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Abstract

Recently Ya.B. Pesin introduced a large class of hyperbolic attractors, and for
those attractors he established the Smale spectral decomposition. In this paper
our main results are a stretched exponential bound on the decay of correlations
and the central limit theorem. Also we will obtain conditions under which two well
known attractors – those of Belykh and Lozi – are subject to our main results.
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1 Introduction

In Ref. [1] Ya.B. Pesin introduced a class of dynamical systems which he called gener-
alized hyperbolic attractors. This class includes three well known attractors: the Lorenz
attractor, the generalized Lozi attractor and the Belykh attractor.

Also, in Ref. [1] Pesin established certain hyperbolic, ergodic and topological prop-
erties for that same class of dynamical systems. In particular, he obtained the so called
Smale spectral decomposition for those attractors. This decomposition yields countably
many components, each ergodic with respect to any Gibbs u-measure. In this con-
text Gibbs u-measures are often called Bowen-Ruelle-Sinai measures, or, more briefly,
BRS-measures. Furthermore, every ergodic component is decomposed into finitely many
subsets which are cyclically permuted, and on each of those subsets the corresponding
iteration of the map is of mixing and Bernoulli type.

Recently, Sataev [2] has shown that, under a certain additional assumption, the num-
ber of ergodic components is finite.

For certain values of the relevant parameters all the examples cited above satisfy the
assumptions required by Pesin and Sataev. Hence, those same examples have all the
properties just mentioned.

Furthermore, one may expect that these three attractors are ergodic – even mixing –
for some values of their parameters. The ergodicity has been proved for certain Lorenz
attractors and for certain Lozi attractors. For the case of Lorenz attractors, the relevant
definitions appear in Ref. [3] and the necessary proofs in Ref. [4]. For the case of
Lozi attractors, the appropriate definitions and proofs appear in Refs. [5] and [6, 7, 8],
respectively.

In this paper our goal is to establish strong statistical properties for all those maps
which possess generalized hyperbolic attractors in subcomponents of the attractors where
the maps or their iterates are mixing. We will establish a stretched exponential bound on
the decay of correlations for Hölder continuous functions on attractors, and we will prove
the central limit theorem for these functions. Our reasoning is based on the technique
of Markov approximation to hyperbolic dynamical systems developed in Refs. [9, 10,
11, 12, 13]. The same such results have been obtained there for hyperbolic billiards and
similar models. The reader will note that the Lorentz gas with an external field studied
in Ref. [12] is, in fact, a hyperbolic attractor of a special kind. In an early work [14]
the Markov approximation techniques, in a different form, were used to establish good
statistical properties for the Lorenz attractor. Here we treat two other examples, the
Lozi and Belykh attractors.

In all what follows we shall consider only two-dimensional systems. This will signifi-
cantly simplify our arguments. Note, however, that the techniques of Markov approxima-
tions can work in multidimensional case, too, cf. Ref. [13]. All the examples mentioned
above are two-dimensional. We will also impose some additional technical conditions,
which, as discussed in Section 6 below, are satisfied for Lozi and Belykh attractors in
open regions of parameters.
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2 Generalized hyperbolic attractors

Let M be a smooth two-dimensional manifold; U ⊂ M , an open connected subset with
compact closure; and Γ ⊂ U , a closed subset. We assume that the set S+ = Γ ∪ ∂U
consists of a finite number of compact smooth curves. The set U \ Γ consists of a finite
number of open connected components. We denote by ρ the Riemannian metric on M
and by Vol(·) the Riemannian volume in M .

Let f : U \ Γ → U be a C2-diffeomorphism of the open set U \ Γ onto its image
f(U \ Γ). We assume that f is twice differentiable up to the boundary ∂(U \ Γ). This
boundary, ∂(U \ Γ), coincides with S+. Note that S+ is the singularity set for the map
f . The boundary ∂(f(U \Γ)) is then a finite union of compact smooth curves, which we
denote by S−. That union, S−, is the set of singularities for f−1. The inverse map f−1 is
twice differentiable up to S−. Since Ū is compact in M , the first and the second partial
derivatives of both f and f−1 are uniformly bounded.

The differentiability up to the singularity curves for both f and f−1 is the most
restrictive assumption here. However, both our examples – the Lozi and Belykh attractors
– satisfy that assumption. Certain mild singularities of the first and second derivatives
do not prevent the machinery of Markov approximations from working in the case of
billiards, cf. Refs. [10, 12].

Let U+ = {x ∈ U : fn(x) /∈ S+, n = 0, 1, 2, . . .} and D = ∩n≥0f
n(U+). The set D is

invariant under both f and f−1. Its closure Λ = D̄ is called the attractor for f .
Remark. We do not exclude the examples when Vol(Λ) > 0, for instance, piecewise

linear toral automorphisms [11]. Our results are valid in those cases. However, the term
attractor is commonly applied to the systems with Vol(Λ) = 0. In order to assure that
Vol(Λ) = 0 one usually assumes that clos(f(U \ Γ)) ⊂ U , cf. Ref. [2].

Next, we are going to define a hyperbolic structure for the map f . Specifically,
consider any point z ∈ U , any line P lying in the tangent plane TzM and any real
number α > 0. In all that follows we shall refer to the set {v ∈ TzM : 6 (v, P ) ≤ α} as
the cone C(z, α, P ). Also, we shall assume that for each point z ∈ U \ S+ there are two
cones Cu(z) = C(z, αu(z), P u(z)) and Cs(z) = C(z, αs(z), P s(z)) having the following
three properties:
(1) the angle between Cu(z) and Cs(z) is uniformly bounded away from zero;
(2) df(Cu(z)) ⊂ Cu(fz) for any z ∈ U \ S+ and df−1(Cs(z)) ⊂ Cs(f−1z) for any
z ∈ f(U \ S+);
(3) there exist constants C > 0 and λ ∈ (0, 1) such that for any integer n > 0

(a) if z ∈ U+ and if v ∈ Cu(z), then ||dfnv|| ≥ Cλ−n||v||;
(b) if z ∈ fn(U+) and if v ∈ Cs(z), then ||df−nv|| ≥ Cλ−n||v||;

An attractor Λ is called a generalized hyperbolic attractor [1] if these two families
of cones exist. One can always find an integer m ≥ 1 so that fm enjoys the properties
(1)–(3) with C = 1, see Ref. [2]. In all that follows we shall assume that C = 1.

Let z be any point in D. Standard arguments, cf. Ref. [1], yield families of invariant
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subspaces Eu
z and Es

z in TzM with the following two properties:
(a) Eu

z ⊂ Cu(z) and Es
z ⊂ Cs(z);

(b) dfEu,s
z =Eu,s

f(z).
In addition to Properties (1)–(3) formulated above, we shall henceforth assume the

following property:
(4) The two cones Cu(z) and Cs(z) depend continuously on z ∈ U+. Furthermore, for
any point z ∈ Γ the two limit cones Cu,s(z) = limz′→z Cu,s(z′) exist on both sides of Γ.
Also, the angle between the tangent line to Γ at z and the unstable limit cone Cu(z) is
uniformly bounded away from zero.

The condition (4) was also assumed in Ref. [1].
Overall, the preceding assumptions guarantee a uniform hyperbolic structure for the

map f . The expansion factors in Cu and the contraction factors in Cs are uniformly
bounded away from unity. Since f is differentiable up to the boundary of U \ S+, the
expansion and contraction factors are also uniformly bounded above. The singularities of
f and f−1 are “mild”: they are concentrated on a finite union of smooth compact curves,
and the first and second derivatives of f and f−1 have one-sided limits there. However,
we do need an additional assumption that guarantees, in an appropriate fashion, that
expansion and contraction prevail over discontinuities. The following such assumption
was formulated in Ref. [1].

Condition A1. There exists an integer τ ≥ 1 such that f−k(Γ) ∩ Γ = ∅ for k =
1, 2, . . . , τ and λ−τ > 2, where λ−1 > 1 is, as before, the minimal factor of expansion
of vectors in the unstable cones Cu(z) at all points z ∈ U \ S+. Moreover, there is a
neighborhood of the attractor Λ in which the smooth components of Γ do not intersect
one another.

As mentioned in Ref. [1], some (but not all) Lorenz, Lozi and Belykh attractors
satisfy Condition A1. For our purposes, a much weaker assumption than A1 is sufficient.
In all that follows, S+

m denotes the union of the curves on which the map fm is singular.
Condition A2. There exist constants C0 > 0 and K0 < λ−1 such that for any integer

m ≥ 1 no more than C0K
m
0 smooth components of the union ∪m

l=0S
+
l can meet at any

point z ∈ U .
Condition A2, in a more stringent form (with K0 = 1), has been used in Refs. [9, 10,

11, 12]. Note that Condition A1 implies A2 with K0 = 21/τ . In fact, for our purposes it
is enough that A2 holds for a single, sufficiently large value of m ≥ 1.

Two more conditions were adduced in Ref. [2]:
Condition A3. There exist constants B > 0, β > 0 and ε0 > 0 such that for any

integer n ≥ 1 and any ε ∈ (0, ε0) one has

ν(f−nΓε) < Bεβ.

Henceforth, we will denote by Γε the ε-neighborhood of the set Γ and by ν the
Lebesgue measure on M . We call a smooth curve γ in U an unstable curve (a stable
curve) if its tangent line belongs in Cu(z) (resp., Cs(z)) at any z ∈ γ.
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Condition A4. There is a constant ε0 > 0 such that for any unstable curve W u there
exist an integer n0 = n0(W

u) and a constant B0 = B0(W
u) such that for any ε ∈ (0, ε0)

one has
(a) νu(W u ∩ f−nΓε) < εβνu(W u) for all integers n > n0;
(b) νu(W u ∩ f−nΓε) < B0ε

βνu(W u) for all integers n ≥ 1;
Condition A3 was also assumed in Ref. [1], see Eq. (4) there. Certain condition

similar to A4, but essentially weaker, was also assumed in Ref. [1], see (H4) there.
Conditions A3 and A4 might not be easy to check in particular examples. Fortunately,
we can prove that both these conditions follow from our Condition A2.

Proposition 1 If a generalized hyperbolic attractor Λ satisfies Condition A2, then it
satisfies Conditions A3 and A4.

The proof of Proposition 1 is provided in Appendix below.
The following definitions, given ε > 0 and l = 1, 2, . . ., are compiled from Ref. [1]:

D̂+
ε,l = {z ∈ U+ : ρ(fn(z), S+) ≥ l−1e−εn, n = 0, 1, . . .}

D−
ε,l = {z ∈ D : ρ(f−n(z), S−) ≥ l−1e−εn, n = 0, 1, . . .}

D+
ε,l = D̂+

ε,l ∩ Λ, D0
ε,l = D+

ε,l ∩D−
ε,l

D±
ε = ∪l≥1D

±
ε,l, D0

ε = ∪l≤1D
0
ε,l.

Roughly speaking, D+
ε,l (D−

ε,l) consists of points that do not approach the singularity set

too rapidly in the future (respectively, in the past). It is easy to see that the sets D̂+
ε,l, D

±
ε,l

and D0
ε,l are closed; D0

ε = D+
ε ∩D−

ε ; the set D+
ε is f -invariant; D−

ε is f−1-invariant; D0
ε

is both f and f−1 invariant. Besides, D0
ε ⊂ D for any ε > 0. The attractor Λ is said

to be regular [1] if D0
ε 6= ∅ for all sufficiently small ε > 0. Pesin [1] has proved the

regularity under weaker assumptions than A3 and A4, so that under our assumption A2
the attractor Λ is regular.

Proposition 2 (cf., e.g., Ref. [1]) There exists an ε > 0 such that for any point z ∈ D+
ε,l

(z ∈ D−
ε,l) there is a local stable fiber, LSF, denoted by V s(z) (resp., a local unstable fiber,

LUF, denoted by V u(z)). An LSF (LUF) is a C1-curve in M . It is tangent to the line
Es

z (resp., to Eu
z ) at z. The ρ-distance of the point z from the endpoints of that fiber is

at least δl = 1/l, a quantity determined by l and independent of z.

We always denote V s,u(z) the maximal smooth local stable and unstable fibers passing
through z. Note that V u(z) ⊂ D−

ε for any z ∈ D−
ε .

Remark. In some examples the LUF’s and LSF’s may be of an infinite length, as in
the case of linear toral automorphisms. If this is the case, we redefine LUF’s and LSF’s.
We simply pick a large L > 0 and denote by V u,s(x) a segment of the LUF (LSF) at the
point x that has length L and is centered at x.
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Next, we define Gibbs u-measures on Λ. Let Ju(z) denote a one-step expansion factor
in Eu

z (i.e., the Jacobian of the map df |Eu
z at z). For any z ∈ D−

ε,l such that V u(z) exists,
we define

κ(z, y) = lim
n→∞

n∏
j=1

[Ju(f−j(z))] · [Ju(f−j(y))]−1. (1)

for any y ∈ V u(z). This limit exists, is positive and continuous on D−
ε,l [1]. It is easy to

show that under our assumption on smoothness of f up to S+ the above limit is uniformly
bounded away from zero and infinity on D−

ε .
A measure µ on Λ is called a Gibbs u-measure, or a Bowen-Ruelle-Sinai measure

(BRS measure) if
(a) it is f -invariant;
(b) µ(D0

ε) = µ(Λ) = 1 for some ε > 0;
(c) the conditional measure on LUF’s V u(z) induced by µ has a density with respect to
the Lebesgue measure on V u(z) proportional to κ(z, y) (see Ref. [1] for an exact version
of the condition (c)).

Gibbs u-measures can be constructed in the following way. Given a z ∈ D−
ε one takes

the normalized Lebesgue measure νu on V u(z) and pulls it forward under f∗: νk = fk
∗ ν

u

(i.e., for any Borel set A ⊂ U one takes νk(A) = νu(f−kA ∩ V u(z)), as usual). Then the
sequence of measures

µ′n =
1

n

n−1∑
k=0

νk

has a limit point (a measure) in the weak topology. That measure is a Gibbs u-measure
[1] for any z ∈ D−

ε . Instead of the Lebesgue measure on V u(z), one can take any measure
equivalent to the Lebesgue measure on that LUF. Alternatively, one can take a measure
on U absolutely continuous with respect to the Lebesgue measure and pull it forward
under f∗. Then the time averages defined above will have a weak limit point, which is a
Gibbs u-measure on Λ. Of course, a Gibbs u-measure is not unique, in general.

The following proposition is known as the Smale spectral decomposition. It has been
proven in Ref. [1]. We formulate it for the sake of completeness, our arguments are not
based on it.

Proposition 3 There are subsets Λi (i = 0, 1, . . .) and Gibbs u-measures µi (i ≥ 1) such
that
(a) Λ = ∪i≥0Λi and Λi ∩ Λj = ∅ for i 6= j;
(b) for i ≥ 1 : Λi ⊂ D, f(Λi) = Λi, µi(Λi) = 1 and f |Λi is ergodic with respect to µi;
(c) for i ≥ 1: there exists a finite decomposition

Λi = ∪ri
j=1Λ

j
i ,

where Λj
i ∩ Λj′

i = ∅ for j 6= j′, f(Λj
i ) = Λj+1

i and f(Λri
i ) = Λ1

i , and f ri|Λ1
i is a Bernoulli

automorphism;
(d) any Gibbs u-measure µ is a weighted sum µ =

∑
i≥1 αiµi with some αi ≥ 0 and∑

αi = 1. In particular, µ(Λ0) = 0.
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Sataev proved in Ref. [2] that under Conditions A3 and A4 the number of ergodic
components Λi is finite. We will briefly explain in Appendix why this is true.

The spectral decomposition is not unique. As shown in Ref. [2] , there is always one
that enjoys three additional properties:
(e) for every l > 0 the sets Λj

i ∩D−
ε,l are closed;

(f) for every l > 0, every i = 1, . . . , r and every open subset Q ⊂ U such that Q ∩ Λj
i ∩

D−
ε,l 6= ∅ we have µi(Q ∩ Λj

i ∩D−
ε,l) > 0;

(g) if z ∈ Λj
i , then V u(z) ⊂ Λj

i .
Remark. If Vol(Λ) = 0, then any Gibbs u-measure is singular with respect to the

Lebesgue measure on U . It is also singular with respect to the Lebesgue measure on any
LSF. However, a Gibbs measure µ has no atoms, and, moreover, any particular LUF or
LSF has µ measure zero.

3 Statement of results

We now formulate our results. Let Hβ denote the class of Hölder continuous (HC)
functions on the attractor Λ. A function F (x) is said to be Hölder continuous if

|F (x)− F (y)| ≤ C(F )[ρ(x, y)]β, (2)

where β > 0 is called the Hölder exponent. More generally, let ξ be a partition of U
into a finite number of domains separated by a finite number of compact smooth curves.
Then we denote by Hβ(ξ) the class of functions that are Hölder continuous (with the
exponent β) within each of those domains. We say that such functions are piecewise
Hölder continuous (PHC) (with respect to the given partition ξ).

We will study an arbitrary subcomponent Λ∗ = Λj
i of any ergodic component Λi of

the attractor. Let f∗ = f ri|Λ∗ and µ∗ be the normalized measure µi|Λ∗. We put r∗ = ri

and denote by 〈·〉 the expectation with respect to µ∗. According to Proposition 3, the
triple (Λ∗, f∗, µ∗) is a Bernoulli dynamical system. In particular, it is mixing. Our results
are the next two theorems.

Theorem 1 (Decay of correlations) Let F (x) and G(x) be two HC or PHC functions on
M . Then, for any integer N

|〈(F ◦ fN
∗ ) ·G〉 − 〈F 〉〈G〉| ≤ c(F, G)α

√
|N | (3)

where c(F, G) > 0 depends on F and G and α < 1 is determined by the subcomponent
Λ∗ = Λj

i and the class of HC or PHC functions under consideration.

Theorem 2 (Central limit theorem) Again, let F (x) be an HC or a PHC function.
Assume that 〈F 〉 = 0. Then, the quantity

σ2
F =

∞∑
N=−∞

〈(F ◦ fN
∗ ) · F 〉 (4)
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is finite and nonnegative. If σF 6= 0, then the sequence

F (x) + F (f∗x) + · · ·+ F (fN−1
∗ x)√

σ2
F N

(5)

converges in distribution to the standard normal law as N →∞.

Remark (see, e.g., Ref. [15]). The sum in Eq. (4) equals zero if and only if the
function F (x) is a coboundary, i.e. F (x) = G(f∗x) − G(x) a.e. on Λ∗ for another
function G ∈ L2(Λ∗, µ∗).

Our proofs of Theorems 1 and 2 are based on Markov approximation to the dynamical
system (Λ∗, f∗, µ∗). We employ the techniques of Markov sieves developed in Refs. [9,
10, 11, 12, 13]. Next, we define the Markov sieves (MS’s).

A MS is a partition of the phase space of a dynamical system (in our case it is Λ∗)
satisfying four conditions stated below. It is determined by two integer parameters N
and n. Here N is the number of iterates of f∗ involved in Eqs. (3) and (5) and n = [Nγ]
for some fixed γ ∈ (0, 1). We denote the MS by <N,n and its atoms by A0, A1, . . . , AI

with an I = I(n,N). We call A0 the marginal set. We denote by = the set of indices
{1, . . . , I}, and so =k is the set of k-tuples of non-zero indices.

The MS <N,n is defined by four conditions. Here and further on α, α1, α2, . . . stand
for various constants in the open interval (0, 1) whose exact values are not relevant in
the proofs, and c, c1, c2, . . . stand for various positive constants, usually coefficients. The
values of αi and ci do not depend on the MS parameters N and n (but may depend on
γ).

Condition MS1 (Sizes). diamAi ≤ c1α
n
1 for all i ∈ =.

Condition MS2 (Marginal set). µ∗(A0) ≤ c2α
n
2 .

Condition MS3 (Markov approximation). For any integers k > l > 1 and
1 ≤ i1 < i2 < · · · < ik ≤ N and for any collection (j1, . . . , jk) ∈ =k one has

µ∗(f
i1
∗ Aj1 ∩ f i2

∗ Aj2 ∩ · · · ∩ f il−1
∗ Ajl−1

/f il
∗ Ajl

∩ · · · ∩ f ik
∗ Ajk

)

= µ∗(f
i1
∗ Aj1 ∩ · · · ∩ f il−1

∗ Ajl−1
/f il

∗ Ajl
)(1 + ∆) (6)

with some |∆| ≤ c3α
n
3 . Here µ∗(A

′/A′′) means the conditional measure, i.e. µ∗(A
′ ∩

A′′)/µ∗(A
′′), and we always assume that µ∗(A

′′) > 0 in our equations.
Condition MS4 (Doeblin condition [16]). There are constants g0, g1 > 0 in-

dependent of N and n such that for every k ≥ g0n and for any pair (i, j) ∈ =2 one
has

1

2

I∑
l=0

|µ∗(Al/f
k
∗ (Ai))− µ∗(Al/f

k
∗ (Aj))| ≤ 1− g1. (7)

According to Conditions MS1–MS3, the MS’s provide a good approximation to the
dynamical system (Λ∗, f∗, µ∗) by a stationary Markov chain on the given finite interval
of time (0, N). Condition MS4 is added to assure a rapid mixing in the approximating
Markov chain. This is a key property of our Markov approximation. It manifests in the
following theorem.
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Theorem 3 (Relaxation to equilibrium distribution) For any integers k ≥ l > 1 and
1 ≤ i1 < i2 < · · · < ik ≤ N there is a subset R∗ = R∗(i1, . . . , ik) ⊂ =k−l+1 of (k − l + 1)-
tuples of indices such that
(i) if (jl, . . . , jk) ∈ R∗, then

I∑
j1,...,jl−1=0

|µ∗(f i1
∗ Aj1 ∩ · · · ∩ f il−1

∗ Ajl−1
/f il

∗ Ajl
∩ · · ·

· · · ∩ f ik
∗ Ajk

)− µ∗(f
i1
∗ Aj1 ∩ · · · ∩ f il−1

∗ Ajl−1
)| ≤ ∆;

(ii) one has
I∑

(jl,...,jk)∈R∗

µ∗(f
il
∗ Ajl

∩ · · · ∩ f ik
∗ Ajk

) ≥ 1−∆,

where ∆ = max{c4α
n
4 , (1− g1/2)[L/2]} with L = [(il − il−1)/(g0n)].

Note that Theorem 3 is still true if one reverses “the time”, i.e. if N ≥ i1 > · · · > ik ≥
1. The meaning of Theorem 3 is that the conditional distributions relax to equilibrium
exponentially fast in the parameter |il − il−1| (which represents the “interval” between
the “future” and the “past”), at least as long as that interval is less than const·n2.

The complete proofs of the stretched exponential bound (Theorem 1) and the central
limit theorem (Theorem 2) based on Theorem 3 are provided in Ref. [10]. The proof of
Theorem 1 is, however, so short and instructive that we outline it here.

Obviously, it is enough to consider a function F with 〈F 〉 = 0. We take the Markov
sieve <n,N with n = [

√
N ]. Let F̃ be a function that on each set Ai ∈ <n,N , i = 0, 1, . . . , I,

it is constant and takes the average value of F on that set:

Fi = (µ∗(Ai))
−1
∫

Ai

F (x) dµ∗(x).

From Conditions MS1 and MS2 of the Markov sieves one readily gets a bound

|〈(F ◦ fN
∗ ) ·G〉 − 〈(F̃ ◦ fN

∗ ) · G̃〉| ≤ c(F, G)αn.

Then one expands

〈(F̃ ◦ fN
∗ ) · G̃〉 =

I∑
i,j=0

FiGjµ∗(Aj/Ai)µ∗(Ai).

By applying Theorem 3 and recalling that 〈F 〉 = 〈F̃ 〉 = 0 one obtains the bound in Eq.
(3). Theorem 1 is proven.

The proof of Theorem 3 is also elaborated in Ref. [10]. First, as shown in Ref. [10],
it is enough to prove it for the simplest case k = l = 2. Next, if the Doeblin condition
(7) were valid for all the pairs 0 ≤ i, j ≤ I, then the k = l = 2 version of Theorem 3
would be just a slightly stronger version of a classical theorem in probability theory, cf.
Ref. [16], p. 174. For the sake of completeness we provide the proof of Theorem 3 with
k = l = 2 in Appendix.

Thus, all our arguments boil down to the construction of Markov sieves, which is
carried out in the next section.
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4 Construction of Markov sieves

Recall that a smooth curve γ is in U an unstable curve (a stable curve) if the tangent
line Tz(γ) to it belongs in Cu(z) (resp., Cs(z)) at any z ∈ γ. Given a k ≥ 1, we call
γ a k-unstable curve (k-stable curve) if f−k

∗ γ (resp., fk
∗ γ) is a smooth unstable (stable)

curve.
Let m ≥ 1 be a large integer. The set Um = fm

∗ (U \ S+) \ S+
m is a finite union of

domains in M bounded by a finite number of smooth compact curves. The maps fm
∗ and

f−m
∗ are smooth on Um. We stress that the value of m is large but fixed. On the contrary,

the MS parameters N and n grow to infinity and all our estimates are asymptotic in N
and n.

For any large n we consider a collection of small subdomains in Um denoted by
Q1, . . . , QJ , J = J(n) and satisfying the conditions:

(Q1) Each Qi is bounded by two m-unstable curves and two m-stable curves; we call
such domains quadrilaterals;

(Q2) The sizes of smooth components of ∂Qi are greater than c′e−n but less than
c′′e−n with some positive c′, c′′, which may depend on m, but not on n;

(Q3) The union ∪Qi covers the entire domain Um except for the (cαn)-neighborhood
of ∂Um.

For some particular examples, say, for the Belykh attractor, such a collection {Qi} is
easy to construct. A procedure of construction that works in general case may be found
in Refs. [10] and [11]. For a point z ∈ Um we denote by Q(z) the quadrilateral where z
belongs.

Next, we need an invariance property for the boundaries of the quadrilaterals Qi.
Denote ∂uQ (∂sQ) the union of unstable (stable) curves bounding the quadrilaterals
Qi, 1 ≤ i ≤ J . The invariance property of the boundaries consists of two parts. First,

(Q4-u) fm
∗ (∂sQ) ⊂ ∂sQ;

A symmetric property for the unstable boundary ∂uQ generally fails, because the preim-
age f−m

∗ (∂uQ) needs not be inside Um. However, if a quadrilateral Qi intersects the
attractor Λ, then f−m

∗ Qi intersects Λ ⊂ Um. In that case, either f−m
∗ Qi ∩ Um is located

in the (cαn)-neighborhood of ∂Um, or its u-sides (unstable bounding curves) can be “ad-
justed”. Therefore,

(Q4-s) if z ∈ f−m
∗ (∂uQ) ∩ Um and ρ(z, ∂Um) > cαn, then z ∈ ∂uQ.

We remind the reader that c and α denote various positive constants (α is always less
than one). Each of our statements is true for some c and α, whose values need not be
the same in all the statements.

The invariance properties can be provided by general arguments developed in [9, 10,
11]. Those arguments are carried out under the assumption that m is large enough.

As a result, we obtain that ∂sQ consists of a finite number of stable fibers.
Next, for any point z ∈ Um such that f−l

∗ z ∈ ∪Qi for all l = 0, 1, . . . ,m− 1 we define
a quadrilateral Q̂(z) = {y ∈ Um : Q(f−l

∗ y) = Q(f−l
∗ z), l = 0, 1, . . . ,m− 1}. The distinct

quadrilaterals Q̂(z) clearly have the following properties:

10



(Q5) Each Q̂(z) is bounded by two m-unstable curves and two stable fibers; we again
call such domains quadrilaterals;

(Q6) The sizes of smooth components of ∂Q̂(z) are greater than ĉ′e−n but less than
ĉ′′e−n with some positive ĉ′, ĉ′′, which may depend on m, but not on n;

(Q7) The union ∪Q̂ covers the entire domain U2m = f 2m
∗ U \S+

2m except for the (cαn)-
neighborhood of ∂U2m.
Denote ∂u,sQ̂ the union of unstable and stable curves bounding the quadrilaterals Q̂(z).
Then

(Q8-u) f∗(∂
sQ̂) ⊂ ∂sQ̂;

(Q8-s) if z ∈ f−1
∗ (∂uQ̂) ∩ U2m and ρ(z, ∂U2m) > cαn, then z ∈ ∂uQ̂.

Next three lemmas describe the structure of the measure µ∗.
For any point z ∈ Λ denote ru(z) (rs(z)) the distance from z to the nearest endpoint

of the fiber V u(z) (resp., V s(z)).

Lemma 1 For any ε > 0 one has µ∗{z ∈ Λ∗ : min{ru(z), rs(z)} < ε} ≤ cεβ1 with some
c > 0 and β1 > 0.

Lemma 2 For any ε > 0 the µ∗-measure of the ε-neighborhood of the set S+ ∪ S− is
less than cεβ2 with some c > 0 and β2 > 0. Consequently, the µ∗-measure of the ε-
neighborhood of the boundary ∂U2m is less than cmεβm with some cm > 0 and βm > 0.

Lemma 3 Let W u be a k-unstable curve, k ≥ 1, of length l > 0. Let D be the union of
all the stable curves of length ≤ ε which intersect W u and on which f−k

∗ is continuous.
Then

µ∗(D) ≤ c min
0≤t≤k

{λt
1l + λ−t

1 ε}

with constants λ1 = λ1(f∗) < 1 and c = c(f∗) > 0.
In particular, if k ≥ a ln(l/ε) with an a > 0, then

µ∗(D) ≤ cl1−βεβ,

where β > 0 is determined by the factor a alone.

The proofs of Lemmas 1-3 are provided in Appendix.
Now let Q̂1, . . . , Q̂Ĵ be all the above quadrilaterals Q̂ that have two additional prop-

erties:
(Q9) they do not intersect the (cαn)-neighborhood of ∂U2m with the same c and α as

in (Q8-s);

(Q10) they do not intersect the singularity curves for f−[dn] (i.e., the union ∪[dn]
i=1f

i(S−))
with some d > 0 defined below.

The value of d is chosen so that the total µ∗-measure of the quadrilaterals lacking the
property (Q10) is ≤ c′(α′)n with some c′ > 0 and α′ < 1. Such d, c′ and α′ exist in view
of Lemma 2.
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The next property readily follows from (Q8-u,s) and (Q9):
(Q11) For any i, j = 1, . . . Ĵ the intersection f∗Q̂i ∩ Q̂j is a quadrilateral bounded by

two stable fibers belonging to ∂Q̂j and two (m+1)-unstable curves belonging to f∗(∂Q̂i).

Next, for each quadrilateral Q̂i, 1 ≤ i ≤ Ĵ , we call the proper unstable sides of Q̂i

two the most distant LUF’s that belong in Q̂i and intersect both stable sides of Q̂i (if, of
course, such LUF’s exist). Denote Q̃i the subdomain in Q̂i bounded by two stable and two
proper unstable sides of Q̂i (if Q̂i does not have proper unstable sides, then we set Q̃i = ∅).
We take the set of points x ∈ Q̃i such that V u(x) crosses both stable sides of Q̂i and
V s(x) crosses both proper unstable sides of Q̂i. Denote that set by Bi = B(Q̂i). Clearly,
it has a direct product structure: for any x, y ∈ Bi the set V u(x) ∩ V s(y) consists of one
point, which also belongs in Bi. Such sets are called parallelograms [17, 9, 10, 11, 12, 13],
or, sometimes, rectangles.

Lemma 4 Every parallelogram Bl, 1 ≤ l ≤ Ĵ belongs (mod 0) to one ergodic component
Λi of f and, moreover, to one “Bernoulli” subcomponent Λj

i with some i and j.

Proof. It is well known in ergodic theory that, given a hyperbolic dynamical system,
for almost every point x the LUF V u(x) and the LSF V s(x) belong to one ergodic
component. We specify this claim and provide its proof in Appendix. From this claim
our lemma readily follows.

Now, let B1, . . . , BI′ be all the above parallelograms that belong in Λ∗. We then
estimate their total measure. The measure of the set Λ \ (∪Q̂i) can be estimated by
Lemma 2. The measure of the set ∪(Q̃i \Bi) can be estimated by Lemma 1. It remains
to consider the set ∪(Q̂i \ Q̃i). For some values of i there is a preimage f−l

∗ (Q̂i \ Q̃i) with
some l = 1, . . . , n that belongs to the (cαn)-neighborhood of U2m. In that case one can
easily apply Lemma 2. For the other values of i the maps f−l

∗ , 1 ≤ l ≤ n are smooth on
Q̂i \ Q̃i and due to (Q8-s) the unstable sides of Q̂i are n-unstable curves. Therefore, they
deviate from the proper unstable sides of Q̂i by no more than cαne−n with some c > 0
and α < 1. Hence we can apply Lemma 3 to each such a Q̂i and then make use of the
fact that I ′ ≤const·en. As a result, one obtains the bound

µ∗( ∪Bi) ≥ 1− cαn (8)

For every i = 1, . . . , I ′ we denote

Ai = Bi ∩ ( ∩N
l=−N f l

∗(∪Ĵ
1 Q̂i)).

In other words, the set Ai consists of the points of Bi whose trajectories stay within the
union ∪Q̂i during N iterates in the future and N iterates in the past. In view of (Q11)
every Ai is also parallelogram. Obviously, (Q7) and Eq. (8) imply

µ∗( ∪ Ai) ≥ 1− cαn. (9)

Recall that c and α denote various constants independent of n and N , so their values,
say, in Eqs. (8) and (9) need not be the same.
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Next, we consider intersections fk
∗Bi∩Bj with 1 ≤ i, j ≤ I ′ and |k| ≤ N . We will use

certain notions introduced in Ref. [10]. Let A′ and A′′ be two parallelograms in Λ∗ and
k ≥ 1. A subset of fk

∗A
′ ∩ A′′ defined as

<(fk
∗A

′ ∩ A′′) = {z : V u
A′′(z) ⊂ fk

∗A
′ and V s

A′(f−k
∗ z) ⊂ f−k

∗ A′′}

is called the regular part of fk
∗A

′ ∩ A′′ (here and on we denote V u,s
A = V u,s ∩ A). The

other part, =(fk
∗A

′ ∩ A′′) = (fk
∗A

′ ∩ A′′) \ <(fk
∗A

′ ∩ A′′) is called the irregular part of
fk
∗A

′ ∩A′′. For any parallelogram A a subparallelogram B ⊂ A is said to be u-inscribed
(s-inscribed) in A if V u

A (z) = V u
B (z) (resp., V s

A(z) = V s
B(z)) for every z ∈ B. It is easily

seen that for any k > 0 the regular part of fk
∗A

′ ∩ A′′ is a parallelogram u-inscribed in
A′′ and its preimage (under f−k

∗ ) is a parallelogram s-inscribed in A′. For any k < 0 the
regular part of fk

∗A
′ ∩ A′′ is simply defined as fk

∗ (<(f−k
∗ A′′ ∩ A′)).

The idea of regularity goes back to the notion of Markov partitions. Indeed, the ele-
ments of Markov partitions for hyperbolic systems with singularities are parallelograms,
and their characteristic property is nothing but the regularity of all the intersections of
their images and preimages.

Lemma 5 For any |k| ≤ N and any i, j = 1, . . . , I ′ the irregular part =(fk
∗Ai ∩ Aj) is

empty.

The proof of Lemma 5 can be easily obtained from (Q11) by induction in k. Let us
emphasize that our parallelograms behave like elements of Markov partition, but only
during the first N steps. After the Nth step irregular intersections may occur, but this
is not a nuisance since we work only within the first N iterates of f∗.

Finally, we discard some parallelograms Ai that are “not dense enough” on LUF’s.
Specifically, we retain a parallelogram Ai iff

(Q12) there is a point x ∈ Ai such that

νu(V u(x) ∩ Ai)/ν
u(V u(x) ∩ Q̂i) ≥ 1− cdα

n
d

with some cd > 0 and αd < 1 specified below. Here νu stands for the Lebesgue measure
on V u.

If the above inequality fails for every x ∈ A, then νu(Ai)/ν
u(Q̂i) < 1− cdα

n
d . Hence,

the total measure of the removed parallelograms is ≤ cαnc−1
d α−n

d . If αd is sufficiently
close to one, then α/αd < 1 and the remaining parallelograms satisfy the inequality (9)
with some other c > 0 and α < 1.

Let A1, . . . , AI be all the remaining parallelograms and Q̂1, . . . , Q̂I be the correspond-
ing quadrilaterals. The Markov sieve <n,N = {A0, A1, . . . , AI} is now constructed. Here
A0 is simply Λ∗ \ ∪I

i=1Ai.

5 Proof of the properties MS1-MS4

In this section we prove the characteristic properties MS1-MS4 of the Markov sieve.
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The property MS1 follows from (Q6), and MS2 follows from Eq. (9).
To prove MS3 we consider the parallelogram A = Ajl

entering Eq. (6). Due to Lemma
5 the intersection

B = f i1−il
∗ Aj1 ∩ · · · ∩ f il−1−il

∗ Ajl−1
∩ Ajl

is a subparallelogram s-inscribed in A. Likewise, the intersection

C = Ajl
∩ f il+1−il

∗ Ajl+1
∩ · · · ∩ f ik−il

∗ Ajk

is a subparallelogram u-inscribed in A. Eq. (6) can be rewritten as

µ∗(B ∩ C)

µ∗(C)
=

µ∗(B)

µ∗(A)
(1 + ∆). (10)

The parallelogram A has a direct product structure in the topological sense. If it had
such a structure in the measure-theoretic sense (i.e. if the measure µ∗ on A were a direct
product of two linear measures on stable and unstable fibers, respectively), then Eq. (10)
would hold with no error term, i.e. with ∆ = 0. Our next goal is to show that µ∗ on A
has approximately a direct product structure. We only have to show that the deviation
of µ∗ on A from a direct-product measure is, roughly speaking, exponentially small in n.

For any LUF V u intersecting A we put V u
A = V u ∩ A and µu

V u,A the normalized
conditional measure induced by µ∗ on V u

A . Then for any subparallelogram D ⊂ A one
has

µ∗(D) =
∫

µu
V u,A(D ∩ V u) dµs

A (11)

with a factor measure µs
A on the collection of all the nonempty sets V u

A .
Now, recall that the density of the conditional measure µu

V u,A is proportional to κ(z, y),
cf. Eq. (1), where z is a fixed point of V u and y ∈ V u

A is a variable.

Lemma 6 There are constants c > 0 and a > 0 such that

|κ(z, y)− 1| ≤ c · [dist(z, y)]a.

In other words, the density of a Gibbs u-measure on any LUF is a Hölder continuous
function.

Proof. It is enough to prove that if z and y belong in one LUF and are close enough,
then

dist(Eu
z , Eu

y ) ≤ c′ · [dist(z, y)]a
′

(12)

for some constants c′ > 0 and a′ > 0. To define the distance between Eu
z and Eu

y

one should translate Eu
y along the closest geodesic between z and y into a subspace

Ey
z,1 ⊂ TzM and then take [2]

dist(Eu
z , Eu

y ) = dist(z, y) + 6 (Eu
z,1, E

u
z ).

Let us postpone the proof of Eq. (12). In fact, Eq. (12) follows from the estimate 4.4.7
in Ref. [2], but we give another proof here.
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Now, based on Eq. (12) and the C2-smoothness of the map f one can readily obtain
that |Ju(z)− Ju(y)| ≤ c′′[dist(z, y)]a

′′
with some constants c′′ > 0 and a′′ > 0. Applying

the limit formula (1) then completes the proof of Lemma 6.
The meaning of Lemma 6 is that the conditional measures µu

V u,A in Eq. (11) are
approximately uniform for each LUF V u intersecting A. The next lemma establishes a
relation between the conditional measures on different LUF’s within A.

Consider two sufficiently close LUF’s V u
1 and V u

2 . Denote γ1 the set of points x ∈ V u
1

such that V s(x) ∩ V u
2 6= ∅. The map ϕ : γ1 → V u

2 defined as ϕ(x) = V s(x) ∩ V u
2 is called

the canonical isomorphism. The set γ1 and its image ϕ(γ1) are closed Cantor-like subsets
of V u

1 and V u
2 , respectively. The Jacobian of ϕ with respect to the Lebesgue measures

(lengths) on V u
1 and V u

2 at almost every point x ∈ γ1 is well-known (see, e.g., Ref. [10])
to be

Js(x) = lim
n→∞

n∏
j=0

[Ju(f j(x))] · [Ju(f j(ϕ(x))]−1 (13)

Lemma 7 If f−n is defined and continuous on the part of V s(x) between x ∈ V u
1 and

ϕ(x) ∈ V u
2 , then

|Js(x)− 1| ≤ cαn

with some c > 0 and α < 1 determined by the map f alone.

Note that Lemma 7 is a stronger version of Theorem 4.8 from Ref. [2].
Proof. As in the previous lemma, it is enough to prove that if two points z and y

belong in one LUF V s and f−n is continuous on the part of V s between z and y, then

dist(Eu
z , Eu

y ) ≤ c′(α′)n (14)

with some constants c′ > 0 and α′ < 1. After that the proof can be accomplished by
employing the expansion (13) and the C2-smoothness of the map f .

We now prove Eqs. (12) and (14). The key point of our arguments is that in both
cases the preimages zi = f−i

∗ (z) and yi = f−i
∗ (y), i ≥ 1, stay close long enough “in

the past”. In case of Eq. (12) the points zi, yi are getting closer as i grows, and so
dist(zi, yi) ≤ ε =dist(z, y) for all i ≥ 1. In case of Eq. (14) the points zi, yi are getting
more distant as i grows, but during the first n/2 steps they are still exponentially close
in n: dist(zi, yi) ≤ cλn/2 for all i = 1, . . . , [n/2].

We fix the value i1 = −β1 ln ε in case of Eq. (12) and i1 = β1n in case of Eq. (14)
with a sufficiently small β1 > 0 specified below. We then take the line E1 = Eu

zi1
and

translate it along the closest geodesic between zi1 and yi1 into a line E2 ⊂ TyM . The
map df is smooth on the compact 3-D manifold of linear one-dimensional subspaces of
TM , and so

dist(df i1
∗ (E1), df

i1
∗ (E2)) ≤ Di1

1 · dist(E1, E2) = Di1
1 · dist(zi1 , yi1) (15)

with some constant D1 > 1 determined by the map f∗ alone. Besides, df i1
∗ (E1) = Eu

z ,
and, due to the uniform hyperbolicity of f∗, one has 6 (f i1

∗ (E2), E
u
y ) ≤ c1λ

i1 with some
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c1 > 0. We now choose the constant β1 > 0 so small that the RHS of Eq. (15) is ≤ cεa

in case of Eq. (12) and ≤ cαn in case of Eq. (14) with some c, a > 0 and α < 1. The
bounds (12) and (14) then easily follow.

We now turn back to the proof of the property MS3. Due to (Q10) the map f
−[dn]
∗ is

continuous on the quadrilaterals Q̂1, . . . , Q̂Ĵ , and so Lemma 7 applies to the parallelogram
A. Summarizing the results of Lemmas 6 and 7, one can say that the conditional measures
µu

V u,A are almost uniform with respect to the Lebesgue measures on LUF’s (up to an
exponentially small in n error term) and the Jacobians of the canonical isomorphisms
between different sets V u

A within A equal one up to an exponentially small in n error
term. Then it is an easy calculation to derive Eq. (10) from Eq. (11) with |∆| ≤ cαn.
The property MS3 is now proven.

The proof of the property MS4 consists of three steps.
Step I (Expansion). At this step we pull the parallelograms Ai and Aj involved in

Eq. (7) forward, so that their images will expand and become “long enough”. Consider
a point x ∈ Ai and the part V u

1 of V u(x) confined between two LSF’s bounding the
quadrilateral Q̂i where Ai belongs.

For any LUF V u, D > 0 and k > 0 let V u
k,D denote the set of points y ∈ V u such

that fk
∗ (y) belongs to a smooth component of fk

∗ (V u) of length ≥ D. Let lu1 (·) denote
the Lebesgue measure (length) on V u.

Lemma 8 There are D > 0, c > 0 and α < 1, independent of the LUF V u, such that for
any k ≥ 1

lu1 (V u \ ∪k
j=1V

u
j,D) ≤ cαk.

In other words, if k is large enough, then the majority of points y ∈ V u have images
in long components (of length ≥ D) during the first k iterates of f∗ in the future.

Proof. We outline a short and elegant proof that goes back to Bunimovich and Sinai
[17], see also Ref. [10].

For any k ≥ 1 denote by Lk the number of smooth components of fk
∗ (V u) that are

shorter than D and such that their preimages under f−i
∗ for every i = 1, . . . , k, also

belong to smooth components of fk−i
∗ (V u) of length ≤ D. Obviously, one has

lu1 (V u \ ∪k
j=1V

u
j,D) ≤ LkDλr∗k (16)

where λ−1 is the lower bound on the one-step expansion factor in LUF’s under the map
f∗ and r∗ stands for the lowest power of f that coincides with f∗ on Λ∗

We now estimate Lk. Due to Condition 2 in Sect. 2 for any m ≥ 1 there is a Dm > 0
such that any LUF V u

0 of length≤ Dm intersects no more than C0K
m
0 smooth components

of the union ∪m
i=0S

+
i . Each of those components can intersect any LUF at most once,

and so fm
∗ V u

0 consists of ≤ (C0K
m
0 +1) smooth components. Therefore, if D ≤ Dm, then

Lk ≤ (C0K
m
0 +1)[kr∗/m]+1. Recall that K0 < λ−1. Therefore, by choosing m large enough

one can make the RHS of Eq. (16) exponentially small in k, thus obtaining Lemma 8.
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Recall that the length of V u
1 is about const·αn, cf. (Q6). Therefore, if c1 > 0 is a

large enough integer (independent of n), then the following relative Lebesgue measure is
exponentially small in n:

lu1 (V u
1 \ ∪c1n

j=1V
u
j,D)/lu1 (V u

1 ) ≤ cDαn (17)

with some c > 0 and α < 1 independent of n.
Step 2 (Connection). At this step we pull the “long” components of the images of

Ai and Aj further on, so that they become close enough and can be connected by LSF’s.
Let V u

2 be an arbitrary LUF of length ≥ D.

Lemma 9 For any D > 0 there is a subset Λ∗(D) ⊂ Λ∗ such that
(a) for any point x ∈ Λ∗(D) the LUF V u(x) has a length ≥ D and wholly belongs to
Λ∗(D);
(b) the union of LUF’s of length ≥ D lying apart from Λ∗(D) has zero µ∗-measure;
(c) the set of LUF’s of which Λ∗(D) consists is compact in C1-topology;
(d) for every LUF V u(x) ⊂ Λ∗(D) the intersection of Λ∗(D) with any neighborhood U(y)
of any point y ∈ V u(x) has a positive µ∗-measure.

Proof. Let Λ∗(D, 0) be the union of all the LUF’s in Λ∗ of length ≥ D. We define
Λ∗(D) as the union of all the LUF’s V u of length ≥ D such that the intersection of
Λ∗(D, 0) with any neighborhood of any point of V u has a positive µ∗-measure. Obviously,
µ∗(Λ∗(D)) = µ∗(Λ∗(D, 0)).

One can easily show by inspection that if a sequence of LUF’s of length ≥ D > 0 con-
verges in the C0-topology, then the limit curve is an LUF, too. Besides, the convergence
takes place in the C1-topology as well. Therefore, the set of all the LUF’s of length ≥ D
is compact in C1 topology. It is now easy to see that the clause (c) holds. Lemma 9 is
proven.

We say that a LUF V u ∈ Λ∗(D) is one-sided if only one-sided neighborhoods of the
points of V u intersect Λ∗(D) by subsets of positive measures. One-sided LUF may, for
instance, intersect or touch the boundary ∂(fkU), k ≥ 0.

From now on we denote by D the constant involved in Lemma 8. We also assume
that V u

2 and all the smooth components of its images fn
∗ V u, n ≥ 1 that have lengths ≥ D

belong in Λ∗(D). The LUF’s that do not enjoy this last property clearly form a subset
of zero measure in Λ∗.

Lemma 10 There is a closed maximal parallelogram Ã = Ã(V u
2 ) of positive µ∗-measure

such that
(i) V u

Ã
(z) ⊂ V u

2 for some z ∈ Ã;

(ii) Ã has some nonempty parts on both sides of V u
2 unless V u

2 is a one-sided LUF;
(iii) the endpoints of V u

2 do not belong to Ã.

Proof. For almost every point x ∈ V u
2 (with respect to the Lebesgue measure in

that LUF) there is an LSF V s(x). This follows, for instance, from Lemma 3.4 and
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Theorem 4.4 in Ref. [2]. This property and Lemma 9 readily give a parallelogram Ã with
the properties (i)-(iii). Lastly, any parallelogram can be easily completed to a closed and
maximal one, and so Lemma 10 is proven.

Let us consider all the LUF’s V u
2 ⊂ Λ∗(D). The collection of such LUF’s is compact

in C1-topology. Furthermore, the parallelogram Ã(V u
2 ) defined in Lemma 10 satisfies the

conditions (i)-(iii) of the lemma for any other LUF in Λ∗(D) sufficiently close to V u
2 in

C1-topology. Therefore, there is a finite collection of parallelograms Ã1, . . . , Ãr such that
for any LUF V u

2 ∈ Λ∗(D) there is an i = i(V u
2 ) such that Ã = Ãi satisfies (i)-(iii). The

collection Ã1, . . . , Ãr depends on D alone.
Next, we fix another maximal parallelogram Ã0 ⊂ Λ∗ of positive measure. Due to the

mixing of f∗ there is an k0 = k0(Ã0, D) such that for any k ≥ k0 and i = 1, . . . , r one has

µ∗(f
k
∗ Ãi ∩ Ã0) ≥

1

2
µ∗(Ãi)µ∗(Ã0). (18)

As we know, the intersection fn
∗ Ãi ∩ Ã0 consists of regular and irregular parts. The

next lemma bounds the measure of the irregular part.

Lemma 11 For any two maximal parallelograms A and B and any k ≥ 1 one has
µ∗(=(fk

∗A ∩B)) ≤ cαk with some c > 0 and α < 1 determined by the map f∗ alone.

Proof. Our proof is almost compiled from Ref. [11]. First, for any parallelogram A
we denote by Q(A) the minimal quadrilateral containing A and bounded by two LUF’s
and two LSF’s. We call the LUF’s (LSF’s) bounding Q(A) the u-sides (s-sides) of Q(A).
The intersection fn

∗ Q(A) ∩ Q(B) consists of a finite number of closed domains. If such
a domain is a quadrilateral bounded by two s-sides of Q(B) and the images of two u-
sides of Q(A), then the part of fk

∗A ∩ B within that domain is regular (this is an easy
consequence of the maximality of both A and B). The other domains of fk

∗Q(A)∩Q(B)
are of two types:

a) adjacent to the set S−l = f lS− for some l = 1, . . . , r∗k (recall that r∗ is the minimal
integer such that f r∗ = f∗ on Λ∗);

b) bounded by LUF’s and LSF’s only but adjacent to either an u-side of Q(B) or to
the image of an s-side of Q(A).

There are at most four domains of the type (b), and their width in the direction of
Es is ≤ cλk. In virtue of Lemma 3 the measure of the parts of fk

∗A in those domains is
≤ cαk.

Next, we fix an l = 1, . . . , r∗k and collect all the domains of the type (b) that are

adjacent to S−l and intersect the set fk
∗A∩B. We denote those domains by D

(l)
1 , . . . , D

(l)
r(l).

Note that the domain D̃
(l)
i = f−lD

(l)
i is adjacent to S−. Due to Lemma 3 µ∗(D

(l)
i ∩fk

∗A) ≤
c0α

k
0 for any i and l with some c0 > 0 and α0 < 1 independent of A, B and k. We consider

three cases:
(i) Let 1 ≤ l ≤ [δr∗k] with some small δ > 0 specified below. There are at most Λδr∗k

0

smooth components of the set S−1 ∪ · · · ∪ S−[δr∗k], where Λ0 > 1 is a constant determined

18



by the map f . Each of those components can touch no more than two domains D
(l)
i .

Therefore, r(l) ≤ Λ
[δr∗k]
0 for every l = 1, . . . , [δr∗k]. Hence,

[δr∗k]∑
l=1

r(l)∑
i=1

µ∗(D
(l)
i ∩ fk

∗A) ≤ c0r∗nΛδr∗k
0 αk

0.

(ii) Let [(1− δ)r∗k] ≤ l ≤ r∗k. Then every domain D̃
(l)
i belongs in f r∗k−lQ(B) and is

adjacent to S−. Obviously, there are no more than Λ
[δr∗k]
0 of such domains D

(l)
i , and one

again has
r∗k∑

l=[(1−δ)r∗k]

r(l)∑
i=1

µ∗(D
(l)
i ∩ fk

∗A) ≤ c0r∗kΛδr∗k
0 αk

0.

(iii) Let [δr∗k] ≤ l ≤ [(1 − δ)r∗k]. For each such an l the domains D̃
(l)
i are adjacent

to S−, disjoint and belong in the (cλδr∗k)-neighborhood of S−. Due to Lemma 2 one has

[(1−δ)r∗k]∑
l=[δr∗k]

r(l)∑
i=1

µ∗(D
(l)
i ∩ fk

∗A) ≤ cr∗kλβδk.

Choosing δ small enough and summarizing the estimates in the cases (i)-(iii) complete
the proof of Lemma 11.

In view of Lemma 11 the bound (18) yields

µ∗(<(fk
∗ Ãi ∩ Ã0)) ≥

1

4
µ∗(Ãi)µ∗(Ã0) (19)

for every k ≥ k′0(D, Ã0).
Next, we consider the parallelogram B = f−k

∗ (<(fk
∗ Ãi ∩ Ã0)), which is s-inscribed in

Ãi. For each point x ∈ B let ϕ(x) = V s(x) ∩ V u
2 . Then ϕ(B) is a Cantor-like subset of

V u
2 . The bound (19) along with Lemmas 6 and 7 implies

νu(ϕ(B)) > c0,

where νu is the Lebesgue measure on V u
2 and c0 > 0 depends on D and Ã0 only. Further-

more, for any y ∈ ϕ(B) the component of fk
∗ V

u
2 containing fk

∗ y intersects both s-sides of
the quadrilateral Q(Ã0) and covers the set V u

Ã0
(fk
∗ y). We summarize our conclusions in

the following lemma:

Lemma 12 For any D > 0 and any maximal parallelogram Ã0 there are a real l2 =
l2(D, Ã0) > 0 and an integer c2 = c2(D, Ã0) > 0 such that for every LUF V u

2 of length
≥ D and every k ≥ c2 there is a subset V u

2,k ⊂ V u
2 whose Lebesgue measure is ≥ l2 and

such that
fk
∗ V

u
2,k = ∪pV

u
Ã0

(xp)

for some points xp ∈ Ã0.
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We now combine Lemma 12 with the previous estimate (17). As a result, for any
k ≥ c1n + c2 there is a subset V u

1,k ⊂ V u
1 whose relative Lebesgue measure in V u

1 is
≥ l1 = l1(l2) > 0 and such that

fk
∗ V

u
1,k = ∪pV

u
Ã0

(x′p)

for some points x′p ∈ Ã0. The constant l1 can be taken, for instance, as

l1 = l2/ max
z∈Λ,y∈V u(z)

κ(z, y).

Recall that V u
1 is an LUF within the quadrilateral Q̂i where the parallelogram Ai

belongs. Since l1 > 0 is an absolute constant for the given map f , the “density” condition
(Q12) implies that the relative measure of the subset fk

∗ (V u
1,k ∩Ai) in fk

∗ V
u
1,k is ≥ 1− cαn

with some c > 0 and α < 1.

Corollary 1 For each parallelogram Ai ∈ <n,N and every k ≥ c1n + c2 there is an s-
inscribed subparallelogram Ai,k ⊂ Ai such that
(i) µ∗(Ai,k)/µ∗(Ai) ≥ l1;
(ii) fk

∗Ai,k ⊂ Ã0;
(iii) for every point x ∈ fk

∗Ai,k one has

νu(V u(x) ∩ fk
∗Ai,k)/ν

u(V u(x) ∩ Ã0) ≥ 1− cαn,

where νu is the Lebesgue measure on V u(x).

Lastly, note that all the sets V u
Ã0

(x), x ∈ Ã0 are connected by LSF’s within the

quadrilateral Q(Ã0) circumscribing the parallelogram Ã0. Note also that the sets fk
∗Ai,k

and fk
∗Aj,k for any k ≥ c1n + c2 are foliated by LUF’s that are mapped onto each other

by canonical isomorphisms. The Jacobians of those isomorphisms with respect to both
Lebesgue and BRS measures are uniformly bounded away from zero and infinity due to
Lemmas 6 and 7.

Step III (Contraction). At this, last, step we pull the sets fk2
∗ Ai,k2 and fk2

∗ Aj,k2 , k2 =
c1n + c2, obtained at Step II further on, so that they become exponentially (in n) close
to each other. Their future images become close since they are connected by LSF’s.

For any k > 0 we denote by Ã0,k ⊂ Ã0 the set of points x ∈ Ã0 such that fk
∗ V

s
Ã0

(x)

wholly belongs to one of the “proper” quadrilaterals Q̃1, . . . , Q̃I (cf. Section 4). Obvi-
ously, Ã0,k is an s-inscribed subparallelogram in Ã0.

Lemma 13 There is an integer c3 > 0 such that for any k ≥ c3n one has µ∗(Ã0\Ã0,k) ≤
cαn with some c > 0 and α < 1 independent of n and k.

Proof. Evidently, the set fk
∗ (Ã0 \ Ã0,k) belongs to the union of the λk-neighborhood

of all the proper unstable sides of Q̂1, . . . , Q̂I (cf. Section 2) and the “remainder” set
Λ∗ \ (∪Q̃i). Lemma 3 and the bound (8) now yield Lemma 13 for all large enough c3.
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The meaning of Lemma 13 is that in k ≥ c3n steps the images of all the LSF’s
intersecting the parallelogram Ã0 become so short that they typically fall into individual
quadrilaterals Q̂i, and only a small fraction of them cross the boundaries ∪∂Q̂i. One can
say that fk

∗ then sends the sets fk2
∗ Ai,k2 and fk2

∗ Aj,k2 into the same parallelograms Al,
and this is essentially equivalent to the Doeblin condition MS4.

For each Ai ∈ <n,N and k ≥ 1 we consider Ai,k2,k = Ai,k2 ∩ f−k2
∗ Ã0,k. This is also an

s-inscribed subparallelogram of Ai. Corollary 1 and Lemma 13 imply the following

Corollary 2 For each Ai ∈ <n,N and every k ≥ c3n one has
(i) µ∗(Ai,k2,k)/µ∗(Ai) ≥ l1/2;
(ii) fk2

∗ Ai,k2,k ⊂ Ã0,k;
(iii) for every point x ∈ fk2

∗ Ai,k2,k one has

νu(V u(x) ∩ fk2
∗ Ai,k2,k)/ν

u(V u(x) ∩ Ã0) ≥ 1− cαn,

where νu is the Lebesgue measure on V u(x).

Recall that for any Al ∈ <n,N the intersections f t
∗Ai∩Al and f t

∗Aj ∩Al are regular for
|t| ≤ N . Let k ≥ c3n and fk2+k

∗ Ai,k2,k ∩Al 6= ∅. Then, due to Corollary 2 and Lemmas 6
and 7 one has

µ∗(Al/f
k2+k
∗ Ai,k2,k)/µ∗(Al/f

k2+k
∗ Aj,k2,k) ≥ l3

with some constant l3 > 0 determined by the map f∗ alone. Applying the part (i) of
Corollary 2 and summing over l give the property MS4.

Let us finally discuss another aspect of the problem.
In typical examples, cf. Section 6, the map f depends on some parameters. It is often

important to find values of the parameters for which the attractor Λ has one ergodic (and
one mixing) component, i.e. for which r = 1 and r1 = 1 in terms of Proposition 3. For
some examples those values of parameters form open sets [18], i.e. the ergodicity and
mixing are stable under certain small C2-perturbations. We claim here one more stability
result.

Let f0 be a map U \ Γ0 → U satisfying all the assumptions of Section 2, plus it is an
“onto” map, i.e. clos(f0(U \ Γ0)) =clos(U). We assume that f0 preserves an absolutely
continuous invariant measure and is ergodic and mixing. For example, f0 may be a
dispersing billiard ball map [17, 9, 10] or the baker transformation.

Proposition 4 Let f be a sufficiently small C2-perturbation of f0 such that the singu-
larity curves Γ of the map f are close enough to the singularity curves Γ0 in C1-metric.
Then the attractor Λ generated by f has only one ergodic component and f is mixing on
Λ.

The proof is essentially outlined in Ref. [12]. We only note that the only argument
in our proofs that is based on the mixing of f∗ is the inequality (18) in the proof of
Lemma 12. Another proof of Lemma 12 based on the mixing of f0 instead of f∗ may be
found in Ref. [12] (see Lemma 13 there). We do not go into detail.
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6 Examples

Belykh attractor. One of the famous systems possessing a generalized hyperbolic
attractor is the Belykh map [19].

It is defined on a square Ū =clos U = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. We cut it
in two parts by a line Γ = {(x, y) : y − 1/2 = k(x − 1/2)}. The map f : Ū \ Γ → Ū
is defined by f(x, y) = (λx, γy) on the lower part (where y − 1/2 < k(x − 1/2)) and
f(x, y) = (λ(x− 1) + 1, γ(y− 1) + 1) on the upper part of the square Ū . The parameters
λ, γ, k of the Belykh map satisfy three conditions:

λ < 1/2, |k| < 1, 1 < γ <
2

1 + |k|
. (20)

It has been proved in Refs. [1, 2] that under the conditions (20) the map f has a gen-
eralized hyperbolic attractor. This map was introduced by the Russian physicist Belykh
and was used as the simplest model in the so-called phase synchronization theory. He
showed that the map f is an adequate model of a digital system of phase synchronization.

It follows immediately from the results of Refs. [1, 2] that the Belykh map f satisfies
all our assumptions except for, possibly, Condition A2. We now prove that it satisfies A2
under additional restrictions on the parameters λ, γ and k. Let us stress that γ coincides
with the constant λ−1 in Condition A2.

There are two approaches to ensure Condition A2.
First approach. Consider an arbitrary trajectory {zk}k∈ZZ, zk = fkz0 and denote

by zk = (xk, yk)
T , so that zk is a column vector. The following equation follows from the

definition of f :

zn = An(z0 − a01I) +
n−1∑
j=1

An−j(aj−1 − aj)1I + an−11I, (21)

where A =diag(λ, γ), 1I = (1, 1)T and ai = 1 if the point zi = (xi, yi)
T belongs in the

upper part of the square (i.e. yi − 1/2 > k(xi − 1/2)) and ai = 0 otherwise. In what
follows we assume that k < 0 without loss of generality.

The vector equation (21) can be rewritten as a system

xn = λn(x0 − a0) + λn−1a0 + (λ−1 − 1)
n−1∑
j=1

λn−jaj

yn = γn(y0 − a0) + γn−1a0 + (γ−1 − 1)
n−1∑
j=1

γn−jaj. (22)

Indeed,

xn = λn(x0 − a0) +
n−1∑
j=1

λn−j(aj−1 − aj) + an−1
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= λn(x0 − a0)−
n−1∑
j=1

λn−jaj + λ−1
n−1∑
j=1

λn−j+1aj−1 + an−1

= λn(x0 − a0)−
n−1∑
j=1

λn−jaj + λ−1
n−1∑
j′=1

λn−j′aj′ − λ−1λan−1 + an−1 + λn−1a0

= λn(x0 − a0) + λn−1a0 + (λ−1 − 1)
n−1∑
j=1

λn−jaj.

We now suppose that y0 = kx0 and yn = kxn with some “admissible” word (a0, a1, . . . , an−1).
The system (22) yields the equation

γnkx0 − a0γ
n + γn−1a0 +

1− γ

γ

n−1∑
j=1

γn−jaj

= λnkx0 − ka0λ
n + kλn−1a0 + k

1− λ

λ

n−1∑
j=1

λn−jaj.

Hence,
n−1∑
j=1

γ−jaj =
{
− kx0 + a0 −

1

γ
a0 +

(
λ

γ

)n [
kx0 − ka0 +

k

λ
a0

]

+γ−nk
1− λ

λ

n−1∑
j=1

λn−jaj

} γ

1− γ
. (23)

Any other “admissible” word (a0, a
′
1, . . . , a

′
n−1) for which y0 = kx0 and yn = kxn also

satisfies Eq. (23). Subtracting that equation for the word (a0, a
′
1, . . . , a

′
n−1) from Eq.

(23) gives∣∣∣∣∣∣
n−1∑
j=1

γ−j(aj − a′j)

∣∣∣∣∣∣ = γ−n · |k| ·

∣∣∣∣∣∣
n−1∑
j=1

(aj − a′j)λ
n−j

∣∣∣∣∣∣ γ

γ − 1
· 1− λ

λ
≤ γ−(n−1)L0 (24)

where

L0 =
|k|

γ − 1
.

We will use the notion of GE-numbers. A real number β ∈ (0, 1) is said to satisfy the
GE condition (after Garsia-Erdös, cf. Refs. [20, 21]) if there is a constant C = C(β) > 0
such that for every x > 0 and n ≥ 1 one has

Card{(i0, . . . , in−1) : π(i0, . . . , in−1) ∈ [x, x + βn)} ≤ C(2β)n,

where π(i0, . . . , ik−1) =
∑n−1

k=0 ikβ
k and the indices ik take values 0 and 1.

23



It has been proved in Lemma 6 of Ref. [22] that if γ−1 is a GE-number, then the
number Nn−1 of all the words (a′1, . . . , a

′
n−1) for which∣∣∣∣∣∣

n−1∑
j=1

γ−j(aj − a′j)

∣∣∣∣∣∣ < γ−(n−1)L0

is bounded above by
Nn−1 ≤ L · (2γ−1)n−1 (25)

with a constant L > 0. Of course, the bound (25) holds for the number of admissible
words.

It is also known [22] that there exists a δ > 0 such that for almost all β ∈ [1 − δ, 1)
the GE condition holds.

In fact, we have shown that if γ−1 is a GE-number, then the number of smooth
components of the union ∪m

l=0S
+
l which meet at the point z0 = (x0, y0) does not exceed

2L · [(2γ−1) + · · ·+ (2γ−1)m] ≤ 2L[(2γ−1)m − 1](2γ−1)

(2γ−1)− 1
≤ (2γ−1)m · C0,

where

C0 =
4Lγ−1

2γ−1 − 1
.

In the above bound the factor 2L is added because a0 can take either of two values 0 and
1. Therefore, if γ >

√
2, then 2γ−1 < γ and Condition A2 is satisfied.

Second approach. It is sometimes simpler to check Condition A1 instead of A2.
Let us assume again that k < 0 and consider the point x0 = 1, y0 = 1/2 + k/2 with its
trajectory (xi, yi). We fix a τ ∈ ZZ+ such that γτ > 2 and γi ≤ 2 for i = 1, . . . , τ − 1.

If τ = 2, then we only need to require that y1 − 1/2 > k(x1 − 1/2), where, of course,
x1 = λ and y1 = γ(1 + k)/2. This requirement is equivalent to the inequality

γ >
2kλ− k + 1

1 + k
. (26)

If τ > 2, then we suppose that aj = 1 for j = 1, . . . , τ − 1 and a0 = 0. In virtue of
Eq. (22) one has

xi = λi + (λ−1 − 1)
i−1∑
j=1

λi−j = λi − λi−1 + 1

yi = γi(1/2 + k/2)− γi−1 + 1

for any i = 1, . . . , τ . It is enough to require, in addition to Eq. (26), one more inequality
holds:

yi −
1

2
> k

(
xi −

1

2

)
.
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for every i = 2, . . . , τ . This last inequality is equivalent to

γi

(
1

2
+

k

2

)
− γi−1 +

1

2
> k

(
λi − λi−1 +

1

2

)
(27)

Condition A1 then holds under the assumptions (26) and (27).
Lozi map. R. Lozi introduced in Ref. [5] a map

(x, y) → (by, 1− a|y|+ x),

which was a simplified model for the famous Hennon map

(x, y) → (by, 1− ay2 + x).

It is easy to check that the rectangle U = {(x, y) : |y| < 1 + α, |x| < α} is semi-
invariant under the Lozi map (invariant under the positive iterates of the map) provided

|b|(1 + α) < α <
2− a

a
, and 1 < a < 2. (28)

In order to verify hyperbolicity of the Lozi map we invoke a general theorem from Ref.
[23]. A map (x, y) → (f(x, y), g(x, y)) is shown there to be hyperbolic if the following
conditions hold:

||fx|| < 1; ||g−1
y || < 1; and 1− ||g−1

y || · ||fx|| > 2
√
||g−1

y || · ||gx|| · ||g−1
y fy||;

||gx|| · ||fyg
−1
y || < (1− ||fx||)(1− ||g−1

y ||). (29)

Here and further on || · || denotes the C0-norm of a function on U \Γ (i.e., the supremum
of its absolute value). In our case fx = 0, |fy| = |b|, |g−1

y | = a−1 and |gx| = 1. Therefore,
the conditions (29) hold if one assumes, in addition to Eq. (28), the following:

a > 1, a > 2
√
|b|, |b| < a− 1 (30)

The Lozi map has the only singularity curve, the line Γ = {(x, y) : y = 0, |x| ≤ α}.
We now verify Condition A1. Certain results in this direction have been announced

in Refs. [1, 2]. We use the techniques of Ref. [24]. The constant λ−1 involved in
Conditions A1-A2 can be bounded as λ−1 > q, where

q =
1 + ||fx|| · ||g−1

y ||+
√

(1− ||fx|| · ||g−1
y ||)2 − 4||g−1

y || · ||gx|| · ||fyg−1
y ||

2||g−1
y ||

.

The third inequality in Eq. (30) implies that

q =
a +

√
a2 − 4|b|
2

> 1.
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We now fix an integer τ such that qτ > 2 and qi ≤ 2 for i = 0, 1, . . . , τ−1. Let (x0, y0)
be a point on the line Γ and let (xi, yi), i ≥ 1 be its trajectory. Notice that x1 = 0 and
y1 = 1 + x0, x0 ∈ (−α, α).

If τ = 2, then the assumption (28) implies 1 − α > 0 and we immediately obtain
Condition A1.

If τ = 3, then we have to require two more inequalities:

Y2 := 1− a(1− α) < 0 (31)

and
Y3 := 1− a|1− a(1 + α)| − |b|(1 + α) > 0. (32)

It is easy to check that y2 < Y2 and y3 > Y3. Therefore, the first three images of the line
Γ do not intersect Γ and A1 follows.

In a similar fashion one can find conditions under which A1 holds if τ = 4, 5, . . .. It
was announced in Ref. [2] that A1 is valid for an open set of parameters dense in the
region {(a, b) : |b| < min(a− 1, 2− a)}.

Remark. M. Rychlik has informed us that Condition A2 is always satisfied for the
Lozi map. In fact, the number of smooth components of the singular curves for fm that
can meet at a point in U grows at most linearly in m. This can be shown by using the
continuity of the map f on U . The proof can be obtained along the lines of Section 8 in
Ref. [9]. We do not go into details here.

Appendix

Here we provide the proofs of Proposition 1, Lemmas 1–3 and Theorem 3.
Our proofs of Conditions A3 and A4 basically follows the lines of the proof of Theo-

rem 14 in Ref. [1], but we introduce a new useful lemma, see below.
Let W u be an arbitrary unstable curve and νu be the normalized Lebesgue measure

on it. For any n ≥ 0 and x ∈ W u denote by rn(x) the distance from fnx to the nearest
endpoint of the smooth component of fnW u containing the point fnx.

Lemma 14 (Distribution of lengths of unstable curves) There are constants ε0 >
0 and C1 > 0 such that for any n ≥ 1 and any unstable curve W u of length ≥ ε0 one has

νu{x : rn(x) < ε} < C1ε

for any ε > 0.

Note that a somewhat stronger version of this lemma was recently published in Ref.
[18] (see Theorem 2 there).

Proof. Note that the meaning of this lemma is close to that of Lemma 8. To
prove Lemma 14 we fix a sufficiently large m, specified by C0K

m
0 + 2 < d0λ

−m, where
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d0 > 0 is a sufficiently small real defined below. As in the proof of Lemma 8, there is an
ε0 = ε0(m) > 0 such that the image of any unstable curve of length < ε0 under the map
fm consists of no more than C0K

m
0 + 1 smooth components.

It is enough to prove the statement of Lemma 14 for all ε ≤ ε0. It is obvious for n = 0
with any C1 ≥ 2.

Recall that the image of the Lebesgue measure on an unstable curve W u pulled onto
the smooth components of fnW u, n ≥ 1 has a density ρ(x) with respect to the Lebesgue
measure on those components satisfying the bounds c̄ ≤ ρ(x)/ρ(y) ≤ c̄−1 for any x and
y in the same smooth component, where c̄ = c̄(f) is an absolute constant.

Next, let W u
1 be an arbitrary unstable curve of length l1 > 0 with a normalized

measure νu
1 on it such that the density of νu

1 with respect to the normalized Lebesgue
measure is confined between c and c−1. If l1 > ε0, we cut W u

1 into smaller curves of
length less than ε0 but greater than ε0/2. Let N denote the collection of endpoints of
those smaller curves. We set d1 = 1 if l1 ≤ ε0 and d1 = 2l1ε

−1
0 otherwise. Obviously, d1

is uniformly bounded: d1 ≤ d3 = d3(f). Let r∗m(x), x ∈ W u
1 be the distance from x to the

set W u
1 ∩ (∪m

i=0S
+
i ∪N). Since that set consists of no more than d1(C0K

m + 2) points, it
is easy to obtain the bound

νu
1 {r∗m(x) ≤ ε} ≤ l−1

1 d2d1(C0K
m
0 + 2)ε (33)

for any ε > 0. Here d2 = d2(c̄) is an absolute constant (determined by the map f
alone). In particular, the statement of Lemma 14 is true for every n = 1, . . . ,m with any
C1 ≥ ε−1

0 d2d3(C0K
m
0 + 2).

Obviously, for any x ∈ W u
1 one has rm(x) ≥ λ−mr∗m(x). Therefore, one obtains

νu
1 {rm(x) ≤ ε} ≤ l−1

1 d2d1(C0K
m
0 + 2)λmε ≤ l−1

1 d2d1d0ε. (34)

We now assume that the constant d0 is so small that d2(c̄)
−1d0 ≤ 0.1. Denote c2 =

l−1
1 d2d3d0. The bound (34) can be rewritten for three different cases as follows:
(i) if l1 > ε0, then d1 ≤ d3, and so

νu
1 {rm(x) ≤ ε} ≤ c2ε; (35)

(ii) if l1 ∈ [ε, ε0], then d1 = 1, νu
1 {r0(x) < ε} ≥ l−1

1 c̄ε, and so

νu
1 {rm(x) ≤ ε} ≤ d2(c̄)

−1d0ν
u
1 {r0(x) ≤ ε} ≤ 0.1νu

1 {r0(x) ≤ ε}; (36)

(iii) otherwise, l1 < ε and one has, obviously,

νu
1 {rm(x) ≤ ε} ≤ νu

1 (W u) = νu
1 {r0(x) ≤ ε/2}. (37)

Let C1 ≥ 10c2. We now assume that the statement of Lemma 14 is true for n = n0.
We apply the inequalities (35)-(37) to every component of fnW u with νu

1 being the
conditional measure on that component induced by νu ◦ f−n. Adding Eqs. (35)-(37) for
all the components of fnW u gives

νu{rn0+m(x) ≤ ε} ≤ c2ε + 0.1C1ε + C1ε/2 ≤ C1ε
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By the inequality (33) and the remark following it we extend the last bound to all
n = n0 + 1, . . . , n0 + m− 1 with any C1 ≥ max{10c2, ε

−1
0 d2d3(C0K

m
0 + 2)}. Lemma 14 is

proven.
Conditions A3 and A4 easily follow from Lemma 14 in view of the transversality of

Γ and unstable curves.
We now provide a short proof of the finiteness of ergodic components in the Smale

spectral decomposition (Proposition 3) under our assumptions. This follows from Sa-
taev’s paper [2], but our proof is shorter and simpler. It consists of three steps. We
assume Proposition 3 with an infinite number of components {Λi}, and pick a Gibbs
measure µ which is positive on every ergodic component.

Step 1. Classical Hopf’s idea is that for a.e. point its stable and unstable fibers
belong to one ergodic component. Although this idea is well known, we cannot refer to
any published theorem that covers our model. Instead, we outline a proof of this claim.
Let x ∈ Λ be a point and y ∈ V u(x). Let F be a continuous function on the manifold
M . Since the closure of U is compact (see Section 2), F is uniformly continuous on U .
Therefore, the time average over the past trajectory

F̃ (y) := lim
n→∞

n−1 ·
n−1∑
i=0

f−i(y)

is constant on V u(x) provided the limit exists at least for one y ∈ V u(x). Birkhoff’s
ergodic theorem says that F̃ does exist almost everywhere and is an invariant function
on Λ. Moreover, on each ergodic component of Λ that function, F̃ , is a constant, which
is equal to the average value of F on that component. Next, let Λi and Λj, i 6= j,
be two ergodic components of Λ. Continuous functions are dense in L2(Λ), and so
the characteristic function (indicator) of Λi can be approximated in L2 by continuous
functions. For those continuous functions, that are sufficiently close in the L2-metric to
the indicator of Λi, their average values on Λi are close to one, while their average values
on Λj are close to zero, so that F̃ takes different values on Λi and Λj. Therefore, the set
of unstable fibers that intersect both Λi and Λj has zero measure. This proves Hopf’s
claim. The argument for stable fibers is the same, provided one averages the function F
over the future trajectory of y.

Step 2. Since any ergodic component is invariant under f , not only the LUF V u(x),
but also all its images belong to the same ergodic component for almost every point x.
Due to Lemma 14, such images necessarily become long enough, sooner or later. That
is, there is a positive constant c > 0 such that among all the images of any LUF there
is a smooth component of length > c. Thus, every ergodic component contains unstable
fibers of length > c, and their union is a set of positive measure. We now need to show
that there can be only a finite number of ergodic components with unstable fibers of
length > c.

Step 3. Let the number of ergodic components be infinite. In every component Λi we
pick an unstable fiber V u

i of length > c, which is not an isolated one, i.e. the intersection
of any neighborhood of any point of V u

i with all the other unstable fibers of length > c in
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the component Λi has positive measure. (Such fibers were constructed in Lemma 9.) The
sequence V u

i has a limit point in C1 topology, and that limit point is also an unstable
fiber, V u

∞, see also the proof of Lemma 9. Finally, through almost every point of V u
∞

(with respect to the length on that curve) we can draw a stable fiber of a positive length,
as mentioned in the proof of Lemma 10. Obviously, those stable fibers form a set of
positive measure, and they cross infinitely many unstable fibers V u

i . We apply Hopf’s
claim again, this time to stable fibers, and deduce that infinitely many V u

i ’s must belong
to one ergodic component. Q.E.D.

Lemma 14 has one more corollary:

Corollary 3 Let W be a smooth compact curve in M transversal to unstable cone Cu(z)
at every point z ∈ W . Then

µ(Uε(W )) ≤ cε

for any ε > 0 and any Gibbs measure µ. Here Uε(W ) denotes the ε-neighborhood of W
and c = c(W ) > 0.

For generalized hyperbolic attractors satisfying A3 and A4 Pesin [1] and Sataev [2]
have proved certain properties from which our Lemma 1 follows immediately. In par-
ticular, Sataev [2] proved that there is an ε > 0 such that for any z ∈ D+

ε,l (z ∈ D−
ε,l)

the distance of z from the nearest endpoint of the LSF V s(z) (resp., the LUF V u(z)) is
greater than const·l−γ with a constant γ = γ(f) > 0. For the µ-measure of the sets D±

ε,l

Sataev obtained the estimate

µ(D±
ε,l) ≥ 1− const · l−β

with a constant β = β(f) > 0 for any Gibbs measure µ. This estimate implies Lemma 1.
We now turn to the proof of Lemma 2. The set S+ ∪ S− consists of a finite number

of smooth compact curves. For the curves (or their parts) transversal to unstable cones,
in particular, for Γ, we can apply Corollary 3. We then consider the other smooth
parts of S+ ∪ S−, which are then unstable curves. For any point x belonging in their
ε-neighborhoods one has either rs(x) <const·ε (if x belongs in the ε-neighborhood of
∂U) or rs(f−1x) <const·ε (if x belongs in the ε-neighborhood of f(∂U)). In both cases
applying Lemma 1 completes the proof of Lemma 2.

In order to prove Lemma 3 we consider a set f−t
∗ D for any t ≤ k (D and k were

defined in Lemma 3). The diameter of that set is obviously less than λt
1l + λ−t

1 ε, where
λ1 = λr∗ and λ < 1 is the constant involved in the definition of cones Cu,s in Section 2.
Due to Lemma 14 the µ∗-measure of that set is ≤ r∗ε

−1
0 C1(λ

t
1l + λ−t

1 ε) and Lemma 3
follows.

Finally, we prove Theorem 3 in case k = l = 2. Denote t0 = i1, tL = i2 and chose some
integers t1 < t2 < · · · < tL−1 so that t0 < t1, tL−1 < tL and min1≤i≤L{ti − ti−1} ≥ g0n.

For convenience, we introduce probabilistic notations. Denote π
(l)
ij = µ∗(f

tl−1
∗ Aj/f

tl
∗ Ai)

for 1 ≤ l ≤ L and 0 ≤ i, j ≤ I. Obviously, the matrices Π(l) = ||π(l)
ij || are stochastic for
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1 ≤ l ≤ L and have a common stationary distribution P = ||pi|| with pi = µ∗(Ai). The

product Π(1) · · ·Π(l) is denoted by Π(1,l) = ||π(1,l)
ij ||, 1 ≤ l ≤ L. In other words, we have a

nonstationary Markov chain with a discrete time l and an equilibrium distribution P .
For any i ∈ [0, I] and l ∈ [1, L] denote

dl(i) =
I∑

j=0

|π(1,l)
ij − pj|.

In the language of probability theory, dl(i) is twice the distance in variation between
the stationary distribution P and the distribution specified by the ith row of the matrix
Π(1,l). It is well known in probability theory [16] that the sequence dl(i) is monotonically
decreasing in l.

By using Conditions MS3 and MS2, it is easy to show [10] that the inequality in the
statement (i) of Theorem 3 is equivalent to the following one:

dL(i) ≤ ∆, (38)

where i = j1.

Lemma 15 For any l = 0, . . . , L− 1 and i ∈ = one has

dl+1(i) ≤ (1− g1/2)dl(i) + p0 + π
(1,l)
i0 .

Proof. We have

dl+1(i) = Σ+
j (π

(1,l+1)
ij − pj) = Σ+

j Σk(π
(1,l)
ik − pk)π

(l+1)
kj

≤ Σ+
k (π

(1,l)
ik − pk)Σ

+
j π

(l+1)
kj . (39)

Here and further on Σ+
j (Σ−

j ) denotes the summation over values of j for which π
(1,l+1)
ij >

pj (resp., π
(1,l+1)
ij < pj), and Σ+

k (Σ−
k ) denotes the summation over values of k for which

π
(1,l)
ik > pk (resp., π

(1,l)
ik < pk). Likewise,

dl+1(i) ≤ −Σ−
k (π

(1,l)
ik − pk)Σ

−
j π

(l+1)
kj . (40)

Lemma 16 For any l = 1, . . . , L− 1 and i ∈ = one has either

max
1≤k≤I

Σ+
j π

(l+1)
kj < 1− g1/2, (41)

or
max
1≤k≤I

Σ−
j π

(l+1)
kj < 1− g1/2. (42)
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Proof. Denote
g′ = 1− max

1≤k≤I
Σ+

j π
(l+1)
kj .

If 1− g′ < 1− g1/2, then Eq. (41) holds. If not, then

Σ−
j π

(l+1)
kj = g′ < g1/2

for some k ∈ =. The Doeblin condition MS4 then implies that

max
1≤r≤I

Σ−
j π

(l+1)
rj < 1− g1/2,

and so Eq. (42) holds. Lemma 16 is proven.
Combining Eq. (39) with Eq. (41) or Eq. (40) with Eq. (42) completes the proof of

Lemma 15.
Lemma 15 readily implies that

dL(i) ≤ (1− g1/2)L +
L−1∑
l=1

π
(1,l)
i0 + Lp0.

Eq. (38) is then obtained, as in Ref. [10], by defining the set R∗ ⊂ = so that i ∈ R∗ iff

L−1∑
l=1

π
(1,l)
i0 ≤ αn

for some α ∈ (α2, 1) which then determines the value of α4 in Theorem 3.
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