑

m=R

m2

m3
≤ C ln ln n.

Arguing as in the proof of the second moment estimate in Lemma 11.3
we get, for every m ≤ n

ν0

(

S̃m ⊗ S̃m

)

≤ Cm ln ln n,

and so by Chebyshev inequality for any ǫ > 0

(12.7) ν0

(

‖S̃m‖ ≥ ǫ
√

n lnn
)

→ 0,

uniformly in m. But need to obtain a stronger estimate:

(12.8) ν0

(

max
1≤m≤n

‖S̃m‖ ≥ ǫ
√

n ln n
)

→ 0.

To this end we will show that the sets

Mm,ǫ = {X ∈ M : ‖S̃m‖ ≥ ǫ
√

n ln n}.
tend to overlap heavily. First note that

ν0

(

Mm,ǫ \Mm−1,ǫ) ≤ ν0(∆̃m−1 6= 0) ≤ C ln200 n

n
.
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where the last bound follows from (3.1). Next we show that

(12.9) ν0

(

(Mm,ǫ \Mm−1,ǫ) \Mn,ǫ/2

)

≤ δnν0

(

Mm,ǫ \Mm−1,ǫ

)

where δn → 0 as n → ∞. Then a simple summation over m = 1, . . . , n
will imply

ν0

(

n
⋃

m=1

Mm,ǫ

)

≤ δn + ν0

(

Mn,ǫ/2

)

.

Combining this with (12.7) we will obtain (12.8).
Our proof of (12.9) resembles the reflection principle in the theory

of random walks. We note that each point of the set on the left hand
side of (12.9) satisfies (simultaneously) three conditions:

∆̃m−1 6= 0,
∥

∥

∥

m−1
∑

j=0

∆̃j

∥

∥

∥
≥ ǫ

√
n ln n,

∥

∥

∥

n−1
∑

j=m

∆̃j

∥

∥

∥
≥ 1

2
ǫ
√

n ln n.

Since ∆̃m−1 6= 0, we have ‖∆m−1‖ ≥ R =
√

n/ ln100 n. A standard
property of the Lorentz gas is that whenever ∆m−1 is large, then typi-
cally ‖∆m‖ ∼ ‖∆m−1‖1/2, then ‖∆m+1‖ ∼ ‖∆m−1‖1/4, etc. Precisely,
there exist p, q > 0 such that for any large C2 > 0 there exists C3 > 0
such that

ν0

(

‖∆m−1‖ ≥ R and max
0≤k≤C2 lnn

‖∆m+k‖ > ‖∆m−1‖1−q
)

≤ C3R
−pν0

(

‖∆m−1‖ ≥ R
)

≤ C3R
−(2+p),

see [15, Lemma 5.1], and this measure is clearly negligibly small. Thus

we can assume that whenever ∆̃m−1 6= 0, we have ∆̃m+k = 0 for all
k = 0, 1, . . . , C2 ln n.

For k > C2 ln n, the correlations between ∆̃j , j ≤ m, and ∆̃m+k are
small, say they are < n−200 if C2 is large enough. Thus we have

ν0

(

(Mm,ǫ \Mm−1,ǫ) \Mn,ǫ/2

)

= ν0

(

Mm,ǫ \Mm−1,ǫ

)

× ν0

(

∥

∥

∥

n−1
∑

j=m+C2 ln n

∆̃j

∥

∥

∥
≥ 1

2
ǫ
√

n lnn

)

+ O
(

n−100
)

,

and the second factor on the right hand side converges to zero uniformly
in m due to (12.7). This completes the proof of (12.9). Thus (12.8) is
proved, which implies Lemma 11.1. �

Proof of Lemma 11.4. The estimates dealing with Zx alone are derived
in the same way as in Lemma 11.3. Those dealing with Zy alone are
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quite standard (see e.g. [4] or [17, Section 9] or [13, Chapter 7]), be-
cause ∆y is bounded and dynamically Hölder continuous. It remains
to estimate the cross product term

PG(ZxZy) =
∑

i,j

PG(∆̂i,x∆j,y).

As before, we trim the large component ∆̂i,x as

∆̂i,x = ∆̂′
i,x + ∆̂′′

i,x, ∆̂′
i,x = ∆̂i,x1|∆̂i,x|<H

where the cut-off value H = Hij will be chosen below. Then again

PG(∆̂′
i,x∆j,y) = O

(

Hθ
|i−j|
1

)

for some θ1 < 1, whereas by (12.4) and the boundedness of ∆j,y

∣

∣PG(∆̂′′
i,x∆j,y)

∣

∣ ≤ CPG(|∆̂′′
i,x|)

≤ Cν0(|∆̂′′
i,x|) + Cθ

1

3
n0.01

R

≤ CH−1 + Cθ
1

4
n0.01

.

Choosing H = θ
− 1

2
|i−j|

1 we obtain

PG(∆̂i,x∆j,y) = O
(

θ
1

2
|i−j|)+ Cθ

1

4
n0.01

,

which implies PG(ZxZy) = O(N) as claimed. �

Lastly we sketch the proofs of Propositions 2.1–2.3. The proofs of
2.1 and 2.3 proceed along the lines of the proof of Theorem 8. Namely,
first we cut off the abnormally high values of ∆ε, if necessary (i.e. if
t < ε ln100 ε), and then employ the big small block technique. We note
that the standard proof of the Central Limit Theorem, in the finite
horizon case, does not work here for the following reason. That proof

relies on the fact that ν0(q̃
4
n) is of order

[

ν0(q̃
2
n)
]2

. In the present
case, ν0(q̃

2
n) = O(n| ln ε|), but the estimate of the fourth moment is

more complicated. As we know (see the proof of Lemma 11.3), it is
based on three cases: Case 1 makes a contribution of ∼ nε−1, Case 2
makes a contribution of ∼ n2 ln2 ε, and Case 3 is insignificant. We see
that for large n, Case 2 is dominant and leads to the desired relation

ν0(q̃
4
n) ∼

[

ν0(q̃
2
n)
]2

. But for small n, Case 1 dominates (just like it does
in the proof of Lemma 11.3), and this causes an anomalous diffusion.

The proof of Proposition 2.2 goes as follows. The first formula is
derived similarly to Theorem 6(d), the second formula – similarly to
Proposition 3.1 and the third formula – similarly to Theorem 2(d).
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