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§1. Introduction

In this paper we analyse ergodic properties of certain systems of two-
dimensional discs and three-dimensional balls that move in the absence of
external forces with a constant velocity and that interact by means of elastic
collisions. The case of two discs on a torus was fully studied in [17]. The
presentation is carried out mainly for a system of »n discs on a torus. The
necessary changes for a system of three-dimensional balls and other systems
are indicated.

Let (¢, ¢4?) be the coordinates of the centre of the i-th disc, and
@'», p¥) the components of its momentum. The 2n-dimensional torus
Tor2 X Tor®X ... XT@:’ , from which we remove the union of the interiors of

the n(n— 1)/2 cylinders given by
(1) Qi (¢ — g+ (g —¢P)?=(2r)? (mod 1),

(1 €i<j< n), serves as the configuration space Q of the system of n discs
of the same radius r. The cylinder Q;; corresponds to the collision of the
i-th and the j-th discs.

The system has the first energy integral H = % E (pgﬁ))z, the value of

which is supposed to be fixed: H = H,. Then the phase space is the direct
product M = @ X §, where S is a (2n — 1)-dimensional sphere of momenta.
given by H = Hy,. The motion of the discs generates a one-parameter group
of transformations {T*}, ¢t € R, of the space M. The invariant measure u
and the o-algebra of measurable subsets on ¢ are naturally detined.
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Since the motion of discs on a torus is being considered, the full momentum
n

P= (P, Py, P; = ) pg.*) (j = 1, 2) is also a first integral of the system.
i=t

P defines the velocity of the centre of gravity. For fixed P # 0 the flow
{T'} is the direct product of the conditionally-periodic motion of the centre
of gravity and the relative motion of the discs or bails that corresponds to
P = 0 and to the fixed position of the centre of gravity. With a certain
assumption of a purely geometrical character (see §3) we prove the following
theorem.

Theorem 1. Let P = 0 and let the position of the centre of gravity be fixed.
Then the ergodic components of the flow {T*} have positive measure. The
flow is a K-flow on each such component.

We recall ([101, [22]) that K-flows are ergodic, have mixing of ail powers,
have positive entropy, and in the orthogonal complement to the one-
dimensional subspace of constants the groups of unitary operators adjoint to
them have countably-multiple Lebesgue spectrum. As for the geometrical
assumption mentioned above, it is verified directly for small values of n
(n < 10). It seems all but certain that it holds for all », but this has not
been proved.

A corollary related to P # O follows from Theorem 1.

Corollary 1. Let P # 0 and let the conditionally-periodic flow corresponding
to the motion of the centre of gravity be ergodic. Then, under the conditions
of Theorem 1, the ergodic components of {T'} have positive measure. On
each such component the flow is the direct product of the conditionally-
periodic flow and the K-flow.

The following theorems are true without additional assumptions.

Theorem 2. For a system of n discs (balls) on a torus with r <r,, there is
an open subset @ such that the ergodic components of {T*} that substantially
intersect O (that is, the conditional measure of © on such a component is
positive) have positive measure.

Theorem 3. For a system of n discs (balls) on a torus, {T*} has positive
entropy.

A system of n elastically colliding discs or balls in a domain of any form
or on a torus is always reducible to a system of billiard type (see [10]} and
the next section). In the case of domains with a piecewise flat boundary the
corresponding billiards is semiscattering, that is, the boundary of the
corresponding domain is convex (within), but not strictly convex. Billiards
with a strictly convex boundary are called scattering. The properties of
scattering billiards are similar to those of hyperbolic systems of the type of
Anosov systems, while semiscattering billiards are similar to partially
hyperbolic systems (see [7], [22]). The first step in an investigation of the
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ergodic properties of similar systems consists in the construction of stable
and unstable manifolds for ““individual” points of the phase space. A suitable
technique is a development of the technique of the proof of the Hadamard-
Perron theorem, and it has been well developed (see [1], [2], [131, [22]).
In our case we initially construct tangent spaces to these manifolds. Such
spaces are given by operators of the second fundamental (quadratic) form of
the projections of the stable and unstable manifolds on the configuration
space. These operators are solutions of the Jacobi equations. In the case of
billiard systems the Jacobi equations turn out to be of difference type.
Therefore, their solutions are constructed in the form of operator-valued
continued fractions. For scattering billiards the operators arising are strictly
positive. For semiscattering billiards these operators are merely non-negative.
The zero subspaces arising are usually connected with the existence of
additional first integrals of motion.

If for almost every point of the phase space the dimension of the positive
subspace of the operator of the second fundamental form is maximal, then
the local stable and unstable manifolds exist almost everywhere and the
corresponding foliations are absolutely continuous. If the sum of the
dimensions of the stable and unstable manifolds is one less than the
dimension of the whole relevant submanifold of the phase space, it follows
by means of reasoning of Hopf type (see (18], [19]) that the ergodic
components have positive measure, and on each such component {T'}is a
K-flow. It can even be shown by using a finer technique that {7*} is a
B-flow, that is, it is metrically isomorphic to the ergodic superstructure
(tower) on the Bernoulli automorphism. In precisely this way Theorem 1
and its Corollary are proved.

The further investigation consists in finding out when an ergodic component
is unique. In the case of scattering billiards this intention is pursued with
the help of “the fundamental theorem of the theory of scattering billiards”,
first proved in [19]. There are two different proofs of this theorem in [8]
and in [20]. In §4 we put forward an additional proof of the “fundamental
theorem™, which could be applied, with additional assumptions, to certain
semiscattering billiards. On the basis of this theorem, in §5 we investigate
open domains in the space of parameters of the system of n = 3 discs, for
which it is shown that the ergodic component is unique. The construction
of similar domains for n > 3 discs is reduced to the straightforward
examination of several degenerate possibilities, which can be done with the
help of computers.

It is clear from the above discussion that the results of the present paper
are related to the substantiation of the ergodic hypothesis, put forward by
Boltzmann more than 100 years ago (see {6]). This hypothesis means in
modern terms that a non-linear Hamiltonian system of a general kind on a
manifold of constant energy is ergodic. It is certain that Boltzmann related
this hypothesis to systems with many degrees of freedom, since in his book [6]
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he dealt with the ergodic hypothesis in connection with the foundations

of statistical mechanics. At that time, of course, there was no notion of
thermodynamic limiting transition, when the number of particles grows in
proportion to the volume of the system, and the mean distance between the
particles is taken to be the unit of length.

The basic notions of the ergodic theory appeared in the mathematical
works of Poincaré, Birkhoff, and von Neumann, and the ergodic hypothesis
began to be understood as just the hypothesis of ergodicity of this or that
dynamical system. The connection with the foundations of statistical
mechanics lost its importance, at least temporarily. However, the question
of ergodicity became meaningful for finite-dimensional dynamical systems
with a small number of degrees of freedom. Individual examples of classical
dynamical systems were investigated in this connection, and their ergodicity
was proved. One should mention first of all geodesic flows on compact
manifolds of negative curvature. One of the first important steps was taken
by Hadamard [29], whose results were employed in the related works of
Morse [33], Hedlund {30], and Hopf [23]. Geodesic flows on manifolds of
negative curvature are one of the principal examples of Anosov systems
(see [1]}, [2]). Ergodicity, mixing, and the K-property of such systems are
being investigated at present in sufficient detail (see {1], [2], [18], [22]).

At the beginning of the fifties the famous KAM (Kolmogorov-Arnol’d-
Moser) theory of small perturbations of integrable Hamiltonian systems was
created (see [3]). One of the principal results of this theory is that under
rather general conditions a perturbed Hamiltonian system remains non-
ergodic on a set of positive measure, The ergodic theory of Boltzmann in its
initial form was thus refuted, but the question arose, which Hamiltonian
systems, in particular those of physical origin, are ergodic.

The geodesic flows on compact manifolds of negative curvature discussed
above have the typical property of uniform exponential instability of
motion, like all Anosov systems. This means, in particular, that geodesic
curves that emanate from the same point diverge at an exponential rate. In
the forties, the Leningrad physicist Krylov [11] observed that dynamical
systems corresponding to the motion of discs or balls with elastic collisions
had the same exponential instability. The scattering role of the negative
curvature is taken by the convex (within) boundary of the configuration
space, composed of cylinders of the type (1). One cannot take the reasoning
of Krylov as a rigorous mathematical proof, but he presented the basic idea
quite clearly: dynamical systems with elastic collisions should be ergodic
because of the same exponential instability as that of geodesic flows in
spaces of negative curvature.

The corresponding mathematically rigorous result for a system of two
discs or balls was obtained, as we mentioned above, in [19]. The difficulty
of investigation is connected with the discontinuous character of the
dynamics and non-uniform instability. Precisely these difficulties will be
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overcome in the next sections of the present paper for the cases described
above. The results of the present paper are the first and up to now the
only statements on ergodic properties of systems of n discs. Before the
appearance of the entropy theory of dynamical systems and the theory of
systems with hyperbolic properties of instability there was no approach to
similar problems at all. The announcement made in [17] for the general
situation must be regarded as premature.

Simultaneously with the investigation of the ergodicity of finite-dimensional
systems the development of the mathematical foundations of statistical
mechanics was proceeding, in which an analysis of systems of many degrees
of freedom, more precisely, an analysis of the properties of such systems
under thermodynamic limiting transition, appeared in the foreground. In
equilibrium statistical mechar.ics the main role is played by infinite-
dimensional dynamical systems composed of infinitely many identical
particles, and by special probability distributions on their phase spaces,
which are called limiting Gibbs distributions. These systems first appeared
in the paper of Bogolyubov and Khatset [4] (see the modified presentation in
[5]), and then their theory was constructed and developed in the works of
Dobrushin [9], Lanford and Ruelle [32], Ruelle [16], and others. The
basic assumption (the Gibbs postulate) of equilibrium statistical mechanics is
that an infinite-dimensional dynamical system of statistical mechanics in a
state of thermodynamic equilibrium (that is, in the absence of thermal and
dynamical processes) is subject to the limiting Gibbs distribution. At present
the problem of substantiating equilibrium statistical mechanics is posed as
the problem of explaining the exceptional role of such distributions.

One of the possible approaches to this problem arises in non-equilibrium
statistical mechanics. According to the main idea of Bogolubov the evolution
of non-equilibrium distributions in systems of statistical mechanics has two
clearly distinguished time scales. The first, microscopic, scale is equal to the
mean duration of a free run, more precisely, to the time unit of microscopic
motions. It is assumed that during such time periods local equilibrium is
established in the non-equilibrium system owing to collisions. Local
equilibrium means that correlation functions on microscopic distances, that
is, on distances of the order of magnitude of the mean distance between the
particles, are close to the correlation functions of the limiting Gibbs
distribution. However, the parameters of this distribution are not constant
but slowly varying functions in space and time. Their evolution occurs on
the second, siower, hydrodynamic time scale and is described by equations
of hydrodynamic type.

The role of properties of the type of ergodicity and mixing during
establishment of local equilibrium is obvious. It is less clear, but nevertheless
certain, that the same properties are essential for an investigation of the
dynamics of locally-equilibrium distributions. One can hope that the results
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obtained in the present paper will be helpful in the study of the profound
and difficult problems of kinetics of complex systems described above.

We are grateful to S.P. Novikov for useful discussion of the questions
studied in the present paper. We also thank L.A. Bunimovich, A. Kramli,
D. Sas, and N. Simdnyi, who carefully read the manuscript and made many
important and useful remarks.

82. Necessary information on scattering and semiscattering billiards

As we mentioned above, a system of n freely moving and elastically
colliding discs can be reduced to a billiard system of special type (see [9]).
A Dbilliard system or simply billiards is a dynamical system corresponding to
the motion of a material point within a bounded domain @ C R? or
Q C Tor?, d > 2. The point moves freely, that is, with a constant velocity,
within Q and is reflected from the boundary 0Q by the law ‘“‘the angle of
incidence is equal to the angle of reflection”. The norm of the velocity
vector llvll corresponding to such a motion is a first integral. The
configuration space is Q = Q U 3Q, and the phase space is M = @ x S,
where S is the (d — 1)-dimensional sphere of the velocity vectors for which
lvll = v,. Points of the phase space are denoted by x = (g, v), where
q € 0, v €S. The natural projection I — Q is denoted by 7 :7(g, v) = q.
A billiard system in Q generates a flow {7*} in I (see [10]).

The boundary 90Q is assumed to be piecewise smooth. The latter means
that 0Q = 9Q, U ... U 8Q,, where the dQ; are smooth submanifolds of
codimension 1 that are pairwise mutually transversal at all points of
intersection. The flow {T'}is uniquely defined only for points whose
trajectories do not pass through the intersections of the smooth boundary
components and do not have infinitely many reflections from the boundary
during a limited time interval. We denote by M’ < M an invariant subset
for which {T%}is defined for all ¢, —o0 < f < oo. Then p(M\M') =0
(see [101).

The boundary of the phase space M = Q@ X S plays the main role in
our analysis. We put M} = {z €9 M: (v, n(g)) =0}, M, = M; n W,
where n(q) is the unit vector normal to dQ at the point g, directed inside Q.
A natural derived automorphism of {T*}, T,: M, - M,, is defined on M,.
Namely, let s(x) > 0 be the first positive time when the semitrajectory
{T*z}, t > 0, reaches the boundary, and n;: M’ — IR, is defined by
mz = "% Then T, = ny |gp,.

The invariant Liouville measure u of {7*}is the direct product u = pg x wg,
where ug is Lebesgue measure on Q, while wg is Lebesgue measure on S.
The invariant measure g, for T, has the form du,(q, v) = (v, n(q))dq dwsg,
where dq is the measure on 9Q induced by the Riemannian metric.

Ergodic properties of billiard systems depend substantially on geometric
properties of 8Q, more precisely, on its curvature, which is described by an
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operator of the second fundamental form K(q), ¢ € 3Q. The operator K(q)
is a self-adjoint operator acting in the space ¢ tangent to 0Q at g € 3(Q.

A billiard system is called scattering (see [19]) if K(g) > 0 everywhere on
0Q. The ergodic properties of scattering billiards have been quite well
studied. Namely, they are K-systems (see [19], [20]) and B-systems [28].
In some cases one can investigate the rate of decrease of time correlation
functions with the help of Markov partitions (see [25], [26]).

A system of n discs on a torus or in a domain with flat boundaries is
reducible to a billiard system for which K(q) = 0, since each cylinder Q;; is
flat along a (2n— 2)-dimensional subspace. Billiards for which K(g) =2 0 are
called semiscattering, and their analysis is much more complicated. Stable
and unstable transversal foliations were constructed for semiscattering
billiards under certain assumptions in [24], [31] (see also [23]). These
results are described in the next section.

§3. Stable and unstable foliations

We recall that a local stable manifold (LSM) of a point z € M is a
C2%smooth open submanifold W — 9t such that:

1YzeW;

2) p(T'yy, Tlys) < ¢y exp {—cot}p(ys, Yo
for all y,, y, € W and ¢ > 0, where ¢; = ¢,(W) > 0, ¢, = c,(W) > 0 are
constants, and p is a Riemannian metric on M.

A local unstable manifold (LUM) is defined similarly, but now for ¢ < 0.
The analysis of LSM and LUM is carried out with the help of the corresponding
operators of the second fundamental form. Namely, for arbitrary
semiscattering billiards in the d-dimensional domain Q we take a C%smooth
oriented open submanifold $ — Q of codimension 1 and its clothing X by
unit normal vectors. There are two possibilities for such clothing denoted
by £ and —3, We call X and 3 a local manifold (LM) and its support,
respectively. If {v(g), g € 'E} is the field of unit normal vectors, then an
operator Bx(z), x = (q, v(g)), of the second fundamental form is defined by

v(g + dg) = v(g) + Bx(z)dg + o(ll dg ||).

Here Bx(z) is a linear self-adjoint operator, acting in the (d— 1)-dimensional
subspace J(x) tangent to T at g€ S. We note that J(x) depends only on x.
but not on . An LM X is called convex (strictly convex) if Bz(z) >0
(Bz(z) > 0) for all 2 € 3. If Bg(z) << 0 (Bg(z) < O)for all z € 2, then I is
called concave (strictly concave).

We now investigate the behaviour of Bx(z) resulting from the dynamics.
We put x, = T, q; = m(x,) and initially assume that ¢ is so small that
T:3 = Z, does not intersect 8M, 0 < s < . Then J(x) and J(x,) are parallel
to each other and can be naturally identified. It is easy to check that in
this case Bz (z¢) = Bx(z)(I + tBx(z))~%, where [ is a unitary operator (see [17]).
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It follows from this formula that T*X is convex (strictly convex) if 3 is
convex (strictly convex).

Now let ¢ be such that Tz € @M and there is a reflection from the
boundary. It makes sense to study vectors vy_,, v;4+, before and after the
reflection from the boundary, subspaces J(zx;_y), J(zs4,) that are normal to
Vi_os Vi+o respectively, and operators of the second fundamental form

Bx,_, (%4-0)y Bz tee (Ze+0)s Texo=(qss Vix0)-

For a point g, € 8Q there is defined the operator of the second fundamental
form K(gq,) of 8Q and of the field of the unit normal vectors n(g). We shall
need an operator U(x,) that maps J(zs4+,) Oon J(zs_,) parallel to n(qg,), an
operator V(x,) that maps J(x4+0) On 7 o(q:) parallel to vy4,, and an operator
V*(x,), that maps 7 4(gs) on J(z¢4.,) parallel to n(q,), where J (z) is the
tangent space to 8Q at q,. Then (see [34])

BEM (z440) = U () Bz,_o (Ze-0) U (z¢) +2 (V400 1 () V* (2) K (q0) V ().

It follows from the last formula that in the case of semiscattering billiards
B}:‘(zg) = 0for all + > 0 if Bg(z) > 0,z € 2, that is, the image of a convex
LM remains a convex LM under the action of {T*}.

For each z = (g, v) € M' we define a linear self-adjoint operator B(x),
acting in the (d — 1)-dimensional space J(x). Let f, =0<¢# <¢, < .. be
the instants of successive reflections from the boundary of the semitrajectory
{T'z, t > 0}. We now denote by K, = K(@t), Va = V(zs,), Vi = V¥(sn),
U, = U(a},), c0s 9p = (Vin+0r P(Gtn))s Sn = tn — t,; the corresponding
operators introduced above. We now write an operator-valued continued
fraction

2) B(z)= L
811+U1 U;l
I

2cos (PIV‘.K1V1+

I
2l U o ViR

U

For semiscattering billiards for every € R’ the continuous fraction B(x)
exists as the limit of finite continuous fractions. It is a self-adjoint non-
negative linear operator in J(x) that depends continuously on z € IR’ (see
{231, [241). We can thus write a decomposition

J(z) = J4(z) @ Jo(z), where B(2) s >0, B(@) |s,m =0.
We put j(z) = dim J,(z), z € M’'. The set
Q={zeM': j(z)5=0 and for soie neighbourhood V(z) = M
the function j(x) is constant on V{z) 1 IM'}
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is open in W’. For every x = (g, v) € Q we consider the tangent space
I M =390 & 7,5, where 7,8 is naturally isomorphic to J(x). The set

E(z) = {(e’ :ec J+(z): I= "_B(z)e}
is a linear subspace of .M, dim E(z) = j(x).

Theorem 4 (see [24]). Let Q be such that K(q) # O for some q € 0(Q.
Then S # @ and for almost every point x € § there is an LSM W) x),
z € WNz), where 7 W) z) = E(z).

An analysis of j(x) is based on the following equality (see [24]):

(3 Jo(x)=
={weJ (z): KV UTU7, ... UPw=0 forall I=1, 2, ...}.

Since the phase space is finite-dimensional, there is an /(x) such that

(4) Jo(x)=
={weJ (2): Ky UiU;Y, ... U w=0 forall 1=1, 2, ..., I(z)}.

We denote by Iy(x) the minimal permissible /(x). Then l,(x) is a non-
negative integer-valued function on I’.
If w € Ji(x), then by (3) forallm = 1

VaKnValUiUsly ... U =0,

that is, fm = Ust ... Uj'w is an eigenvector of the operator V,,K,, V,, with
eigenvalue 0. This operator is self-adjoint, non-negative, and has a unique
eigenvector with a positive eigenvalue: V5K ,,Vyem = Apem, Ay > 0.
Therefore ey’ = U, . .. Une, € J+(z) and by (4) '

(5) Ji@)=%{ex), m=1, 2, ..., L(2)},

% denotes the linear space generated by the corresponding vectors. We have
lo(x) = jx).

We investigate j(x) for a system of n discs (balls) on a torus. The
boundary 9Q is the union of cylinders (1). Each cylinder is the direct
product of a circle (a sphere in the ball case) and a (2n— 2)-dimensional
linear space ((3n— 3)-dimensional in the ball case). It is easy to see that the
intersection of all these spaces includes a two-dimensional (three-dimensional
in the ball case) space generated by the vectors (1, 0, 1, 0, ..., 1, 0) and
0, 1,0, 1, ..., 0, 1) from R*, Therefore, by (3) dim J(x) = 2 for all
z € M and thus j(x) < 2rn— 3 (for balls j(x) < 3n—4). The existence of
the general two-dimensional subspace is connected with the preservation of
the full momentum P of the system and with the conditionally-periodic
motion of the centre of gravity. When P = 0 the centre of gravity is
stationary, and the corresponding system is also a billiard system I @ in a
domain Q @ of a (2n— 2)-dimensional torus. The boundary is now composed
of the cylinders Qi = Q,; N Q9. The maximal dimension of LSM’s and
LUM’s can be 2n— 3 (3n— 4 in the ball case).
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Suppose that we have a system of » discs that splits into subsystems of
n,, n, discs, n = n;+ n,, where discs from different subsystems do not
interact. According to the above reasoning, for such a situation j(x) <
< (2nm—3)+Q2n,—3)=2n—-6 whenn, n, 22 and j(x) = 2(n—1)—3 =
= 2n— 5 when n; = 1. In both cases the dimension of an LSM is not
maximal.

Let us prove the following statement by induction on ».

Lemma 1. Let the statement of Corollary 1 hold for all n' < n. Then in a
system of n discs on a ball the measure of the trajectories along which the
discs split into non-interacting groups is equal to zero.

Proof. Assume that the lemma is false, and that there is a subset C, < M
of positive measure that corresponds to the non-interacting groups. We write
x = (x', x'"), where x', x"" denote points of the phase spaces of the
corresponding groups. Let P’ = P(x'), P = P(x"') be the vectors of the full
momentum of x', x'’ respectively. The components P', P'' are rationally
independent of each other for almost every x. We denote by M'(P'), M"'(P")
the phase spaces of x’, x"" with the values of full momentum P, P"
respectively. The flow {T*} in C, is the direct product of the flows {T}},

{T?l} in M'(P"), M"(P""). 1t follows from the above that for typical P', P"

the ergodic components {T*}IM'(P'), M"(P'") have positive measure, and that
they are the direct product of spaces of possible positions of the centres of
gravity of each of the groups, that is, of two-dimensional tori and subsets of
positive measure in spaces of relative positions of each group, when

P = P’ = 0. This means, however, that all possible (x’, x'’) that differ in
the position of their centres of gravity occur mod 0 in the same ergodic
component. In other words, taking x’, x”, we can move them as a whole in
arbitrary fashion, remaining in the same ergodic component. But it is clear
that there exists a set of shifts of positive measure that is inadmissible, since
it leads to a superposition of discs from the different groups. Thus u(C,) = 0,
and our statement is proved.

The proof of Lemma 1 for the ball case is similar.

Suppose now that it is impossible to split a system of » discs into two
non-interacting subsystems for any ¢ > 0. Apparently, in this case the
condition j(x) < 2n— 3 is satisfied only on the union of countably many
submanifolds of smaller dimension in the phase space IM©@ that corresponds
to special degenerate trajectories, but we do not have a full proof of this
statement for all #. For small values of » (n << 10) it can be shown by
explicitly calculating the coordinates of the vectors e{’in (5), selecting
2n— 3 such vectors (3n — 4 vectors in the ball case), and verifying their linear
independence for every possible sequence of pairwise collisions of discs.

For arbitrary n the necessary statement is reducible to the following:
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Proposition 1. We consider points x € MO such that the system of discs
cannot be split into non-interacting subsystems when t > t, for every t,.
Then for any such point that does not belong to the union of some
countably many submanifolds of smaller dimension there is an 7= ﬁx) in
MO such that the specification of the velocity vectors of all discs at the
instants of the first I collisions and the directions of the lines of centres of
colliding discs (centre lines) uniquely determines a point of the phase space.

We shall prove that j(x) = 2n— 3 follows from Proposition 1. Suppose
this is untrue, that is, dim Jy(x) =2 1. We consider a vector wy € J(x),
we # 0, and a point 2" = (g + ew,, v), where (g, v) = x, while e is chosen
to be so small that the first 7 reflections of the trajectory of x' are from the
same components of dQ® as those of the trajectory of x. Then by (3) the
reflections of 7% and T’ from each cylinder occur at points that are
displaced relative to each other along a generator of the cylinder. This
means that for every pair of colliding discs the vectors of their centre lines
corresponding to 7% and T’x’ coincide. In addition, the vectors normal to
each cylinder at the points of reflection of T* and T*’ coincide, so the
velocity vectors of all discs at the instants of the first 7 collisions also
coincide. This leads to non-uniqueness of reconstruction of the coordinates
of the discs at the instants of the first Tcollisions, and this contradicts
Proposition 1. The same reasoning goes over unchanged to the ball case.

84. Local ergodicity

We first prove Theorems 1-3. The simplest is the proof of Theorem 3,
since the corresponding entropy technique is sufficiently developed.

Let B(x) 2 O be an operator of the second fundamental form for an LUM
of a semiscattering billiard system. We claim that the entropy of the
automorphism T is

h(T)= 5 log det (I 4 B (z)) dp, (),
Dy

where 7 > 0 is the time interval until the next reflection. General formulae
for the entropy of a flow or of an automorphism with invariant measurable
foliations were obtained in [18]. A similar formula for flows with the
property of full hyperbolicity that have singularities is discussed in [31].

We note that a family of operators B(x) for an LSM and an LUM defines
a decomposition of the tangent bundle of the phase space into invariant
subbundles, and a formula of the above type is obtained with the help of
the Pesin technique (see [13]). We do not dwell on this in more detail.

We now turn to the proof of Theorem 1. It is sufficient to prove the
corresponding statement for 7;. From the conditions of the theorem
jix) = 2n—3 (j(x) = 3n—4 in the ball case) almost everywhere and
therefore it is equal to half of the dimension of @MM@. Let W{¥ (z)and
W (z) denote an LUM and an LSM of a point x € d©@.
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For almost every x these W{*) (x), W{® (z) belong to the same ergodic
component as x. One can show that the families {W{)z)}, {W® (z)} have
the property of absolute continuity. In the present case it means the
following. Each W{)(z)is a smooth submanifold. We take an arbitrary
subset € < W (x) of positive measure and draw an LSM W{ (y) through
almost every point y € C. The absolute continuity means that ve% W@ (y) is

a set of positive measure in 8M®@. The property of absolute continuity was
first established for Anosov systems (see [2]). For a discontinuous system
with singularities, to which the present case belongs, a detailed presentation
of absolute continuity is in [31].

The reasoning of Hopf (see [18], [19]) shows that for almost every x the

set U W@ (y) belongs mod O to one ergodic component. Because of
VEW ()
the absolute continuity this set has positive measure. We have thus proved

that the ergodic components of 7; and therefore of {T*} have positive
measure.

We now investigate the K-property of 7;. The method employed below
first appeared in [18]. We shall use the notion of w-partition, that is, the
maximal partition with zero entropy (for 7;). We introduce global fibres

W 2) = Y TpW® (Tr7a), W@ (z) = U Ty W (Tra).

Then m does not exceed the measurable hull of the partition, whose elements
include with almost every x the W{)z), W!”(z) containing x. The latter
partition is discrete because of the absolute continuity. Hence the w-partition
is also discrete. But then the w-partition for {T*} is discrete too. Since this
partition is invariant, 7w is a partition into ergodic components.

To prove Theorem 2 it is sufficient to establish that under the conditions
of the theorem there is an open set where j(x) = 2rn— 3. Indeed, the set
where j(x) = 2n— 3 is open and invariant mod 0. Consequently, the
previous reasoning is applicable to this set.

000..0
AFFP-G

1

Fig. 1

We consider a system of n discs of radius » < 1/2xn. They can be
arranged as shown in Fig. 1: one moving disc with the velocity vector
v; = (0, 1) and n— 1 stationary discs, whose centres lie on a horizontal
straight line. We consider velocity vectors in the coordinate system connected
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with the second disc; the transition to the original coordinate system, in
which £ = 0, is trivial. Suppose that discs 1 and 2 collide in such a way
that the vector of their centre line at the instant of collision is almost
horizontal. Then the 2nd disc starts to move and there occurs a chain of
collisions of the 2nd and 3rd discs, the 3rd and 4th discs, ..., the (n— 1)st
and n-th discs. It is easy to see that the velocity vector of the i-th disc

(i 2 2), obtained by the disc immediately after its collision with the (i— 1)st
disc, has the form (o, §;), where |B;| < o; and B; > 0 for even i and §; < 0
for odd i. The dynamics of this system in the past (+ < 0) is similar up to
symmetry, that is, the vectors (¢4, ;) are such that I8;! < «] and ; > 0 for
odd i and 8; < 0 for even i.

We prove Proposition 1 for this case, that is, we show that the coordinates
of the discs can be uniquely reconstructed from the totality of all velocity
vectors and directions of centre lines of the discs colliding in the 2(n— 1)
collisions (in the past and in the future) under consideration. We fix an
initial position of the 2nd disc (this is equivalent to fixing the centre of
gravity of the system). Then the direction of the centre line of the colliding
pair (1, 2) uniquely determines the coordinates of the 1st disc. We reconstruct
the coordinates of the 3rd disc, knowing the direction of the centre line of
the colliding 2nd and 3rd discs. The set of possible positions of the centre
of the 3rd disc forms a straight line parallel to the vector (a5, 3,). Similarly,
considering the collision of the 2nd and the 3rd discs in the past, we localize
the position of the centre of the 3rd disc on a straight line parallel to the
vector (o, B5). However, B, > 0, B3 < 0, so these straight lines are not
parallel, and this determines their unique point of intersection, which is the
position of the centre of the 3rd disc. Continuing this reasoning, we
reconstruct the coordinates of the 4th disc, ..., the n-th disc.

As we showed in §3, the relation j(x) = 2n—~ 3 follows from Proposition 1,
that is, this relation is satisfied in some neighbourhood of the point of the
phase space that corresponds to the position of the discs in Fig. 1. This
concludes the proof of Theorem 2.

Similar reasoning is applicable to the case of balls for the example shown
in Fig. 1. The centres of all the balls are located in the same plane and to
prove Proposition 1 an analysis similar to that presented above is carried out.

We now turn to a finer investigation of the structure of ergodic components.
We have already mentioned the fundamental theorem of the theory of
scattering billiards, which provides the possibility of establishing the
uniqueness of the ergodic component. The first step in the proof of the
fundamental theorem consists in showing that for points of general form
there is a neighbourhood that belongs mod 0 to one ergodic component.
Below we carry out a different proof of this statement, which is applicable
to both semiscattering and scattering billiards. In §5 we use this proof to
single out the case of three discs, for which one can prove the tull ergodicity
and the K-property.
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For semiscattering billiards we consider a manifold R < 8 consisting of
points of discontinuity of the map T, of singular points of the boundary
oM, and of points of the set M, = {z € IM: (n, v) = 0}. We assume that
one of the following conditions is satisfied:

A. For almost every x € T?R the following relation is satisfied (in the
sense of the intrinsic Riemannian metric on T?R):

I (I +%aBa) Usty (I 4 TnesBacd) Uy ... U (T 5BY) | ——> O,

where B, is the curvature operator at the point T"**%z of the image of the
flat fibre Z(® that contains the poigt —x under the action of 7'**%. (A flat
fibre is a fibre with a flat support £®.) The notations U,, t;, 7; were
introduced in §3. In other words, the flat fibre containing x expands
unrestrictedly in all directions at mx under the action of 77 as = oo
(see [34]).
B. For almost every x € R (in the sense of the intrinsic Riemannian metric)
there is an LSM W®(T?z) at T}x relative to the derived automorphism 7.
Condition A is weaker than B (we shall show this) and each of them is
sufficient for the proof of Theorem 5 formulated below.

Theorem 5. Let x € W' be such that B(x) > O, B(—x) > 0, where
=x = (q, —v) if x = (q, v) and either A or B is satisfied. Then there is a
neighbourhood U(z) = M of x that belongs mod O to one ergodic component.

Proof We first make the following remark. In the case of semiscattering
billiards in bounded domains of Euclidean space the length of a free path is
uniformly bounded, and the number of manifolds of discontinuity for 7 is
finite. This can also be achieved in the case of domains belonging to a torus.
Namely, let a torus be generated by pasting together suitable faces of a
parallelepiped K. We consider aQ after the addition of 9K and continue to
denote by T; the derived automorphism corresponding to this expansion of
the boundary (see §2). An invariant measure u, of 7, at points ¢ € aK has
the density du,(gq, v) = l(n(q), v)ldq deg, where n(q) is the normal vector
to oK.

Let z(x) denote the maximal diameter of the base of a cylindrical
neighbourhood in Q of the segment of the trajectory that connects x and
I z and terminates at two regular components of the (expanded) boundary
0Q. For points x € M we put z(x) = z(mx).
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Lemma 2. p,{z € M,: z(z) < e} < const (Q)e for all e > 0.

Proof. 1t is sufficient to consider only sufficiently small . For such & there
are three possibilities.

1°. One of the points a(z), x(T';'z) lies in the e,-neighbourhood of the
set of singular points Qo of the boundary &, = e/cos @, cos ¢ = (n(g), V)
(Fig. 2a).

Q,, consists of finitely many smooth submanifolds of codimension 1 in
0Q. Hence the measure of its g;-neighbourhood in 3Q does not exceed
const(Q)e, (see [27]). Then the u;-measure of such points does not exceed

const (Q) g ?52? cos ¢ dwg =const (Q) e.
5

2°. o> %— const(Q) Ve (Fig. 2b). Then cos ¢ < const(Q) V.e, and the

u;-measure of such points does not exceed

x/2
S S By (do, dg)<const (Q) S cos ¢ dp < const (Q) «.
8Q cos p<const (QV ZL ~const (Q} Ve

3°. Part of the trajectory in question lies in the e-neighbourhood of a
regular boundary component and does not intersect it (Fig. 2¢). Then the
uy-measure of such points does not exceed const(Q)S(Q)e, where S(Q) is the
area of 9Q.

The lemma is proved.

We return to the initial point x with B(x) > 0 and B(—x) > 0. It is
shown in [23] that j(¥) =j(—y)=d— 1 in a sufficiently small neighbourhood
U(x) and that for almost every y € U(x) there are (d — 1)-dimensional LSM
W (y) and LUM W™ (y). It is sufficient to prove the theorem for a
sufficiently small neighbourhood U,(z,) = 9, of the point x; = m(x). The
projections W, W onto M, provide the LSM and the LUM W{*(y,),
W) y,) for y, € Uy(x,) relative to 7;. Their dimensions are equal to d— 1,
while dim Uy(x;) = 2d— 2. From the continuity of B(x) on I}’ and
Theorem 4 it follows that the spaces 7, W{®, 5, W® tangent to W(», W
depend continuously on y € Uy(z;) N M’. Taking U,(x,) sufficiently small
we can assume that 7, W (7 ,W®) are sufficiently close to each other for
different y. The inequalities B(x) > 0, B(—x) > 0 also mean that 7 W,
T yW® are mutually transversal and their direct sum is 5 ,;,.

We introduce a small parameter é that will later tend to zero. We
consider a family of open covers U,(x,) that depend on & with the following
properties. An element G of each cover is a ‘‘parallelogram”, that is, the
image of a (2d— 2)-dimensional cube under the linear map R??-2 - 9R,. so
that for a certain point y € G the tangent spaces 9 ,W®, 5, /I’ are parallel
to the corresponding faces of G, while the length of each edge of G is equal
to 8. The covers {G{®, 1 < i < I(8)) that we shall consider are such that:
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a) the distances between the tangent spaces to points on the faces of the
same name of different parallelograms G{® are sufficiently small, while their
centres form a finite set that is sufficiently close to a certain lattice
depending on the size of U,(x,);

b) if G N 6P« @ for some i # j, then p(G N G¥) = c,6%-*, where
¢ does not depend on §;

¢) each point y € U,(x,) belongs to at most 2291 different parallelograms.

Let &® be a parallelogram from the cover, and y € G a marked point.
There are 22¢-1 (d— 1)-dimensional faces of G that are parallel to 9 ,W{¥.
We call these u-leading faces. Correspondingly, there are 2%-1 (d— 1)-
dimensional faces parallel to 9 , W, which we call s-leading faces.

Lemma 3. For every & < 64(x) one can split the set of parallelograms from
(G} into two groups AP and AP so that:

a) for G ¢ A{® we take any of its u-leading faces and its c,8-neighbourhood
U™, where ¢, does not depend on 6, but can be made arbitrarily small by
decreasing U\(x,); we consider z € U™ such that (W™ (z) N G'®y belongs
to the union of s-leading faces. Then the measure of such z’s is positive.

A similar statement is true for every s-leading face;

b) the measure of the union of all parallelograms from ¥AW® is equal to

6¢i(8), where ¢,(8) > 0as § > 0.

The detailed derivation of Theorem 5 from Lemma 3 is given in [20].
Here we give only a sketch of the proof. The proof is based on an idea of
Hopf [23], consisting in the fact that all LSM’s and LUM’s belong mod O to
one ergodic component. Indeed, for every continuous function f on M} the
time averages

n-1
.4
1) = lim = 3 /(Tiy)
© =0
are constant on W, since diam(TiW®) — 0 as i —> oo, and M is a compactum.

Similarly .
n-

19 @) = lim = 3 A(T5)
=0
is constant on each W{». Therefore both W{® (z), W (z), and their union,
also belong mod 0 to one ergodic component.

As shown in [20], it follows from Lemma 3 that one can find a set of
parallelograms A{» < Y(» whose union is connected, while its measure
tends to u,(Uy(x;)) as 8§ = 0. Hence, for any pair of points x’, x'’ that
belong to a subset of full measure in U,(xy) there are LSM’s W{9 (z') and
W,® (") of sizes 8" and &' respectively, and for some 8 << min{6’, 6"} both
x' and x'’' are included in parallelograms from 9. By Property a) of
Lemma 2 we can find a chain of LSM’s and LUM’s W), W™ ,, ..., W ,
so that 2’ € W{®,, 2" € W, and W ;NW® ;,, = @& foralli=1, 2, ..,
..., k— 1. The theorem is proved.
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Proof of Lemma 3. The first step, as in [34], consists in choosing ‘‘too
bad” parallelograms and including them in %{». The map T, is piecewise
continuous. For each k € Z the power T¥ is discontinuous on the union of
finitely many submanifolds with boundaries of codimension 1 (we recall that
we expanded the boundary 8@ by adding 0K to it; see above), which are
images of the submanifolds Qs X § and M, under the action of T
(j=0,-1,..,—k+1). Let AP be the set of those parallelograms G{® that
intersect at least two manifolds of discontinuity of T¥ for k < F(8). One
can choose F(8) in such a way that F(8) = o0 as § = 0, and the measure of
AY is equal to 8y,(8), where v,(§) = 0 as § = O (this is explained in more
detail in [33]). The set AP is included in AP.

Further, dim Jo(¥) = 0 in U(x). Hence it follows from (4) that every
point y € U(z) 1 M’ is a point of local maximum of the function /y(y)
introduced in §3. We can assume that [o(y) < /o(x) for all y € U(z) | M.
We denote by /;(x) the number of reflections of the trajectory of x from the
expanded boundary aQ up to the /y(x)th reflection from the unexpanded
boundary (inclusive). Let 0 < £, < ¢, < ... be the instants of the reflections
of the trajectory of x from the expanded boundary and suppose that
t* € (4, vr L, (m+1)- Let U(x) be so small that Tt* is smooth on U(x). Then
the support S of any convex LM X that contains — 7T't*y for y € U(x)
expands in all directions under the action of st o« Tt e n-1, where T—t* acts
onX. If D = D(y, t*, XZ) is the differential of the map m o T-t* o x|, at
the point n(—7T't"y), then z

(6) IDHI<a<t,

where A depends only on x, but not on y, t*, I (see the proof in [24]). In
other words, the support of any convex LM that is included in —Tt*U(z) =
= {—y: y € T*U(x)) expands under the action of m o T-!* o %! in every
direction by a factor at least A = X\™! > 1. We choose U,(x,) so small that
T & Ux) for all y € U(x), 0 < t < #;,(x)- (In the case of a periodic point
x such a choice is also possible, since t;, (xy does not exceed the period of the
trajectory of x.)

Let y €¢ M and ¢t > 0, § > 0. We consider all possible convex fibres =
containing the point —7% on which T? is smooth, and are such that the
distance from w(—T?%) to the most remote point of the boundary a3 of the
support in the intrinsic metric of 3 does not exceed 8. We denote by x:.5 (1)
the minimal expansion factor in any direction of the supports of such fibres
at any of their points under the action of T?. Note that », s (y) increases
monotonically as 6 = 0 and has the limit x4 ¢(y), which is equal to the
minimal eigenvalue of the operator (see [34])

U I+ BP)Y U (I +BOU, ... U +%B"),

where B is the curvature operator at —T’i'oy of the image of the flat fibre
2 (i) that contains =Ty (we recall that a flat fibre means a fibre with flat
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support £) under the action of Tt“t‘+0; the notations Uj;, ¢;, 7; were
introduced in §3, and / is the number of reflections of 7%y from aQ for
0<s<t.

We consider the set

U ={yeU,(x,): z2(T'y)>cduy, .0 (y) for all >0},

where the value of the constant ¢, is defined below. We claim that for every
y € U{® the size of W{® (y) in every direction is at least\/d6. Let r(y),

y € M, be the distance from 7w (y) to 6ﬁ’<‘>(y), where W® (y) is the support of
We)(y), and the distance is taken in the sense of the induced Riemannian
metric on W)(y). We put r(y) = 0 if there is no LSM for y.

Lemma 4. If y € U'Y, then r(y) 2 c,b.

Proof Let $® be the (d— 1)-dimensional disc of radius min{c,8, 2(T'y)}
in Q with centre at w(T%) that is orthogonal to the velocity vector v, of
T'y. We construct an LM I with support 3® and velocity vectors equal
to —v,. The map T! |z(¢) is piecewise smooth. We denote by Z{¥ the domain
in 2 containing —7*y on which 7! is smooth. The LM 3¢ and its images
=) = T3 are convex for 0 < s < ¢, therefore their supports do not
contract in any direction as s increases. Moreover, by the definition of %, g
the support fg') expands at least %4, .5 () times in every direction under the
action of 7.

Let r{y) be the distance from w(y) to the nearest point g<’> of the
boundary ai“’ (in the sense of the Riemannian metric on Zo t). Suppose
that r,(y) < ¢,8 for some ¢ > 0. If ¢ is obtained from some point of 62(‘)
then z(T?) < ¢,6 and ry(y) = 2(T'y)%t, c,6 (¥) = c,6. Otherwise ¢t is the
support of some point of 32§, ¢, which goes into a singular point of the
boundary y’ € 3 or into a point y’ € M,under the action of 7° for some
s € (0, t). By the definition of z(x) we have z(T*y) < dist(wy’, 7Ty) < ¢,8,
and therefore ry(y) = 2(T*y)x,, c,0(y) = c28. Thus, in all cases r,(y) = ¢,6,
which proves the lemma, since W®(y) is the limit of the fibres —X§_, as
t > oo,

The map m, is smooth at x. Hence c, can be chosen in a way that the
size of the support of W (y) = n, W*)(y) is at least /dé in every direction.
Consequently, all y € UY also have LSM’s of the necessary size.

We now investigate the complement U, = U,(z,)\U{». We put
*®n.8 y) = xt,_,.8(y), where 7, is the instant of the n-th reflection of T y
from the expanded boundary 0Q. It is clear that Uy = Uy, UUs, s U. . -
where

Up, n={y €U, (z): 2(TTY)<<:0%5] c26 (W)}
and UO. n e Uo' n,o U Uo' n.1 U RPN Where
Up nom={y €Uy, n: 10ga%s, cp8 (¥) €[m, m 4 1)}9
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where the constant A > 1 was introduced in the note to formula (6).
Therefore

8 m (Ug) < 2 2 B (U, n, m)= E e (T30, n, m)-
n=2 m=0 m=0 n=2
Lemma 5. For every m > 0,n, 2 2, n, > 2, n; # n, the sets T7* Uy, n,. m
and T1* *Uy, a, mdo not intersect.
Proof. Let n; < n, and y€ I't=1Ug, n,, mMN T%-1Uy, n,,m- Then
Yy =T Y€ Uq n,m< Uyzy) and y"= TT™ 'y € Up, n,, m = Uy(z). Note

that y’ = T*y and y"= Ty for some ¢', t'" > 0. Each convex fibre 2 of
size not exceeding c,8 that contains —y expands at least xp,, ,s(y’) times
under the action of T*. However, by (6), the fibre 7" expands at least A
times under the action of T*"~, therefore

%y, 36 (Y*) = %n,, 26 (¥') - A,

which contradicts the definition of the sets Uy, ,, ». Lemma 5 is proved.
Lemma 5 enables us to transform (8):

) 2 b Wonmd =t (U, Wonm) <
S {y€oM: 2z (y) <e,bA} <oy () BA™,

the latter inequality follows from Lemma 2. From (8) and (9) we obtain

20

(10) p (Uo) < 20 ¢y (xy) A" = ¢, (z,) .
m=
F(8) o0
Weput Uyg= U Upmand Uyo= J U,,,, where F(§) was introduced
at the beginning of the proof of Lemma 2. We now prove that
(11) i (Uow) < 894(5),

where @3 = 0 as 6 > 0. One of the additional conditions, either A or B, is
needed for the proof.

Lemma 6. If for every m =2 O and for any function Fy{(§) > > as § > 0

2 #e (U, n,m)=0(0) as 60,

n=Fy(8)
then (11) is true. (Note that the sets U,y ,, m depend on the parameter 8.)
Proof. Let g > 0. By (9) there is an m, such that

2 2 1y (Uy, , m)<-&£‘ .

m=mgp n=2



200 Ya.G. Sinai and N.I. Chernov

According to the conditions of Lemma 6 there are numbers N(m) and 64(m)
for every m = 0, 1, ..., my— 1 such that for all § < §(m)

s 5
2 py Uo, n, m)g';To-
n=N(m)
Then for all & such that 6 < 8,(m) and F(8) > N(m) for every m = 0, 1, ...,
..., Mp— 1 we have

Z p‘l(U.n)< 2 Z M4 (Uo.n.m)\<~—82‘;+m02i,;.=e '

n=F(0)+1 m=0 n=F(8)+1
and this proves Lemma 6.
Suppose that the conditions of Lemma 6 are not satisfied, that is, there
are numbers m; = 0, &; > 0 and a function F,(8§) = o as § = 0 such that

(12) . 2 By (UO, n, m1) =>¢€,0.

n==F1(8)

We consider the manifold R and the set W of “degenerate trajectories”
W={zcoM: %, (—T'z)=1 for all t>0},

that is, the set of points x such that the support of the flat fibre containing
x does not expand (and does not bend) under the action of T* for all t > 0
in one of the directions at 7(x). Clearly W is semi-invariant: 77W C W for
n > 0. Since B(x) > 0 almost everywhere on R, it follows that u,(W) = 0
and W is nowhere dense in @®R. From Condition A it follows immediately
that the set 72R N W has zero Riemannian volume on R. This follows also
from Condition B, since otherwise the points x € TR N W form, together
with their LSM’s, a set of positive u;-measure in a9 (because of the absolute
continuity of transversal foliations; see [2], [31]), but this set is attracted
1o W as n = oo, which contradicts the condition u,(W) = 0.

Let us derive A from B. Let x € T?R\W and let V(x) be a small
neighbourhood of it in M. The union of the LSM’s of the points
y € (T}RR\W) N V(x) forms a set of positive u,;-measure in 99N because of
the absolute continuity of transversal foliations. By the Poincaré recurrence
theorem [2] almost every point of this union (in the sense of u,) returns to
the neighbourhood V(x) infinitely many times, so x;, o(—I''y) — oo as t = oo.
Consequently, 5;,qo(—T*y) — oo as t = oo for almost every y € T?R (in the
sense of the Riemannian metric on TiR), and this is equivalent to A
according to (7).

Hence, from A or B it follows that %, o(—T"y) — oo as r = o for almost
every ¥ € TZR in the sense of the Riemannian metric on T?R. Thus, for
such y there is a neighbourhood V,(») in M such that %y, o(—T'y’) > A™*2
for t > t,(y) for all y' € V,(y). Further, there is a smaller neighbourhood
Voy) C Vi(y) such that x,, o(—T'y’') > A™*2 for 1 > t,(y) forally’ € Vy(y)
and 6 < 8,(y). This means that the set T7'U,, », m, does not intersect
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T} V,(y) for any 8§ < 8,(y) and n 2 ny(y) (n, depends on ¢,). Hence it
follows that for every e, > 0 there are numbers 8, > 0 and ny > 0 and a
neighbourhood Vy(R) of R in 89 such that

B VoI (U U0, ) < e0b

for all & < §,, which contradicts (12). Relation (11) is thus proved. Now
we consider in more detail the points y € {r{y) << c,6 }N\ Ugq-

As before, 0 < t; < 't, ... means a sequence of instants of reflections from
the boundary. For ¢ > tgs and s > 0 we take the LM 2§, introduced in
the proof of Lemma 4. For y & Uy, the size of a(ZY,_, riy) N EVETY

direction is at least c,0x#s), c,0(y). The proof of this statement is completely
analogous to the proof of Lemma 3. Therefore 2(”, interesects the manifold
of discontinuity of T'F(& for all ¢, while i, 2", intersects the manifold of
discontinuity of TF('” and the distance between the latter and y in the
metric of 7, T8, is less than /d8. Because of the continuity of T and its
powers at x, we can choose Uj(x,) so small that the distance(!) between the
spaces tangent to a,2{?, and to the corresponding manifold of discontinuity
is less than any preassigned & > 0. Then the distance between y and the
corresponding manifold of discontinuity for TF® is at most &,8, where
£, = £,(g,;) can be made arbitrarily small if Uj(x,) is sufficiently small. Thus
all points y € {r(y) < c,6}\U,, lie in the g56-neighbourhood of manifolds of
discontinuity of TF®),

Now we are able to construct the necessary sets U{® and A® explicitly.
Let the parallelogram G(iﬁ) intersect at most one manifold of discontinuity of
T#F®), which we denote by 2. We put ¢ < A® if

My (ch) nNu;"=31— Es)ﬂl(G(io))-

Here &, is the constant determined by ¢; in Condition a) of Lemma 2 for
which the condition holds. We choose Uj(x,) and consequently &, so small
that the total measure of §g,-neighbourhoods of 9G{* and of the intersection

of S with G does not exceed -12—8 3;|1(G§°)) for arbitrary & and G
If GO ¢ Y(®, then either GI¥ intersects at least the two manifolds of

discontinuity of T#F®), that is, G € A®), or w, (Voo N G) > esp‘(G(é))

00 ?

According to Property c) of the covers {6} and the estimate (9) the
measure of such parallelograms is equal to 8p,4(8), where @ (8) > 0 as § - 0.
Lemma 3 is proved, and so is Theorem 5.

(DHere the distance between the tangent spaces means the following: we consider the
intersection of each space with the unit sphere; further, for the points of the first of the
resulting intersections we take the distance to the closest point of the second intersection
and then consider the maximum of the two distances.
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Theorem S permits the following generalization. Suppose that =z € W,
belongs to exactly one manifold of discontinuity of T¥, k # 0. Without loss
of generality we can assume that x belongs to the manifold of discontinuity
3y, of the transformation T}, ko > 0, and x is a non-singular point of ..
Then X,, divides the neighbourhood U(z) = M, into two parts U; and U,,
and in this case we can define operators BU)(z), B@)(zx) as the limits of B(y)
as y = x, remaining either in U, or in U,. Suppose that B {(—z) > 0,
B (z) >0 fori =1, 2.

Theorem 5'. Under the above conditions a sufficiently small neighbourhood
of x belongs mod 0 to one ergodic component.

Proof. Let U(x) be so small that B(xy) > O forall y € U(z)nM". It easily
follows from the proof of Theorem 5 that U, and U, belong mod O to one
ergodic component.

In the proof of Theorem 5 we analysed the properties of the LUM
W) (). We showed that the set of points y € U(x) that do not have LUM
W (y) of size 6 splits into two parts. The measure of the first part is
6¢(6), where w(8) = 0 as § > 0. The second part lies in the e§-neighbourhood
of the manifolds of discontinuity of T';F®, where F(§) —> o as § = 0, while
€ can be made arbitrary small if U(x) is sufficiently small.

In a small neighbourhood U(x) the manifold 3,, transversally intersects
the manifolds of discontinuity of 77 when n < 0, since X, is fibred into
strictly convex LM’s, while the other manifolds of discontinuity are fibred
into strictly concave LM’s. Hence at the point of intersection the
corresponding tangent spaces generate the entire tangent space corresponding
to this point. Therefore F(8) can tend to infinity so slowly that the
measure of the intersection of the §-neighbourhood of Z,, and the
d-neighbourhoods of the manifolds of discontinuity of T';P® has the form
8p4(8), where p4(6) = 0 as 6 = 0. But then, for sufficiently small &, Z,,
intersects a set of positive measure consisting of LUM’s that connect U, and
U,. Theorem 5’ is proved.

Note that Theorems 5 and 5’ enable us to prove the ergodicity of
scattering billiards in bounded d-dimensional domains of Euclidean space and
on a d-dimensional torus, d 2 2. Indeed, for such billiards every point of
M (except a finite set of singular points) is reflected from the scattering
components of dQ infinitely many times. Hence A is always satisfied for
such billiards and so Theorems 5 and 5’ are true. Consequently, every point
of aM, except those whose trajectories 7¢x intersect the manifold of
discontinuity of T, twice for n = 0, #1, +2, ..., has a neighbourhood that
lies almost entirely in one ergodic component of 7,. Hence these points
form a set M* whose complement consists of countably many submanifolds
of codimension 2 in 3, that is, M* is linearly connected. Any two points
of M* can be joined by a path that lies in M*, and because of compactness
the whole path can be covered by finitely many open sets, each of which
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lies almost entirely in one of the ergodic components of T, so their union
also lies almost entirely in one ergodic component of 7,. This proves the
ergodicity of T;.

§5. Ergodicity of certain systems of three discs

We note firstly that all the statements of § §2-4 are true for systems of
discs of various radii—appropriate changes should be made only in the
formula (1) for cylinders.

We consider the system of three discs of radii r, = r, = 1/8 and r; = 1/2,
whose centres are located at the points O, = (3/8, 1/2), 0, = (5/8, 1/2),
05 = (0, 0) (Fig. 3). In this position the discs simultaneously touch each
other at five points A;,-45;. We shall study the motion of the discs for values
of the parameters r; and O, sufficiently close to those mentioned above.(!)
For such values of these parameters the centres of the moving discs are
always located in a small neighbourhood of the initial positions, and the
motion is actually reduced to the transformation of velocity vectors. We
claim that for a sufficiently small neighbourhood of the values 7;, O; in the
parameter space the system of three discs does not have degeneracies in the
phase space, that is, W = @ in the notation of §4, Theorem 5. For this it
is sufficient to show that j(x) = 3 everywhere in the phase space.

YA
7

X

Fig. 3.

We introduce a coordinate system (x;, y,, X5, V», X3, V3) in the
configuration space Q, where x;, y; are the coordinates of the i-th disc. We
consider an arbitrary point x of the phase space and its trajectory {Ttz}. We
denote the velocity vector of the j-th disc after the m-th collision by
@™, vi™). If p,,, and q,, are the numbers of the discs that participate in
the m-th collision, then the coordinates of the vector e,, introduced in §3
are given by

Prn=1, Gm=2: @M — 0™, um —u(™, dm—um, um—ufm, 0, 0),

Pm=1, gn=3: @M™—uv{™, uf™—u{™, 0, 0, vi™—vi™, u{™—u{m),

Pm=2, gn=3: (0, 0, v;’")—vg"o, ugm)__ugm)’ vgm)_vgm), ugm)_ugm)).

(DThe idea of studying this case was suggested to us by L.A. Bunimovich.
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In other words, e,, is obtained from the velocity vector of the system
@@, v, u™, v, w™, p™) by projection on the two-dimensional
subspace D(m.gm) in R® and a rotation through 90° in this subspace. The
spaces D®,9 are defined by the direction vectors r#,9, 2.9 with coordinates
e =0@1,0 —1,0,0, 0, ¢» =@, 1, 0, —1, 0, 0), r3®» =
=(0,0,1,0, —1,0), r%&» = (0,0,0,1, 0, —1). We put D,, = D®mm),
According to (5) the vector e’ = U, ... Upepliesin Df’ =
= U, ... UpDp. If the dimension of J,.(x) from (5) is smaller than 3,
then the spaces D), D&} are such that in the six-dimensional Euclidean
space defined by (xy, ¥, X5, ¥2, X3, ¥3) there is a two-dimensional subspace
L, that has a common non-zero vector with each D§', m = 1. This is
obviously impossible for spaces D&’ (m = 1, ..., k) of general position for
sufficiently large k.

For the investigation of the specific situation it is sufficient to consider
k = 13 and run through a finite number of variants of the pairwise collisions
of discs with m = 1, 2, ..., 13. The space D, takes one of the three values
D®2), pa® De3 while the operator U,, takes one of five values, according
to the point 4,~-A; in whose neighbourhood the m-th collision of the discs
occured. The matrices of the operators U,, are computed for the limiting
case r; = r, = 1/8, r3 = 1/2, and the results obtained remain true in some
neighbourhood of these values of the r;. The problem is thus reduced to the
specific sorting out of the finite number of variants of the pairwise collisions
of the discs.

A numerical analysis of all the variants for the system under consideration
(it was found that there are several hundred variants) was carried out on a
computer, as a result of which 10 variants, for which the position of the
spaces DY’ (m = 1, ..., 13) permit the existence of a two-dimensional space
L, that has common non-zero vectors with all the D, were singled out.
Furthermore, the set of initial values of the velocity vectors u;, v; for which
the corresponding space J,.(x) is two-dimensional was found for each of the
10 variants. By (5) J.(x) coincides with L,, so (¥, vy, U4, U4, U3, U3) is a
two-dimensional subspace V, of R® defined by the conditions of orthogonality
to L, and equality to zero of the full momentum of the system. Knowing
the numbers of colliding discs for m = 1, 2, ..., 13, we can exclude certain
domains from ¥, by the condition that the scalar product of the vector of
relative velocity of the colliding discs and the vector of their centre line is
non-zero. This condition is necessary for the realization of the possibility of
collision, while the vectors of the centre lines for the limiting values
rn =r,=1/8, ry = 1/2 are calculated explicitly. After this, non-zero vectors
remain in ¥, in only five variants out of the 10. We explicitly analyse these
five variants of degenerate trajectories.

1. The velocity vectors have the form (8¢, ¢, + 9¢), (8¢, —2¢;),
(—16¢,, t,— 91,), and the discs collide around 4, and A4, (in turn). In this
variant all the collisions are close to tangencies, that is, there are almost no
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transformations of the velocity vectors, so after a finite number of such
collisions there will be a collision around one of the points A3~As, and this
will violate the “degeneracy” of this trajectory. Two more variants are the
particular cases of this for 1, = 0, when collisions in the neighbourhoods of
Ay, A,, A, (in an arbitrary order) are permitted.

2. The velocity vectors have the form (—4¢, 32), (—4¢, 3t), (8¢, —6¢), and
the collisions occur around A4;, A3, A, in an arbitrary order. Here all the
collisions are also close to tangencies, so the ‘““degeneracy” is violated for the
same reasons as in variant 1.

3. The velocity vectors have the form (24¢, 7t), (24¢, 7t), (—48¢t, —14¢),
t > 0, the collisions occur around A4,, As, 4s, A;, A,, A4 successively, and
this cycle is repeated. On the part (A4;, 4A,, A4, A;) of this cycle the vector
of relative velocity of discs 1 and 2 is successively equal to (—72¢, 0),
(—36t, —48t), and (0, 0), that is, discs 1 and 2 diverge on the parts (A4,, A,)
and (A,, A,), while their relative velocity is close to zero on the part
(A4, A;). Hence a second collision is possible only on condition that the
time interval of the motion in (4, A,, A,) is negligibly small compared to
that in (44, 4,). But then in the last part the third disc, moving with
velocity (—72¢, —21¢) relative to the first two discs, will considerably
distance itself from the first disc, and since the next three collisions in
neighbourhoods of 45, A5, A, occur in a relatively short time interval, discs
1 and 3 will not be brought close to each other, and the motion in the next
part (4,, A,, A,) will take a relatively long time. This will lead to an
increase in the distance between discs 1 and 2 and to the impossibility of
their repeated collision after 4,, since their relative velocity will again be
close to zero. Thus the cycle (4;, A3, A5, A;, A,, A,) cannot be repeated
with the given initial velocity vectors more than twice, after which the
‘“‘degeneracy’’ is inevitably violated.

The above analysis shows that there is a constant A > 1 such that for
every point x of the phase space of the system under consideration
%4,0(x) > A for some t = #(x) > 0. Hence W = @, and Conditions A, B in
Theorems 5, 5' are satisfied, that is, these theorems are true for all points
z € dM of the boundary of the phase space except those whose trajectories

Ix hit the manifold of discontinuity R twice for n = 0, £1, £2, ... . But
such points form countably many submanifolds of codimension 2 in . so
the complement to them is linearly connected, and by Theorems 5 and 5’
they form one ergodic component of 7.
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