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Abstract

The article is devoted to mathematical models and practical algo-
rithms for solving the cutting and packing (C&P) problem. We re-
view and further enhance the main tool of our studies – phi-functions.
Those are constructed here for 2D and 3D objects (unlike other stan-
dard tools, such as no-fit polygons, which are restricted to the 2D
geometry). We also demonstrate that in many realistic cases the phi-
functions can be described by quite simple formulas without radicals
and other complications. Lastly, a general solution strategy using the
phi-functions is outlined and illustrated by several 2D and 3D exam-
ples.

Keywords: Mathematical modeling; Cutting and packing; Optimization; Phi-
function; No-fit polygon

1 Introduction

The cutting and packing (C&P) problem is a part of computational geometry
that has rich applications in garment industry, sheet metal cutting, furniture
making, shoe manufacturing, etc. The common task in these areas is to cut a
certain set of figures of specified shapes and sizes from a given sheet (strip) of

1Department of Mathematics, University of Alabama at Birmingham, AL 35294;
2Department of Mathematical Modeling, Institute for Mechanical Engineering Prob-

lems of the National Academy of Sciences of Ukraine, Kharkov, Ukraine;
Email: chernov@math.uab.edu; sherom@kharkov.ua

1



material (textile, wood, metal, etc.), see a tutorial [5] and references therein.
To minimize waste one wants to cut figures as close to each other as possible;
in other words one needs to design as close to an optimal layout as possible
before the actual cutting.

This is a mathematical problem which can be formalized as follows: given
a strip of fixed width W and infinite length, say S = {x ≥ 0, 0 ≤ y ≤ W},
cut out n given figures from the rectangle {0 ≤ x ≤ L, 0 ≤ y ≤ W} ⊂ S
without overlaps, so that L takes its minimum value, see Figure 1.

Figure 1: An example of a cutting problem.

In other applications, one needs to arrange a given set of objects within a
certain area (say, shipment on a deck of a freight car or electronic components
on a panel), and again one wants to minimize the use of space or maximize
the number of objects.

Clearly these two types of problems – cutting and packing – are math-
ematically equivalent; they are known as the cutting and packing (C&P)
problem (it is also called nesting problem, marker making, stock cutting,
containment problem, etc). In some cases it involves additional restrictions
on the minimal or maximal distance between certain objects or from the ob-
jects to the border of the container. The recent tutorial [5] summarizes the
previous studies of the C&P problem and its history.

Many other applications involve 3D geometry: packing pills into a bot-
tle, placing crates and barrels into a cargo compartment, 3D laser cutting,
modeling of granular media and liquids, and radiosurgery treatment planning
(just to name a few). Thus the C&P problem naturally extends to three di-
mensions, though relatively little is done in the 3D case. Figure 2 illustrates
a 3D packing problem – objects of various shape and size are packed into a
rectangular container in order to minimize its dimensions. Another example
is shown in Fig. 8.

The problem is NP-complete, and as a result solution methodologies pre-

2



Figure 2: An example of a 3D packing problem.

dominantly utilize heuristics [5]; most existing methods of cutting and pack-
ing are restricted to objects of certain shapes and type and impose various
limitations on their layout. For example, nearly all practical algorithms deal
with polygons only; other shapes are simply approximated by polygons (a
notable exception being [9] which allows circular shapes). Objects usually
have a fixed orientation, i.e. they cannot be freely rotated. The most popular
and most frequently cited tool in the modern literature on the C&P problem
is the so called No-Fit Polygon (see our Section 3), it is designed to work
only for polygonal objects that can be translated without rotation.

We note however that not all advances are published in academic journals
because many commercial companies closely guard their products [20].

The goal of this paper is to present the results of our research group that
for decades has been studying the cutting and packing problem in a formal
mathematical manner. In these studies we deal with objects of very general
shape (called phi-objects) and we characterize their layouts by means of
special functions (called phi-functions) whose construction involves a certain
degree of flexibility. The concepts of the phi-object and the phi-function
have their roots in topology; but the phi-functions turn out to be highly
convenient for practical solution of the C&P problem. In particular, since
the construction of the phi-functions is flexible, we take advantage of this
fact to develop more efficient algorithms.

While the phi-functions have been employed by our group since the 1980s,
see e.g. [24], they remain little known to the broader community [5]. Our
principal goal is to present here the theory of phi-objects and phi-functions
in full and demonstrate practical benefits of these tools.

Our paper is primarily a survey, but it includes substantial novelties. We
present new, improved formulas for phi-functions in several cases. More im-
portantly, we introduce a new principle that phi-functions can be computed,
in all practical cases, via linear and quadratic formulas without radicals. Pre-
cise statements are given in Sections 2 and 3, and proofs are sketched in the
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Appendix (complete proofs are beyond the scope of this article; they will be
published separately). Also, we do not restrict our survey to the traditional
2D geometry – we include a general 3D theory and examples not published
elsewhere.

This paper is organized as follows: in Section 2 we introduce phi-objects,
in Section 3 we define phi-functions and overview their properties, in Sec-
tion 4 we use the phi-functions to reduce the C&P problem to a constrained
minimization problem, and in Section 5 we describe various approaches to
its solution. Illustrative examples are presented in Section 6.

2 Phi-objects

Our first goal is to describe a general mathematical model for the cutting
and packing (C&P) problem that should adequately represent virtually all
existing applications.

The basic task is to place a set of certain geometric objects (later on,
simply objects) Ti, i ∈ {1, 2, . . . , n} = In, into a container T0 so that certain
restrictions on the location of the objects are met and a certain objective
function (measuring the ‘quality’ of the placement) will reach its extreme
value. We will specify these requirements below.

We can also rephrase our basic task differently: given a (large) object T0,
we need to cut a set of smaller objects {T1, . . . , Tn} from it. Our objects are
2D or 3D geometric figures, i.e. subsets of R2 or R3. Generalization to any
dimension is straightforward, but we do not pursue it here.

The multiplicity of shapes of Ti and T0, as well as the variety of restrictions
and forms of the objective function generate a wide specter of realizations of
this basic problem. We develop a unified approach to all such applications
with the ultimate goal of designing efficient algorithms for solving the C&P
problem.

2.1 Phi-objects. First we define a class of admissible objects for our model
following [24, 29, 30]; they will be called ϕ-objects or phi-objects. They
must have interior (“main part”) and boundary (frontier). Accordingly, we
require each phi-object be the closure of its interior. (In mathematical topol-
ogy, closed sets that are closures of their interior are said to be canonically
closed ; this is what our phi-objects are.) This requirement rules out such
elements as isolated points, one-dimensional curves, etc., – they do not occur
in realistic applications. Figure 3a shows an invalid phi-object – it has three
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one-dimensional ‘whiskers’, two isolated points, and four punctured interior
points (white dots).

The smaller objects T1, . . . , Tn always have finite size, in mathematical
terms they are bounded. The (only) larger object T0 may be unbounded (it
is common in applications that the container is a strip or a cylindrical tube
of infinite length).

a c

Figure 3: Invalid phi-objects.

In addition, our phi-objects should not have self-intersections along their
frontier, as shown in Figure 3bc, because this may lead to confusion. For
example, Figure 3c shows a dark domain whose two ends touch each other
like pincers; this must be prohibited. The reason is also demonstrated in
that same figure: a similar object (the light grey “figure eight”) is placed so
that the two intersect each other only in their frontiers, which is generally
allowed, but in this particular case we cannot position these objects as shown
because one ‘cuts’ through the other.

Mathematically, the above requirement can be stated as follows: a phi-
object and its interior must have the same homotopic type (the same number
of connected components, the same number of interior holes, etc). Alterna-
tively, one may require that for any point z on the frontier fr(T ) of a phi-
object T there exists an open neighborhood Uz of z such that Uz ∩ (intT )
is a connected set. These requirements may sound too abstract, but their
practical meaning should be clear from the above example.

An important property of phi-objects is that if A is a phi-object, then
the closure of its complement, i.e. A∗ = cl(Rd \ A), where d = 2, 3, is a
phi-object, too.

In most applications, the frontiers of 2D phi-objects are made by simple
contours: straight lines and circular arcs. Likewise, the frontiers of 3D phi-
objects mostly consist of flat sides, spherical, cylindrical, and conical surfaces.
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2.2 Primary and composed phi-objects. Any phi-object in R2 is called a
phi-polygon if its frontier is shaped by straight lines, rays, and line segments.
An ordinary polygon is a phi-polygon, but there are also unbounded phi-
polygons – half-plane, a sector bounded by two intersecting lines, etc. (see
illustrations in [6]).

A phi-object in R3 is called a phi-polytope if its frontier is shaped by phi-
polygons. Other objects can be approximated by polygons and polytopes,
which is a common practice [5, 20], but we handle some curvilinear objects
directly.

We call a primary phi-object in R2 a circle, rectangle, regular polygon,
or convex polygon. In 3D, a primary object is a sphere, parallelepiped, right
circular cylinder, circular cone, or convex polytope. In addition, if A is a
2D or 3D primary object, then the closure of its complement (in R2 or R3,
respectively), denoted by A∗, is regarded a primary object, too (see some
illustrations in [6]). Thus the list of primary objects is not limited to bounded
or convex figures.

We note that convex polygons formally include rectangles and regular
polygons, but in practice it is convenient to treat the latter separately, as
they can be handled more efficiently (e.g., compare (9) and (15) below).

More complex objects can be constructed from primary objects (by meth-
ods similar to those used in constructive solid geometry). We say that a phi-
object T is composed if it is obtained by forming unions and intersections of
primary objects, i.e.

(1) T = T1 ◦1 T2 ◦2 · · · ◦k−1 Tk,

where Ti are primary objects, each ◦i denotes either a union (∪) or an in-
tersection (∩), and the order in which these operations are executed can be
specified by a set of parentheses, for example T = T1 ∪ (T2 ∩ T3). Composed
phi-objects may be very complex, see an example in Figure 4.

Fact 1. In 2D, composed phi-objects are exactly those whose frontier is
formed by straight lines, rays, line segments, and circular arcs.

Indeed, every phi-object with such a frontier can be represented by unions
and/or intersections of primary objects, in the sense of our formula (1). We
provide a proof in the Appendix.

Similarly, 3D composed phi-objects have frontier made by flat (planar)
faces, parts of spheres, and parts of cylindrical and conical surfaces, see
Figure 5.
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Figure 4: An example of a composed phi-object, C1 ∪K ∪ (R ∩ C∗
2).

Figure 5: Examples of composed phi-objects in 3D.

2.3 Geometric parameters of phi-objects. The shape of a phi-object
can be specified in many ways. For a simple (primary) object, we name its
type and list its metric dimensions. For example, a circle can be specified by
a pair (C, r), where C is the type (“circle”) and r > 0 is its radius, i.e.

(C, r) = {(x, y) : x2 + y2 ≤ r2}.
A sphere can be specified by a pair (S, r), where is the type (“sphere”) and
r > 0 is its radius, i.e.

(S, r) = {(x, y, z) : x2 + y2 + z2 ≤ r2}
(we will denote planar objects by regular capital letters and 3D objects by
boldface capitals). For a rectangle, we use a triple (R, a, b), where R is the
type (“rectangle”) and a, b > 0 are half-sides:

(2) (R, a, b) = {(x, y) : |x| ≤ a and |y| ≤ b}.
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Similarly we describe a rectangular parallelepiped P (a 3D box):

(P, a, b, c) = {(x, y, c) : |x| ≤ a, |y| ≤ b, |z| ≤ c}.

For a cylinder, we use a triple (C, r, h), where is the type, and r is the radius
of the base and h is the half-height:

(3) (C, r, h) = {(x, y, z) : x2 + y2 ≤ r2 and |z| ≤ h}.

We note that all the above objects are centrally symmetric. In such cases the
origin of the coordinate system is always placed at the center of symmetry
to simplify the formulas. This explains the use of ‘half-sides’, ‘half-heights’,
etc.

For a regular polygon, we can write (H,m, h), where H stands for the
type, m denotes the number of sides and h > 0 is the side length. For a
convex m-gon, we denote its type by K and specify its shape by a set of
inequalities αix + βiy ≤ γi for i = 1, . . . , m; it is convenient to assume that
(0, 0) belongs to the polygon (see Subsection 2.4), then γi ≥ 0. It is also
convenient to choose αi and βi so that α2

i +β2
i = 1, this simplifies subsequent

computations. Thus the convex m-gon is described by

(4)
(
K, (α1, β1, γ1), . . . , (αm, βm, γm)

)
.

The (closure of the) complement of a primary object is specified similarly,
except we add a star to its type; for example

(C∗, r) =
{
(x, y) : x2 + y2 ≥ r2

}
.

Recall that this is a primary object, too.
It is important that each primary object is specified by a set of linear

or quadratic inequalities. Actually quadratic formulas allow us to describe
even more general shapes, such as ellipses (ovals), ellipsoids (‘footballs’),
hyperboloids (‘saddles’), etc.

To represent a composed object, we can specify the primary objects used
in its construction, their positions (in the way explained below, see Sub-
section 2.4), and the sequence of set-theoretic operations (unions and/or
intersections) employed to produce the composed object from its primary
constituents. The list of characteristics of a composed object may be quite
long depending on the complexity of its shape.
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2.4 Position parameters of phi-objects. One may notice that in our
formulas that specify primary objects the origin (0, 0) plays a special role.
We call it a pole of the primary object. If the object is centrally-symmetric,
then its center becomes the pole. Otherwise the choice of a pole may be
quite arbitrary, for example in a generic polygon the pole can be placed at a
vertex.

In addition, the orientation of the phi-object is usually fixed by its de-
scription, for example the sides of a rectangle are aligned with the coordinate
axes, see (2). Thus with each phi-object we associate not only a pole but
also a coordinate frame originating at the pole. We call it the eigen (own)
coordinate system of the object. The inequalities specifying a primary object
are written in their eigen coordinates.

Next in order to specify an arbitrary position of a 2D phi-object in R2,
we introduce a translation vector ν = (ν1, ν2) and a rotation angle θ ∈
[0, 2π). This means that the object is translated by ν, i.e. its pole moves to
the point (ν1, ν2), and then the object is rotated about the pole by θ (say,
counterclockwise).

The rotation parameter θ is optional. First of all, it is redundant for
such objects as circles. Second, in many applications the objects cannot be
rotated freely by their nature. In the garment industry, which remains the
largest field of applications of cutting and packing algorithms, free rotations
are generally not allowed (although tilting by a few degrees is sometimes
permitted). One cuts pieces of predetermined shape from a long strip of
fabric, and there are usually just two orientations in which the pieces can
be placed: the original one and the one obtained by a 180o rotation (such
a restriction is due to the existence of drawing patterns and to intrinsic
characteristics of the fabric’s weave). We will analyze the cutting and packing
problem both with and without rotation parameters.

The position of a 3D phi-object in space R3 requires a translation vector
ν = (ν1, ν2, ν3) and three (optional) rotation angles θ1, θ2, θ3.

To summarize, a composed phi-object on a plane or in space can be de-
scribed by a list of characteristics that include (i) types of primary objects
used in its construction and the rules of construction (the sequence of inter-
sections and/or unions), (ii) the metric dimensions of the constituent primary
objects, and translation vectors and (optionally) rotation angle(s) that de-
termine the position of the primary objects in the eigen-coordinate system
of the composed object (iii) the translation vector and (optionally) rotation
angle(s) that determine the position of the object in plane/space. While the
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characteristics (i) and (ii) are fixed for every phi-object, those in (iii) are usu-
ally treated as variables by the optimization algorithms which try to arrange
the objects in an optimal way.

2.5 Interaction of phi-objects. In solving the cutting and packing problem
it is most important to distinguish between different types of mutual location
of two phi-objects (let us call them A and B):

• Interior-intersection: int(A)∩ int(B) 6= ∅.
• Touching : int(A)∩ int(B) = ∅ and fr(A)∩ fr(B) 6= ∅.
• Non-intersection: A ∩B = ∅.
• Containment : A ⊂ B, i.e. int(A)∩ int(B∗) = ∅.

We remind the reader that B∗ denotes the (closure of the) complement of
B. Note that the containment is conveniently described by non-intersection
of the interiors of A and B∗.

3 Phi-functions

In order to formalize the above relations between phi-objects we introduce
Φ-functions, or phi-functions, following [24, 29, 30]. The basic idea is that for
any pair of phi-objects A and B with placement parameters uA, uB the phi-
function ΦAB must be positive for nonintersecting objects, zero for touching
objects, and negative for objects with intersecting interiors. That is, ΦAB

must satisfy

(5)





ΦAB > 0 if A ∩B = ∅
ΦAB = 0 if int(A) ∩ int(B) = ∅ and fr(A) ∩ fr(B) 6= ∅
ΦAB < 0 if int(A) ∩ int(B) 6= ∅

We require the phi-function be defined and continuous for all values of its
variables uA, uB.

Thus knowing the sign of Φ for every pair of objects would allow us to
distinguish between the basic types of their mutual location. The contain-
ment Ti ⊂ T0, in particular, holds if and only if ΦTiT

∗
0 ≥ 0 for the objects Ti

and T ∗
0 = cl(Rd \ T0).
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It is now clear that if Φ > 0, then the objects are a certain distance apart;
usually, decreasing Φ would bring them closer together. On the other hand, if
Φ < 0, then the objects overlap, and increasing Φ would force them separate.
These features make the phi-functions instrumental for the performance of
cutting and packing algorithms.

We remark that in some applications the metric dimensions of some ob-
jects should be also variable; then they can be included in the list of argu-
ments of the phi-functions.

3.1 Construction of phi-function. While the sign of the phi-function
plays a crucial role, its absolute value is not subject to any rigid requirements.
In particular, if two objects A and B overlap, then ΦAB < 0, and the absolute
value |ΦAB| should just roughly measure the extent of overlap.

For non-overlapping objects A,B, we have ΦAB > 0, and the value of ΦAB

may just roughly correspond to the distance between A and B. In particular,
for non-overlapping objects one can set ΦAB = dist(A,B), where

(6) dist(A,B) = min
X∈A, Y ∈B

dist(X,Y )

denotes the geometric (Euclidean) distance between closed sets.
There is an issue of existence of the minimum (6). We recall that only

one of our objects, T0, may be unbounded itself and have an unbounded
complement; thus for every pair of our objects at least one is either bounded
itself or has a bounded complement; this property guarantees the existence
of the above minimum.

In some cases the geometric distance between objects is easy enough to
compute and it can be used as the value of the phi-function. But in many
cases the formula for the distance involves radicals, which would make it
difficult to use Φ and its derivatives by our local optimization algorithms. In
those cases Φ should be defined by a simpler formula, which only roughly
estimates the distance between the objects. We give examples below.

Phi-function for two circles. The distance between two circles Ci, i = 1, 2,
with centers (xi, yi) and radii ri > 0 involves a radical:

d =
√

(x1 − x2)2 + (y1 − y2)2 − (r1 + r2).

We can define the phi-function in a simpler way:

(7) ΦCC = (x1 − x2)
2 + (y1 − y2)

2 − (r1 + r2)
2.
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Note that the sign of Φ coincides with that of d (and Φ = 0 whenever d =
0). The formula (7) allows us to avoid square roots and use only quadratic
functions.

Phi-function for two spheres. Similarly, for two spheres Si, i = 1, 2, with
centers (xi, yi, zi) and radii ri > 0 we set

(8) ΦSS = (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 − (r1 + r2)

2.

Phi-function for two rectangles. For two rectangles Ri, i = 1, 2, with
centers (xi, yi) and half-sides ai, bi > 0 (assuming that the sides are aligned
with the coordinate axes) we define the phi-function by

(9) ΦRR = max{(|x1 − x2| − a1 − a2), (|y1 − y2| − b1 − b2)}.

We remark that in numerical implementation of this and other formulas, the
absolute value function is not used, as it makes the application of the gradient
optimization method difficult. Instead, we use minimum or maximum; for
example, we compute |x1 − x2| = max{x1 − x2, x2 − x1}.

Observe that the above function (9) sometimes coincides with the geo-
metric distance between the rectangles (if one is above the other or they are
placed side by side), but in general the distance involves square roots, while
our formula is just a combination of linear functions.

Phi-function for two boxes. Similarly, for two rectangular parallelepipeds
Pi, i = 1, 2, with centers (xi, yi, zi) and half-sides ai, bi, ci > 0, whose sides
are aligned with the coordinate axes, we set

ΦPP = max{(|x1 − x2| − a1 − a2),

(|y1 − y2| − b1 − b2), (|z1 − z2| − c1 − c2)}.

Phi-function for two right circular cylinders. Now let Ci, i = 1, 2, be
two cylinders with centers (xi, yi, zi), radii of the bases ri and half-heights hi,
see (3). We assume the axes of the cylinders are parallel to each other. We
derive Φ as follows

ΦCC = max{(|z1 − z2| − h1 − h2),

(x1 − x2)
2 + (y1 − y2)

2 − (r1 + r2)
2}.(10)
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Phi-function for convex polygons. Effectively, in (9) we replace the
distance between two vertices of our rectangles with the distance from a
vertex of one rectangle to a side of the other (more precisely, to the line
containing that side); and the distance from a point to a line is always given
by a linear formula. This principle can be applied to any pair of convex
phi-polygons.

We write Φ explicitly for convex polygons (recall that those are primary
phi-objects). Suppose

(11)
(
K ′, (α′1, β

′
1, γ

′
1), . . . , (α

′
m′ , β′m′ , γ′m′)

)
.

and

(12)
(
K ′′, (α′′1, β

′′
1 , γ′′1 ), . . . , (α′′m′′ , β′′m′′ , γ′′m′′)

)
.

are two convex polygons specified according to our formula (4). Denote also
by (x′i, y

′
i), 1 ≤ i ≤ m′, the vertices of K ′ and by (x′′i , y

′′
i ), 1 ≤ i ≤ m′′, the

vertices of K ′′. As before, we assume that αi’s and βi’s satisfy α2
i +β2

i = 1 for
each polygon. Then the value d = αix+βiy +γi is the ‘signed’ distance from
the point (x, y) to the ith edge of the polygon; the sign of d is automatically
determined as follows: it is negative if the point (x, y) lies on the same side
of the edge as the entire polygon and positive otherwise.

Now let

(13) uij = α′ix
′′
j + β′iy

′′
j + γ′i

denote the ‘signed’ distance from the jth vertex (x′′j , y
′′
j ) of the polygon K ′′

to the ith edge of K ′ and

(14) vji = α′′i x
′
j + β′′i y′j + γ′′i

the ‘signed’ distance from the ith vertex (x′i, y
′
i) of the polygon K ′ to the jth

edge of K ′′. We now set

(15) ΦKK = max{ max
1≤i≤m′

min
1≤j≤m′′

uij, max
1≤j≤m′′

min
1≤i≤m′

vji}.

This formula is based on two facts. The first one is a well known geometric
property of convex polygons: if two convex polygons are disjoint, then there
is an edge E of one of them such that these polygons lie on the opposite sides
of the line containing E. This property guarantees the basic features (5) of
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the function (15), in particular ΦK′K′′
> 0 whenever the polygons K ′, K ′′ are

disjoint.
The second fact is a simple property of continuous functions: if f and g

are continuous, then min{f, g} and max{f, g} are also continuous functions.
This fact implies the continuity of Φ in (15).

We note that the restriction α2
i + β2

i = 1 is no longer necessary as our
phi-function need not represent actual distances.

If the polygons K ′ and K ′′ have fixed orientation, then their positions
are completely specified by the coordinates of their poles, let us denote those
by (x′, y′) and (x′′, y′′), respectively. These are the only variables in our
formulas. It is easy to check that αi’s and βi’s are constants (independent
of the coordinates of the poles), and γi’s, xi’s, yi’s are just linear functions
of the coordinates of the poles. Therefore the phi-function (15) is piecewise
linear in its arguments (x′, y′) and (x′′, y′′).

Another form of ΦKK(u1, u2) comes from a standard description of the
zero level set γ12 of the phi-function, i.e. γ12 = fr T12(0) where T12(0) = T1(0)⊕
(−T2(0)) is the Minkowski sum of T1(0) and T2(0), see below. Thus we can
write

ΦKK(u1, u2) = max{fk(u2 − u1), k = 1, ..., σ}.
Here fk(u2−u1) = 0 is equation of the kth side of the polygon T12(0), which
is described by equations fk(0) ≤ 0, k = 1, ..., σ, where σ ≤ m′′ + m′.

Phi-function for convex polytopes. In 3D space, we can apply a similar
principle to phi-polytopes: replace the distance between their vertices by the
distance from a vertex of one polytope to a side of the other (more precisely,
to the plane containing that side); of course the vertex and the side must
be properly chosen, which requires an elaborate but essentially elementary
analysis; we refer the reader to [28] (note that the distance from a point to
a plane is always given by a linear formula).

Phi-function for nonconvex polygons (polytopes). Suppose K ′ and
K ′′ are nonconvex phi-polygons (or polytopes). Then we can represent them
as unions K ′ = K ′

1 ∪ · · · ∪K ′
p and K ′′ = K ′′

1 ∪ · · · ∪K ′′
q of convex polygons

(polytopes) K ′
i and K ′′

j which are convex for i = 1, ..., p and j = 1, ..., q.
Then we have

ΦK′K′′
= min

1≤i≤p
min

1≤j≤q
ΦK′

iK
′′
j .

The last formula illustrates a general principle. Suppose A = A1 ∪ · · · ∪ Ap

and B = B1 ∪ · · · ∪ Bq are phi-objects objects, each of which is a union of
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some phi-objects Ai and Bj, respectively. These do not have to be disjoint
unions, i.e. some Ai’s may overlap, and so may some of Bj’s. Then we can
put

(16) ΦAB = min
1≤i≤p

min
1≤j≤q

ΦAiBj .

This fact can be verified by direct inspection, see also [6].
Now suppose K ′′ is a simply connected polygon and K ′ is a multiply

connected polygon (i.e. polygon with holes) such that K ′ = K ′
1 ∩ (K ′

2 ∩ · · · ∩
K ′

p), where K ′
1 is a simply connected convex phi-polygon and K ′

2, · · · , K ′
p

are complements to simply connected phi-polygons (creating ‘holes’), then
ΦK′K′′

may be presented as follows

ΦK′K′′
= max

1≤i≤p
ΦK′

iK
′′
.

Things may get more complicated when the frontiers of the objects are
a mixture of arcs and line segments; then the constructions of phi-functions
may require a degree of ingenuity, see next.

Phi-function for a rectangle and a circle. Let R be a rectangle with
center (x1, y1) and half-sides a, b > 0, and C be a circle with center (x2, y2)
and radius r > 0. Then we define the phi-function by

(17) ΦRC = max{(u− r), (v − r), min{u2 + v2 − r2, u + v − r}},
where u = |x1−x2|−a and v = |y1−y2|− b. The reader may check by direct
inspection that this Φ is continuous in x1, y1, x2, y2 and satisfies (5). Note
that the phi-function is quadratic in its arguments (x1, y1) and (x2, y2).

Phi-function for a convex polygon and a circle. Generalizing the above
example, let K be a convex polygon with vertices (xi, yi), 1 ≤ i ≤ m, and
sides given by equations αix+βiy+γi = 0 as defined in Section 2, in particular
α2

i + β2
i = 1. We assume that the vertices and sides are numbered clockwise

and the ith side joins the ith and (i + 1)st vertices. Let C be a circle with
center (xc, yc) and radius r. Then we define

(18) ΦKC = max
1≤i≤m

max
{
αixc + βiyc + γi − r, Ψi

}
,

where

Ψi = min
{
(xc − xi)

2 + (yc − yi)
2 − r2,

(βi−1 − βi)(xc − xi)− (αi−1 − αi)(yc − yi) + r(αi−1βi − αiβi−1)
}
.
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This formula generalizes (17).
On the other hand, the construction of phi-functions for some composed

objects may turn out rather simple.

Phi-function for a ‘pill’ and a circle. Let P be a ‘pill’ (or a ‘stadium’),
i.e. the union of a rectangle and two circles: P = R ∪ C1 ∪ C2, where R =
{|x| ≤ a, |y| ≤ b}, C1 = {(x− a)2 + y2 = b2}, and C2 = {(x + a)2 + y2 = b2},
see Figure 6; for simplicity we place the center of the pill at the origin. The
other object is a circle C with center (x, y) and radius r > 0. Now we can
define the phi-function by

ΦPC = min{ΦRC , ΦC1C , ΦC2C},

where ΦRC , ΦC1C , ΦC2C are defined as above. This follows from (16).

2a

2b P (pill)

C

Figure 6: A ‘pill’ P and a circle C.

Phi-functions for circular segments. Let D be a circular segment, as
shown in Fig. 7 (we denote it by D because it resembles this character). We
have D = C ∩ T , where C is a circle and T a triangle made by the chord
and two tangents (Fig. 7). It is easy to see that if a phi-object E is convex,
then E overlaps with D if and only if E overlaps with both C and T . Thus
we can define ΦDE = max

{
ΦCE, ΦTE

}
. In particular, if E = K is a convex

polygon, then

(19) ΦKD = max
{
ΦKC , ΦKT

}
,

where a radical-free form of ΦKC is given by (18) and a radical-free form of
ΦKT is given by (15). Similarly, if Di = Ci ∩ Ti, i = 1, 2, are two circular
segments, then we put

(20) ΦDD = max
{
ΦC1C2 , ΦT1C2 , ΦT2C1 , ΦT1T2

}
,
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TC D

Figure 7: A circular segment D = C ∩ T .

where ΦC1C2 is given by (7), and the rest are as above.

Phi-function for more general objects. While the construction of the
phi-functions may be elaborate, it only needs to be done once for every pair of
objects. In any cutting and packing problem with known shapes of available
objects, one can prepare a set of properly defined phi-functions for the use
by optimization algorithms. The phi-functions can be stored in advance,
‘off-line’, in a library, and then each instance of the problem can be solved
fast by calling the ready-to-use phi-functions from the library.

It is interesting to describe pairs of phi-objects for which one can find a
radical-free phi-function expressed only by linear and quadratic formulas.

Fact 2. If A and B are 2D composed objects (i.e. their frontiers are made by
straight lines, rays, line segments, and circular arcs; recall Fact 1) and we fix
their orientations (i.e., exclude rotation angles), then there exists a radical-
free phi-function ΦAB whose formula only involves linear and quadratic ex-
pressions.

This result is new, it has not been published elsewhere. We sketch a proof
in the Appendix.

Phi-functions with rotational angles. If the orientations of the composed
objects A and B are not fixed, then the formula for ΦAB is obtained by
changing variables that correspond to translating and rotating the coordinate
system. We demonstrate this by one example, the other cases are treated
similarly.

Let K ′ and K ′′ be two convex polygons that are defined by (11)–(12).
Suppose they are rotated about their poles by angles θ′ and θ′′ and then
translated by vectors (u′, v′) and (u′′, v′′), respectively. Now let (x′i, y

′
i) be

the coordinates of a vertex V ′
i of K ′ in its eigen coordinate system. Then the
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coordinates of V ′
i in the eigen system of K ′′ are

(21)

[
x̃′i
ỹ′i

]
=

[
c′′ s′′

−s′′ c′′

]([
c′ −s′

s′ c′

] [
x′i
y′i

]
+

[
u′

v′

]
−

[
u′′

v′′

])
,

where we use common notation c′ = cos θ′, s′ = sin θ′, and the same for θ′′.
Similarly, if (x′′i , y

′′
i ) are the coordinates of a vertex V ′′

i of K ′′ in its eigen
coordinate system, then the coordinates of V ′′

i in the eigen system of K ′ are

(22)

[
x̃′′i
ỹ′′i

]
=

[
c′ s′

−s′ c′

]([
c′′ −s′′

s′′ c′′

] [
x′′i
y′′i

]
+

[
u′′

v′′

]
−

[
u′

v′

])
,

Now we modify the equations (13)–(14) as follows:

uij = α′ix̃
′′
j + β′iỹ

′′
j + γ′i

vji = α′′i x̃
′
j + β′′i ỹ′j + γ′′i

and then define the phi-function ΦKK by the same formula (15) as before.
This example shows how rotational angles (along with translation vectors)
can be incorporated into the expressions for phi-functions.

We emphasize that if the phi-function ΦAB for two objects with a fixed
orientation is radical-free, then including the rotational parameter θ brings
factors sin θ and cos θ into the formula, but it remains radical-free.

Normalized phi-function. Some applications involve explicit restrictions
on the distances between certain pairs of objects (or between the objects
and the walls of the container), i.e. some upper and/or lower limits on those
distances may be set. In such cases one may need to compute exact distances
between the phi-objects to meet those requirements.

Thus there may be a use for phi-functions Φ̃AB whose values equal dist(A, B)
in case A∩B = ∅. We call them normalized phi-functions. The computation
of geometric distances between primary and composed objects may involve
rather complicated formulas with radicals, see a variety of examples detailed
in [6], but they all can be done by using elementary geometry, so we do not
elaborate on that here.

It is also possible to avoid radicals even in this case, provided the restric-
tions on the distances between objects are known in advance, see the next
section.

3.2 Properties of phi-functions. Suppose our objects T1, T2 have fixed
metric characteristics and no rotation angles. Then the phi-function ΦT1T2(ν1, ν2)
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only depends on the two translation vectors ν1 and ν2. As Φ is determined
by the relative position of two objects, we have

ΦT1T2(ν1, ν2) = ΦT1T2(ν1 − ν2, 0) = ΦT1T2(0, ν2 − ν1).

Thus to describe the phi-function it is enough to fix the position of one object
and only translate the other. Then the zero level of the phi-function, i.e.

γ12 = {ν ∈ Rd : ΦT1T2(0, ν) = 0}

(here d = 2, 3) plays a special role; it describes all the translations of T2 so
that it touches T1. This set is congruent (') to the frontier of the Minkowski
sum of the two objects, i.e. γ12 ' fr T12(v) where T12(v) = T1(0)⊕−T2(v) is
the Minkowski sum of T1(0) and −T2(v). The Minkowski sum of two sets A
and B is defined by

(23) A⊕B = {X + Y ∈ Rd : X ∈ A, Y ∈ B}.

The set γ12 ' fr T12 is also called shape envelope [3] and hodograph [27]. We
note that γ21 ' −γ12.

Most modern studies of the C&P problem in 2D are restricted to polygons
(other shapes are simply approximated by polygons) and their orientation is
usually fixed, thus no rotation angles are allowed. In that case γ12 is also a
polygon, it is called the No-Fit Polygon (NFP). It bounds the region where
the pole of T2 should not be placed to avoid the overlap of T2 with T1.

The No-Fit Polygon is the most common tool used in cutting and packing
applications today, and it remains the main object of study in the modern
literature on the subject. A number of efficient procedures have been devel-
oped for the construction of No-Fit Polygons; the first one was the orbiting
algorithm (or sliding algorithm) of [17]. There are alternative algorithms, see
[1, 7, 9, 12, 16, 31].

We note that the No-Fit Polygon coincides with the zero level set of
our phi-function in the absence of rotation angles and when one object is
fixed. Thus the No-Fit Polygon is a special case of the broader theory of our
phi-functions [5].

We also note that if T1 and T2 are centrally symmetric, then their poles
should be placed at their centers, and then the phi-function can (and should)
be defined so that ΦT1T2(ν, 0) = ΦT1T2(0, ν).
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4 Mathematical model of the optimization prob-

lem

In terms of phi-functions we can formulate the cutting and packing problem
as a constrained optimization problem suitable for solving by general methods
of mathematical programming. Here we do that.

First, for each object Ti we have a vector ui of its variable parameters;
these may include (i) the translation vector νi, (ii) the rotation angle(s) θi,
and (iii) some metric dimensions if those are not fixed. Thus u0, u1, . . . , un

constitute the variables in our model.

4.1 Objective function. The container T0 is a special object. In most cases
it is not necessary to translate or rotate it, thus we can set ν0 = 0 and θ0 = 0
and exclude these parameters from the list of variables. On the other hand,
the metric characteristics of the container are usually treated as variables,
as we precisely want to minimize some of those (for example, the length, or
perimeter, or area, or volume of the container). Thus the general goal is to
minimize a certain objective function

min F (u0, u1, . . . , un),

which may depend on some (or all) variables; though in most cases F only
depends on the metric characteristics of T0, i.e. F = F (u0).

4.2 Constraints. Next we list all relevant constraints. First, small objects
Ti for i = 1, . . . , n must be placed in the container, i.e.

ΦT ∗0 Ti ≥ 0 for i = 1, . . . , n

where T ∗
0 denotes the (closure of the) complement of T0.

Second, the small objects should not overlap, i.e.

ΦTiTj ≥ 0 for 1 ≤ i < j ≤ n.

Third, there may be restrictions on the minimal and/or maximal distance
between certain objects; in that case we have additional constraints:

ρ−ij ≤ Φ̃TiTj ≤ ρ+
ij

for some 1 ≤ i < j ≤ n; here ρ−ij denotes the minimal allowable distance
and ρ+

ij the maximal allowable distance. In this case we may need to use
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the normalized phi-function Φ̃ as the distances must be computed precisely.
(But one can still avoid normalized phi-functions, see below.)

Fourth, there may be restrictions on the minimal and/or maximal dis-
tance from certain objects to the walls of the container, i.e.

ρ−0i ≤ Φ̃T ∗0 Ti ≤ ρ+
0i

for some 1 ≤ i ≤ n. Lastly, there might be constraints on the rotation angles
in the form θmin ≤ θ ≤ θmax. This completes the list of constraints.

We emphasize that (i) all our constraints are defined by inequalities, (ii)
all our phi-functions (except the optional constraints involving maximum
and minimum distances) are fairly simple – they are continuous piecewise
smooth functions expressed by linear and/or quadratic formulas. The objec-
tive function F is usually simple, too (for example, it is just the length of
the container).

Thus, our optimization problem can be mathematically stated as follows:

(24) F (U∗) = min F (U), U ∈ W ⊂ Rd

where

(25) W = {U ∈ Rd : Ψ(U) ≥ 0}
and Ψ(U) ≥ 0 denotes the system of inequalities specifying all the relevant
constraints.

4.3 Simplifying distance constraints. The distance constraints, as stated
above, involve normalized phi-functions which may bring unwanted radicals
to our analysis. However we can further simplify our formulas and eliminate
radicals as follows. Suppose the minimal allowable distance ρ−ij for a pair of
objects Ti, Tj is specified. Then we can construct an adjusted phi-function
ΦTiTj such that

ΦTiTj = 0 if and only if Φ̃TiTj = ρ−ij

and such that the sign of ΦTiTj coincides with that of Φ̃TiTj − ρ−ij. Since only
the zero level set of the new function ΦTiTj is rigidly specified, we can define
it by simpler formulas than those involved in the normalized phi-function
Φ̃TiTj , i.e. via linear and quadratic formulas only. Now the minimal distance
constraint Φ̃TiTj ≥ ρ−ij can be replaced with a simpler one

ΦTiTj ≥ 0.
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In this way we can replace all minimal and maximal distance constraints
with inequalities based on adjusted phi-functions and eliminate radicals al-
together.

For primary and composed objects such a simplification is always possible.
Indeed, suppose A and B are primary or composed objects and the constraint
reads dist(A,B) ≥ ρ−. Let Aρ− = A⊕ (C, ρ−), where (C, ρ−) denotes a circle
of radius ρ− centered at the origin and ⊕ is the Minkowski sum [17]. The
object Aρ− consists of points that are either in A or at distance ≤ ρ− from
A, and it is clearly a composed object, too.

Now the original constraint dist(A, B) ≥ ρ− can be replaced by an equiv-
alent one: ΦAρ−B ≥ 0, and due to Fact 2 there exists a phi-function ΦAρ−B

which can be constructed without radicals.

Example. Suppose we have the constraint dist(R1, R2) ≥ ρ− for two rect-
angles Ri, i = 1, 2, with centers (xi, yi) and half-sides ai, bi > 0 (assuming
their sides are aligned with the coordinate axes). Then a phi-function for

Rρ−
1 = R1⊕(C, ρ−) and R2 may be derived in the following radical-free form:

ΦRρ−
1 R2 = min

{
min

1≤m≤2
ΦR1mR2 , min

1≤k≤4
ΦC1kR2

}

where

R11 = {|x− x1| ≤ a1 + ρ−, |y − y1| ≤ b}
R12 = {|x− x1| ≤ a1, |y − y1| ≤ b + ρ−}

and C1k are circles of radius ρ− centered on the vertices of the rectangle R1.

4.4 General remarks. All our phi-function constraints define an admissible
region W in the space of all the variables u0, u1, . . . , un. The region W is also
called the solution space. We make a few remarks:

1. The solution space W is often a disconnected set. Each connected
component of W may have a complicated structure, in particular it may
have multiple internal holes, ‘through’ holes, and cavities.

2. The frontier of W is usually made of nonlinear surfaces containing
valleys, ravines, etc.

3. The solution space W can be naturally represented as W = ∪J
j=1Wj,

where each Wj is specified by a system of inequalities of smooth functions
extracted from our phi-function inequalities. It should be noted that J (the
number of Wj’s) may be huge, even larger than n!. Since each Wj is a
non-convex set, the number of local extrema may be at least J.
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4. Our constraint optimization problem is multiextremal and NP-hard
(see remark 3).

We outline various solutions of this optimization problem in the next
section.

5 Solving the optimization problem

Here we discuss various approaches to the solution of the optimization prob-
lem described in the previous section, i.e. finding a global minimum (or at
least a good approximation to it) of the objective function F .

We treat this task as a mathematical minimization problem. In the no-
tation of Section 4.2, we need to find the global minimum

(26) F (U∗) = min{F (U∗
j ), j = 1, . . . , J}

where

(27) F (U∗
j ) = min F (U), U ∈ Wj ⊂ W ⊂ Rd

denote the respective local minima on each subdomain Wj. For solving the
local problem (27) we apply a modification of the Zoutendijk method of
feasible directions [32, 33] combined with the concept of ε-active inequalities
[13, 25].

Given an initial approximation, i.e. a point U = (u0, u1, . . . , un) in the
solution space W , our algorithm performs a local search, i.e. moves (modifies)
the point U ∈ W attempting to find a local minimum of the function F .

A point U ∈ W corresponds to a particular layout of all the objects
T1, . . . , Tn inside T0, and moving the point U through W means a simultane-
ous motion of all the objects T1, . . . , Tn in T0. This is where our algorithm
differs from many others – in most existing optimization schemes only one or
two objects are allowed to move at a time (with the exception of the layout
compaction works [8, 16]), since a simultaneous motion of all the objects is
regarded as a prohibitively complicated task.

We are able to move all the objects at once, i.e. perform a local search in
the multidimensional solution space W , because of our use of phi-functions.
We remind the reader that our phi-functions are continuous and piecewise-
smooth, and in most practical cases they are conveniently defined by simple
(linear and quadratic) formulas. These features are essential for smooth
performance of local minimization schemes.
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The formal procedure can be outlined as follows:

1. Choose an initial point U1 ∈ W = {U ∈ Rd : Ψ(U) ≥ 0}.
2. Construct a system of inequalities, Ψi(U) ≥ 0, that involve only smooth

function Φi, which are valid at U1. Here Φi are smooth functions that
are used to build our phi-functions (recall that usually phi-functions
are minima and/or maxima of smooth functions).

3. Form Wi = {U ∈ Rd : Ψi(U) ≥ 0}. Note that Wi ⊂ W is one of the
subdomains described in remark 3 of Section 4.4.

4. Find U∗
1 such that F (U∗

1 ) = min F (U), U ∈ Wi. Commonly, U∗
1 is a

boundary point of the domain Wi, but it is an interior point of W .

5. Now we find the steepest descent vector Z (i.e., the negative gradient
vector of the objective function F ) at the point U∗

1 and construct U2 =
U∗

1 + tZ, where t > 0 and U2 is restricted to the domain W . In this
way we ensure that F (U2) < F (U∗

1 ).

6. Replace U1 with U2 and repeat the above steps, until the iterations
converge to a limit (a local minimum of F ).

To find a global minimum of F in the whole space W one would need
an exhaustive search, i.e. a search over every subset Wj ⊂ W , which is an
unrealistic task, because the number of those components may be of order
n! (recall Section 4.4). In practice, only a few (well chosen) initial points
U1, . . . , Uk ∈ W may be examined, so the task of choosing good initial layouts
becomes of paramount importance.

In many industrial applications, experienced workers “manually” (with
the help of CAD systems) build a high quality layout, see e.g. [15], which
can be then followed by a quick run of a computer optimization program to
improve the manual layout as much as (locally) possible.

However in many other applications there are no “expert layouts” avail-
able, and one has to rely on computer generated initial arrangements. To
this end various heuristics (and ‘metaheuristics’) are used, the simplest and
most popular perhaps being the bottom-left placement procedure. It places
objects, one by one, in the most bottom-left vacant corner of the container.
When positioning an object, the procedure takes into account the previously
placed objects, first to avoid overlaps, and then (in some implementations)
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to fill holes left empty at earlier stages. Gomes and Oliveira [14] also propose
a randomized version of this method, where at each step the object to be
placed next is selected randomly with probability proportional to its length.

Many authors then use various heuristics to (globally) alter the initial
layout to obtain other layouts (and thus reach different components of the
solution space W ). One can swap two randomly chosen objects, or apply
more sophisticated strategies such as ‘tabu search algorithms’ [2, 4] or sim-
ulated annealing [15, 21], or various genetic algorithms [10].

In some implementations, objects are allowed (temporarily) to overlap
and move through one another, so that the algorithm can perform a wider
search over the solution space W . In that case one needs to estimate (and
penalize) the degree of overlap of objects so that the algorithm will gradually
move them apart (separate) and arrive at an admissible layout (with no
overlaps) in the end. In this respect our phi-functions may be useful, too, as
they provide such a feature as an estimate of the degree of overlap. Other
authors develop different tools to penalize overlap; see [4, 15, 16].

We generate good initial layouts as follows. First, we approximate the
container T0 and objects T1, . . . , Tn by rectangular polygons P0, P1, . . . , Pn

with sides parallel to two fixed coordinate axes. Then we place the polygo-
nal figures P1, . . . , Pn into P0 consecutively, according to an object sequence
Pi1 , . . . , Pin generated by a modification of the decremental neighborhood
method. This procedure employs a probabilistic search and is designed to
find the most promising ones. The latter will correspond to some points
U1, . . . , Uk in W , and their number must be kept relatively small. The
time consuming search for local minima of F is only applied to the best
initial points U1, . . . , Uk, and it produces k local minima U∗

1 , . . . , U∗
k of F .

In the end, we choose the local minimum of F where the value of F is
smaller than at the other local minima, i.e. we choose U∗ = U∗

m, where
m = argmin{F (U∗

i ), 1 ≤ i ≤ k}.
Although our construction of an initial layout employs polygonal approx-

imations (and thus appears similar to many other techniques based on pixel
and square representations, see e.g., [11]), we also apply strips as simpler
enclosing shapes, see [22, 25], and thus achieve a high speed in choosing an
initial layout.
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6 Numerical examples

We illustrate our techniques by two model examples, which have been ob-
tained recently and were not reported yet.

Example 1. This is the problem of packing cylinders of various shapes and
sizes into a rectangular box, see Figure 7. The needs for packing cylinders
arises in nuclear physics, distillation and gas absorption, casting techniques,
and granular materials, see [35]. Here we present a test example motivated
by industrial applications.

We assume that the number of cylinders and their metric characteristics
are given, i.e. we have Ti = (Ci, ri, hi), i = 1, ..., n, according to (3). The
container is a parallelepiped

P = {(x, y, z) : |x| ≤ a, |y| ≤ b, |z| ≤ c}
of a fixed base 2a× 2b but variable height 2c > 0. The goal is to pack all the
cylinders into T0 = (P, a, b, c) in order to minimize its height 2c.

Figure 8: Packing cylinders into a box: a randomly generated initial place-
ment (left) and the computed locally optimal arrangement (right).

In example shown in Figure 8, we have n = 40 cylinders. They are
vertically oriented, so we do not have to rotate them. The parameters in
this case are translation vectors ui = (xi, yi, zi), i = 1, 2, ..., n, that specify
the position of the cylinders inside P . Since c is a variable, too, we have a
total of 3n + 1 variables in the model, and our solution space W is a subset
of R3n+1.

The objective function to be minimized is

F (c, (x1, y1, z1), ..., (xn, yn, zn)) = c,
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because 2c is the height of the container to be minimized.
We have two types of constraints. First,

(28) ΦP∗Ci ≥ 0 for i = 1, ..., n

where P∗ denotes the (closure of the) complement of P. This constraint
means that the cylinder Ci lies wholly inside P, but may touch the frontier
of P. Second,

(29) ΦCiCj ≥ 0 for 1 ≤ i < j ≤ n,

which means that the cylinders Ci and Cj do not overlap (but are allowed
to touch each other).

The phi-function in (28) can be computed as

ΦP∗Ci = min{(a− |xi| − ri), (b− |yi| − ri), (c− |zi| − hi)}.
The phi-function in (29) is computed according to our early formula (10).

Figure 8 shows the output of our algorithm: an initial placement gen-
erated randomly (on the left) has height cini = 7.913, and the computed
arrangement (on the right) has height cmin = 6.5. This was done on a PC
with a 2.6 GHz CPU, and it took 27 seconds. A similar problem is discussed
in [25], but they use the normalized phi-function that involves radicals.

Example 2. Here we place n = 32 irregular 2D objects (circular segments
and circles, rectangles and convex polygons) into a rectangular strip of a
fixed height and variable length:

S = {(x, y) : 0 ≤ y ≤ 12, 0 ≤ x ≤ L},
where L is a variable to be minimized.

The objects include 11 convex polygons (triangles, quadrilaterals, a pen-
tagon, and a hexagon) of various shapes, 16 circular segments and 5 full
circles (disks) of various sizes, see Figure 9. The objects are allowed to
move within the strip and rotate freely. The variables in the model include
32 translation vectors νi = (xi, yi), 1 ≤ i ≤ 32, and 27 rotation angles θi,
1 ≤ i ≤ 27 (we only need rotation angles for polygons and circular segments,
as 5 disks need no rotation), plus one parameter, L, for the strip. The total
number of variables in the model is 64 + 27 + 1 = 92.

The objective function to be minimized is

F (L, x1, y1, θ1, . . . , x32, y32) = L.
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Figure 9: Packing irregular 2D objects into a strip: a randomly generated ini-
tial placement (left) and the computed locally optimal arrangement (right).

We have two types of constraints: first, the the objects must lie wholly inside
the strip S but may touch the walls of S, and second, the objects must not
overlap but are allowed to touch each other. These constraints are given
in terms of the respective phi-functions, some of them were discussed in
Section 3. We omit explicit formulas for the sake of brevity.

The initial placement is shown in Figure 9 (left); it is generated randomly
and is confined in a rectangle of length Linitial = 15.14. The arrangement
corresponding to a local minimum of F , as computed by our algorithm, is
shown in Figure 9 (right); all the 32 objects are tightly packed into a rectangle
of length Lmin = 10.37. The size of the rectangle is reduced by about 50%.
Observe that the algorithm rearranged the objects and rotated many of them
– the final packing has little resemblance of the initial placement. This
example took as little as 7 seconds on a PC with a 1.6 GHz CPU.

We emphasize that this example, unlike standard polygonal 2D packing
applications, includes curved shapes. In addition we allow rotations (see
also [18]). The traditional solutions of the C&P problem based on polygo-
nal approximation of curved objects and the use of No-Fit Polygons simply
will not work because they do not account for rotations of polygons. More
specialized methods that incorporate rotations of polygons will work, but
their performance will be affected by the degree of approximation: cruder
approximations will give less accurate solutions, and finer approximations
will require excessive use of computer resources (CPU time and memory).
Our methods do not have these limitations.
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We have tested our algorithm in conjunction with a prior polygonal ap-
proximation (PA). In these tests we first approximated all objects of irregular
shape (IS) by polygons and then ran our program to pack the latter. Sepa-
rately we ran our program to pack the IS objects directly, without approxi-
mations; in both cases we used the same initial layout and let the program
run for about the same time. We observed that direct packing of IS objects
was always tighter – the respective computed local minimum of the objective
function was 5-7% lower than the one found via PA.

Figure 10: Packing irregular objects into a strip: a randomly generated initial
placement (left) and the computed locally optimal arrangement (right).

More examples. Admittedly, the above two examples include mostly pri-
mary phi-objects (cylinders, convex polygons, and circles) and only a few
composed objects (circular segments). More diverse sets of objects are shown
in Figures 10, 11, 12, and 13. The first includes non-convex polygons, the
second – a variety of circular objects with holes, the third – character-looking
figures (‘shuffling an alphabet’), and the last deals with ‘machine parts’, i.e.
objects typical for metal cutting applications. Our objects come in various
shapes, but all of them are made from primary objects – circles and circular
segments, rectangles and polygons, as well as complements thereof.

These four example are computationally more intense than the previous
two, but their processing still takes a few minutes, at most. More precisely,
these examples took 21, 52, 125, and 35 seconds, respectively, on a PC with
a 1.6 GHz CPU. We note that some objects are placed inside holes of other
objects; this is a part of the initial placement procedure and not changed by
the optimization algorithm.
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Figure 11: Packing irregular 2D objects into a strip: a randomly gener-
ated initial placement (left) and the computed locally optimal arrangement
(right).

We also have other examples that come from metal cutting, text character
packing, garment cutting, etc.; those include more complicated phi-objects
in both 2D and 3D. For brevity we do not describe them here but refer the
reader to our web page [36]. There one can find technical details, illustrations,
and movie-like presentations that follow step-by-step the actual work of our
algorithms. Those examples demonstrate the potential of our methods to
handle a large number of irregular objects in 2D and 3D and achieve tight
packing arrangements that are hard to find otherwise, especially by manual
work.

Lastly we remark that our methods can successfully compete with tra-
ditional techniques even if they are applied to purely polygonal objects (for
which the traditional methods are designed). For example, Fig. 14 shows a
benchmark data set, Poly5A (posted on the ESICUP website [34]), for which
[9] reports the value l = 69.37 found by a traditional semi-heuristic approach.
Our program found a local minimum l = 63.81 (shown here).

7 Conclusions

We demonstrate how the use of phi-functions and mathematical program-
ming can improve the performance of cutting and packing algorithms. Our
phi-functions have the following features:

• They can be applied to 2D and 3D objects of very general type (phi-
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Figure 12: Packing characters into a strip: a randomly generated initial
placement (left) and the computed locally optimal arrangement (right).

objects); these include disconnected objects, non-convex objects, some
curved shapes, regions with holes and cavities, etc.

• Our phi-functions take into account continuous translations and rota-
tions of objects.

• They may take into account variable metric characteristics of objects.

• They take into account possible restrictions on the (minimal and/or
maximal) distances between objects and from the objects to the walls
of the container.

Figure 13: Packing ‘machine parts’ into a strip: a randomly generated initial
placement (left) and the computed locally optimal arrangement (right).

31



Figure 14: Packing polygons into a strip: an ESICUP benchmark example.

• Our phi-functions are useful when dealing with overlapping objects, as
they measure the degree of overlap. This is useful for covering problems
[23].

• In most practical cases, the phi-functions (unlike geometric distances)
are defined by simple (linear and quadratic) formulas, which allows us
to use optimization algorithms of mathematical programming.

• Overall, our phi-functions allow us to enlarge the class of optimization
placement problems that can be effectively solved.

We are constantly working on the improvement of our phi-functions and
algorithms. The computational time reported in Section 6 for several ex-
amples is achieved presently, but we expect that it will be reduced in the
future.
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Appendix

Here we sketch the proofs of Facts 1 and 2 stated in Sections 2 and 3. The
complete proofs are beyond the scopes of this article. We plan to publish full
proofs, with practical algorithms and examples, in a forthcoming paper.
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Proof of Fact 1 (sketch). Let A ⊂ R2 be a phi-object whose frontier is
formed by straight lines, rays, line segments, and circular arcs. Note that
the arcs can be either convex or concave. For example, in Fig. 4 (left) the
top arc is convex, while the bottom arc is concave.

If A is bounded, then it can be easily divided into pieces of four basic
types: (a) convex polygons, (b) circular segments, (c) ‘hats’, and (d) ‘half-
crescents’, see Fig. 15. A ‘hat’ is formed by a circular arc and two tangent
lines at its endpoints. A ‘half-crescent’ is made by two circular arcs that are
tangent to each other at the point of contact and a line crossing both arcs.
Fig. 16 shows a partition of the phi-object of Fig. 4 into basic sub-objects.
It consists of six convex polygons, four circular segments, and three ‘hats’.

(a) (b)

(c) (d)

T

C

T

C

K

C*

D

H

V

C

C

R

1

2

Figure 15: Four basic types of phi-objects: (a) convex polygon K, (b) circular
segment D = T ∩ C, (c) ‘hat’ H = T ∩ C∗, and (d) ‘half-crescent’ V =
R ∩ C1 ∩ C∗

2 .

Now each convex polygon is a primary object; a circular segment is an
intersection of a circle and a triangle; a ‘hat’ is an intersection of a triangle
and the complement to a circle; and a ‘half-crescent’ is an intersection of a
rectangle, a (larger) circle and the complement to a (smaller) circle.
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Figure 16: A partition of the phi-object of Fig. 4 into basic sub-objects.

If A is unbounded, then we can partition it into bounded basic objects and
‘wedges’ – domains bounded by two infinite rays emanating from a common
origin. Each wedge is a convex phi-polygon. This completes the proof of
Fact 1. We plan to publish a practical algorithm for partitioning composed
objects into these basic types separately.

Proof of Fact 2 (sketch). Let A and B be two composed objects whose
frontiers are made by straight lines, rays, line segments, and circular arcs.
First we represent them as

A = A1 ∪ · · · ∪ Ap and B = B1 ∪ · · · ∪Bq

where Ai and Bj are basic pieces of the above types, i.e. convex polygons,
circular segments, ‘hats’, ‘half-crescents’, and wedges. Then we can apply
the general formula (16), so it remains to construct radical-free phi-functions
ΦEG for all basic pairs of objects, i.e. where each of E and G is either a convex
polygon, or a circular segment, or a ‘hat’, or a ‘half-crescent’, or a wedge.
In fact wedges are ‘infinite’ convex phi-polygons, and they can be treated
similarly, so we restrict ourselves to four essential basic types (a)–(d). Thus
there are a total of 4 +

(
4
2

)
= 10 possible pairs of basic objects.

For the ‘polygon-polygon’ pair a radical-free phi-function ΦKK is given
by (15). For the ‘polygon-segment’ pair a radical-free phi-function ΦKD is
given by (19), and for the ‘segment-segment’ pair we have ΦDD by (20). This
takes care of all possible pairs of convex basic objects, i.e. types (a) and (b).

It remains to deal with concave objects, i.e. ‘hats’ (c) and ‘half-crescents’
(d). Their radical-free phi-functions happen to be rather complicated and
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require an elaborate analysis. We will not present them in this paper. Com-
plete formulas for those functions will be given in a separate publication.
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