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Abstract:
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systems) we construct finite generating partitions. Thus trajectories of the map
can be labeled uniquely by doubly infinite symbol sequences, where the symbols
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1 Introduction

In the last decades much work has been devoted to the investigation of classical
dynamical systems possessing strong stochastic properties. In particular billiard
systems have been studied thoroughly as prototypical systems exhibiting ergodic-
ity, mixing, K- and Bernoulli-property, see e.g. [?]. The quantized version of the
classical billiards are also studied intensively in the context of quantum chaos,
see e.g. [?]. Here the connection between the classical billiard system and the
quantum mechanical system is given in terms of trace formulas, which relate the
quantum mechanical density of states to a sum over properties of the periodic
orbits of the classical dynamical system. This clearly demonstrates the need of a
complete classification of trajectories of the classical system by means of symbolic
dynamics.
When studying the statistical properties of hyperbolic dynamical systems much
insight could be gained by constructing Markov partitions of the phase space.
For non-uniformly hyperbolic billiard systems with singularities usually Markov
partitions are countably infinite. However, if one is interested in a symbolic
description of trajectories, it is already sufficient and even more appropriate to
find a finite generating partition (see e.g. [?]), without the need for the Markov
property. Then trajectories can be labeled by doubly-infinite symbol sequences
built from a finite alphabet corresponding to the atoms of the partition, and
periodic orbits of the map correspond to periodic symbolic sequences. Thus a
symbolic dynamics allows to search for periodic orbits in a systematic way. Of
course, there remains the problem of finding numerically the periodic orbits for
a given periodic symbolic sequence. For example, in the hyperbola billiard a
minimum principle was used to compute a huge number of periodic orbits [?].
For certain billiard systems it is proven in [?], that at most one local minimum
corresponds to a given periodic symbol sequence. And for the cardioid billiard
periodic orbits correspond to maxima of the action function [?]. In other cases,
where a well-ordered symbolic dynamics can be found, one can use the approach
described in [?]. For examples of coding trajectories with finitely many symbols
see e.g. [?, ?, ?, ?, ?, ?, ?, ?] and references therein.
The paper is organized as follows: In section 2 we formulate conditions which
imply the existence of a finite generating partition, and give the proof of the
main theorem. In section 3 we give examples of billiard systems to which the
theorem applies. The examples include the cardioid billiard, the stadium billiard
(and other Bunimovich billiards), planar dispersing and semi-dispersing billiards.
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2 Generating partitions for two-dimensional hy-

perbolic maps

We will first define the setting under which we prove the existence of generating
partitions for two-dimensional hyperbolic maps and after some remarks give a
proof of the theorem.
Let P be a compact domain in R2 with a piecewise smooth boundary and T :
P → P an (invertible) transformation, such that T and T−1 are piecewise C2

smooth.
Let Γ and Γ−, the singularity sets for T and T−1, respectively, (i.e. the sets of
points where these maps fail to be C2) consist of a finite number of C1 smooth
compact curves in P . Be P\(Γ ∪ ∂P) = O1 ∪ · · · ∪ Or and P\(Γ− ∪ ∂P) =
O−

1 ∪· · ·∪O−
r , where Oi and O−

i are open connected domains in P with piecewise
smooth boundary. The sets {Oi}r

i=1 define the r atoms of the partition of P .
Likewise, the sets {O−

j }r
j=1 are atoms of another partition of P . By construction

T is continuous on Oi and T−1 is continuous on O−
i , i = 1, . . . , r. We assume

that T preserves a finite measure µ on P such that the µ-measure of every open
set E ⊂ P is positive.

Theorem 2.1 Assume that

1. The curves of Γ are increasing and those of Γ− are decreasing.

By increasing or decreasing curves we always mean strictly increasing or
decreasing curves, i.e. those defined by a function y = f(x) such that f ′(x) >
0 and f ′(x) < 0, respectively, inside P. On the boundary of P, where our
curves terminate, the derivative f ′(x) may approach zero or infinity.

2. The interior angles of the domains Oi, O
−
j are ≤ π.

3. T is hyperbolic at µ-almost every point (Precisely, T is a smooth (nonuni-
formly) hyperbolic map with singularities in the standard sense [?].) In
particular, unstable and stable fibers exist almost everywhere, and they are
decreasing and increasing curves, respectively.

4. T (T−1) takes decreasing (increasing) curves into decreasing (increasing)
curves.

5. For any vertical or horizontal segment I in the interior of P there is an
n ∈ Z such that T nI contains an increasing or decreasing curve.

Then the partition of P into Oi is a generating partition. The same is true for
the partition of P into O−

i .

Remark 2.2 Notice, that ergodicity of T is not assumed.
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Remark 2.3 The monotonicity assumptions 1, 2 and 4 in the theorem can be
reversed by interchanging the words decreasing and increasing. Moreover, the
theorem can be generalized to maps on regions P = P1 ∪ · · · ∪Pm such that every
Pi is a domain satisfying the conditions of the theorem and the monotonicity
assumption 4 is different on each domain Pi, 1 ≤ i ≤ m, see an example in
section 3.3.

Corollary 2.4 For the topological entropy one has htop(T ) ≤ ln r, where r is
the number of atoms of the partition.

We will prove the theorem for the partition of P into Oi. To that end we first
need some notations:
Define the singularity set for the map T n, n ≥ 1, by

Γn =
n⋃

i=1

T−i+1Γ (1)

and the singularity set for the map T−n, n ≥ 1, by

Γ−n =
n⋃

i=1

T i−1Γ− . (2)

Points of Γn, n ≥ 1, will map under ≤ n iterations of T into a singularity, i.e.,
for any ξ ∈ Γn one has T iξ ∈ Γ for some 1 ≤ i ≤ n− 1. Similarly for ξ ∈ Γ−n one
has T−iξ ∈ Γ− for some 1 ≤ i ≤ n− 1.
Define the set of points whose forward iterates will never hit a singularity

P̃+ = P\(Γ+∞ ∪ ∂P) , (3)

where Γ+∞ is the measure zero set of orbits which will hit a singularity under
application of T n for some n ≥ 1. For a given point ξ ∈ P̃+ its future is well-
defined for any iterate. Similarly one defines

P̃− = P\(Γ−∞ ∪ ∂P) , (4)

where Γ−∞ is the measure zero set of orbits which will hit a singularity under
application of T−n for some n ≥ 1. Moreover define the set of initial conditions
never hitting a singularity under either forward or backward iterations

P̃ = P̃+ ∩ P̃− . (5)

The doubly-infinite code ω = . . . ω−2ω−1.ω0ω1ω2 . . . generated by a point ξ ∈ P̃ ,
is given by (i ∈ Z)

ωi = Ok, if T iξ ∈ Ok, 1 ≤ k ≤ r . (6)
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Recall that a partition is called generating, if for any code-word ω the intersection
∩n∈ZT

−nωn contains at most one point.
Let −∞ < m ≤ n <∞. We define the finite truncation of a code word ω by

ωm,n = ωmωm+1 . . . ωn (7)

and the corresponding intersection of sets by

ω̃m,n =
n⋂

i=m

T−iωi . (8)

Lemma 2.5 For a given ξ ∈ P̃ the set ω̃m,n is a connected domain with piecewise
smooth boundary whose interior angles are ≤ π. The maps T i, m ≤ i ≤ n + 1
are continuous on ω̃m,n.

Proof. The proof proceeds by induction:
Let m = 0, n = 0. There are r different possibilities for ω0,0 = ω0 (namely: .Oi,
i = 1, . . . , r) giving r sets ω̃0,0 = ω0, each of them being a connected domain.
Moreover the map T is continuous on the domain ω̃0,0. Assume now that for a
given ω and some m ≤ n the set ω̃m,n satisfies our lemma. Consider

T n+1ω̃m,n ∩ ωn+1 . (9)

By induction, T n+1ω̃m,n is a connected set bounded by the curves from Γ−∞∪∂P .
Assumption 2 gives that any interior angle of the set T n+1ω̃m,n whose vertex is
on ∂P is ≤ π. The smoothness of T away from the singularity curves implies, by
induction on n, that any other interior angle of T n+1ω̃m,n is ≤ π as well. Next,
the set ωn+1 is a connected domain (On+1) bounded by curves of Γ and ∂P . Since
Γ is increasing, and all the curves in Γ−∞ are decreasing, the set T n+1ω̃m,n∩ωn+1

is connected, and has interior angles ≤ π. Obviously T is continuous on this set.
Thus, the lemma holds for the word ωm,n+1.
A similar argument provides the extension of the word ωm,n to the left. 2

Corollary 2.6 (Continuation of the singularity lines)
Let n ≥ 1. Any smooth singularity curve γ in Γn (Γ−n) either terminates on
∂P or is a part of a larger C0 continuous decreasing (increasing) curve γ′ ⊂ Γn

(γ′ ⊂ Γ−n) that terminates in ∂P.

Lemma 2.7 The singularity sets Γ+∞ and Γ−∞ are dense in P.

Proof. Assume that Γ+∞ is not dense, thus there exists an open set E ⊂ P ,
which has positive measure, µ(E) > 0, and E ∩ Γ+∞ = ∅. Consider a point
ξ ∈ E for which the unstable manifold exists. Thus we locally have a decreasing
curve γu ⊂ E such that γu ∩ Γ∞ = ∅. Iterating this curve by T n, n ≥ 1, will
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give connected curves whose lengths grow to infinity, because it is an unstable
manifold. Since P is a compact subset of R2 and the stable/unstable manifolds
are monotone, we get a contradiction.
The proof for Γ−∞ proceeds similarly.

2

Observe that, as a result of Lemma 2.7, no atom of the partitions into Oi or O−
i

can be invariant under the map T or T−1.

Lemma 2.8 For any decreasing (increasing) C1 curve γ ⊂ P there is a C0

continuous curve γ′ ⊂ Γ∞ (resp., γ′ ⊂ Γ−∞) that terminates on ∂P and crosses
γ.

Proof. Let γ be a decreasing curve. Denote by ξ its midpoint. There is a curve
γ′′ ⊂ Γn, n ≥ 1, arbitrary close to ξ. Due to corollary 2.6, its continuation in Γn

will cross γ. 2

Corollary 2.9 Let ξ1, ξ2 ∈ P̃ be two points such that the segment ξ1ξ2 ⊂ R2 is
neither vertical nor horizontal. Then the domain P can be partitioned by one or
more C0 continuous curves γ′ ⊂ Γn, n ∈ Z, that terminate on ∂P, so that ξ1 and
ξ2 lie in different atoms of that partition.

Remark 2.10 Note that if the domain P is simply connected, then one curve γ′

would suffice, and the points ξ1 and ξ2 would lie on the opposite sides of γ′.

After this considerations we now come to the proof of theorem 1.

Proof. Let ξ1, ξ2 ∈ P̃ , ξ1 6= ξ2, and the code words they generate be identical,
ω = ω1 = ω2. We shall show, that this implies a contradiction so that ξ1 = ξ2,
giving the uniqueness of the coding.
Every finite sequence ω−n,n corresponds, according to lemma 1, to an open, con-
nected set ω̃−n,n. Consider the intersection

ω−∞,∞ =
∞⋂

n=1

cl(ω̃−n,n) , (10)

where cl(·) means the closure of a domain. The set ω−∞,∞ is a non-empty con-
nected set, containing ξ1 and ξ2. We now show, that this set consists of only
one point. Assume first that the set ω−∞,∞ is neither a vertical nor a horizontal
segment in R2. Then, according to corollary 2.9, this connected set is crossed by
a singularity curve γ′ ⊂ Γn, n ∈ Z, and we get a contradiction. If ω−∞,∞ is a
vertical or horizontal segment, we apply assumption 5 and complete the proof.

2

Corollary 2.11 The set ω̃0,∞ is a local stable fiber and the set ω̃−∞,−1 is a local
unstable fiber.
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3 Examples

3.1 Cardioid billiard

The boundary ∂Ω of the cardioid billiard is given in polar coordinates by

ρ(ϕ) = 1 + cosϕ , ϕ ∈ [−π, π] . (11)

Inside Ω a point particle moves with unit velocity along straight lines until it
reaches the boundary, where it is reflected elastically. The cardioid billiard is the
limiting case of a family introduced in [?]. Later it has been proven, that the
cardioid billiard has non-vanishing Lyapunov exponents almost everywhere, it is
ergodic, mixing, a K-system and a Bernoulli system [?, ?, ?, ?, ?]. The symbolic
dynamics and periodic orbits are investigated in detail in [?], see also [?]. For
studies of the cardioid billiard in the context of quantum chaos, see [?, ?, ?, ?]
and references therein.

Figure: fig1.ps

Figure 1: Boundary curve for the cardioid billiard. For a given point s
its tangent vector t(s) and the velocity vector v are shown.

As a Poincaré section P we define

P = {ξ = (s, p) | s ∈ [−4, 4], p ∈ [−1, 1]} , (12)

where s is a point on the boundary ∂Ω in the arclength representation (s =
4 sin(ϕ/2)) and p is the projection of the (unit) velocity on the normalized tan-
gent vector (orientated counterclockwise) after the reflection, see fig. 1. The
billiard ball map T : P → P is now obtained by starting at the point s in the
direction defined by p and looking for the first intersection s′ with the boundary
∂Ω. Then we have Tξ = (s′, p′), with p′ = 〈t(s′), v〉, where t(s′) is the unit tan-
gent vector at s′ and v the velocity vector of the particle after the reflection at
s′, see fig. 1. The invariant measure is given by dµ = 1

2|∂Ω|dsdp. Note that the

intervals {(s, p) | s ∈] − 4, 4[, p = ±1} are invariant under the map T and its
inverse T−1.
For the cardioid billiard the singularity of the map T occurs when a trajectory
hits the cusp of the cardioid, s = ±4. The set of initial conditions, which will hit
the cusp at the next iteration is given by

Γ = {(s, p) | p = s/4, s ∈ [−4, 4]} (13)

and the set of initial conditions which will hit the cusp under the application of
the inverse map T−1 is given by

Γ− = {(s, p) | p = −s/4, s ∈ [−4, 4]} . (14)
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The segment Γ partitions P into two triangles

O1 = A = {(s, p) | s ∈ ]− 4, 4[ , −1 < p < s/4} (15)

O2 = B = {(s, p) | s ∈ ]− 4, 4[ , s/4 < p < 1} . (16)

In [?, ?] it was conjectured that this partition is generating, i.e. it gives a symbolic
dynamics for the cardioid billiard. The map T is a diffeomorphism in the interior
of A and B.
In order to apply theorem 1, we have to verify assumptions 1–5. Obviously,
assumptions 1 and 2 hold for the triangles A and B and their images under T ,

TA = {(s, p) | s ∈ ]− 4, 4[ , −1 < p < −s/4} (17)

TB = {(s, p) | s ∈ ]− 4, 4[ , −s/4 < p < 1} . (18)

Due to [?] the cardioid billiard has nonvanishing Lyapunov exponents almost ev-
erywhere, thus assumption 3 holds. Assumption 4 holds due to the monotonicity
of the map, see [?, ?] and assumption 5 is obviously fulfilled in P\∂P .
Therefore all the conditions for the application of theorem 1 are fulfilled, giving

Theorem 3.1 The partition of the Poincaré section P for the cardioid billiard
into two open regions A and B is a generating partition, i.e. for a given doubly-
infinite symbol sequence ω there is at most one physical trajectory.

Remark 3.2 Using the above proposition one can show that orbits starting in
the cusp can be labeled uniquely by a one-sided symbol sequence, which either
terminates, if this orbit hits the cusp, or otherwise is infinite.

Using the billiard map of the cardioid billiard, one can give the following example
which shows that assumption 5 of theorem 2.1 is necessary to obtain a generating
partition:
Take two copies of the Poincaré section P of the cardioid billiard. Glue these
two rectangles along their two horizontal sides, making a bigger rectangle (twice
as high). Now, the map is discontinuous on two parallel slanted segments, but
the line of contact of the two original rectangles is not a discontinuity line, but a
fixed line and therefore the map is continuous on it. It is also possible to change
T in the vicinity of that fixed line so that T will be C2 smooth on it. This map
satisfies all the assumptions of our theorem but the last one, and, as a result, the
theorem fails: the entire line where the original rectangles come in contact has
the same symbolic sequence.

3.2 Dispersing billiards and semidispersing billiards

Let Ω be a compact domain in R2 or T2 (a two-dimensional torus) with a piece-
wise smooth boundary ∂Ω = ∆1∪· · ·∪∆l, where ∆i are smooth compact curves,
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Figure: fig2.eps

Figure 2: Notation used in the case of the dispersing billiards.

either closed or meeting one another at their endpoints. The Poincaré section
P of the billiard system in Ω is coordinatized by (s, ψ), where s is the arclength
parameter on ∂Ω and ψ is the angle between the outgoing velocity vector and the
inward normal vector to ∂Ω, so that −π/2 ≤ ψ ≤ π/2, see fig. 2. The section P
consists of a finite number of cylinders (corresponding to closed curves ∆i ⊂ ∂Ω)
and rectangles (for nonclosed curves ∆j ⊂ ∂Ω). A billiard in Ω is said to be
dispersing if ∂Ω is strictly concave outward and semidispersing if ∂Ω is concave
outward or flat (linear). It is known that such billiards are hyperbolic [?, ?, ?].
Moreover, the billiard ball map T takes increasing curves in P into increasing
curves, while T−1 takes decreasing curves into decreasing curves. From the above
cited papers the validity of assumption 5 immediately follows. Assuming addi-
tionally that the billiard has finite horizon, we obtain that the singularity sets
Γ and Γ− (for the maps T and T−1, respectively) consist of a finite number of
decreasing and increasing curves, respectively [?]. To apply our theorem, we
have to cut every closed curve ∆i ⊂ ∂Ω at an arbitrary point, thus transforming
the cylinder ∆i × [−π/2, π/2] ⊂ P into a rectangle. Therefore, P consists of
rectangles only. Thus we get

Theorem 3.3 For dispersing and semi-dispersing billiards the partitions of P
into the connected components of P\Γ and P\Γ− are generating.

3.3 Stadium billiard and other Bunimovich–billiards

L.A. Bunimovich was first to construct two-dimensional billiard tables with con-
vex (focusing) components of the boundary ∂Ω with hyperbolic behaviour. Let
again Ω be a compact billiard table in R2 with boundary ∂Ω = ∆1 ∪ · · · ∪ ∆l.
Assume that each ∆i is either concave outward (dispersing), flat (neutral), or
convex (focusing). Assume that every focusing component ∆i ⊂ ∂Ω is a circular
arc. Denote by N the set of trajectories where hyperbolicity cannot be enforced:
(i) those bouncing off neutral sides of Ω only, and (ii) periodic trajectories with
all the reflection points on one circular arc ∆i ⊂ ∂Ω.

Theorem 3.4 (Bunimovich [?], cf. also [?]) Assume that every focusing com-
ponent ∆i ⊂ ∂Ω is an arc of a circle Ki such that its interior lies wholly in Ω.
Assume that the measure of N is zero. Then almost every point in P is hyperbolic.

The most famous example is the stadium-billiard, a table Ω bounded by two
semicircles and two parallel segments [?, ?].
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The trajectories of points in N normally make families such that at every reflec-
tion the angle of incidence is the same for the entire family, cf. [?]. We assume,
additionally, that N consists of a finite number of such families. Stadia and con-
vex polygons with pockets satisfy this assumption [?]. For such billiards, one can
prove ergodicity, K-mixing and Bernoully property [?].
We now parametrize the Poincaré section P of a Bunimovich billiard by (s, ψ) as
before. The section P consists of a finite number of rectangles (after cutting every
closed curve ∆i ⊂ ∂Ω as described in section 3.2). We say that a smooth curve
γ ⊂ P is expanding (contracting) if γ ⊂ ∆i × [−π/2, π/2] is a monotonous curve
that is increasing (decreasing) in the case of a dispersing and neutral component
∆i and decreasing (increasing) in the case of a focusing component ∆i. It is known
[?, ?] that the billiard ball map T takes expanding curves into expanding curves
and T−1 takes contracting curves into contracting curves. Moreover, Γ consists
of contracting curves, while Γ− consists of expanding curves. The assumption
5 is fulfilled everywhere except the set N , which consists of a finite number of
horizontal segments. Thus we get

Theorem 3.5 For Bunimovich billiards the partitions of the set P \N into the
connected components of P\Γ and P\Γ− are generating.

Note that here we use the generalization of our main theorem given by remark
2.3. In particular for the stadium P consists of four rectangles with different
monotonicity of curves. This gives a partition of P into 16 atoms, where the set
N corresponds to the bouncing ball orbits. In [?] a symbolic dynamics with 6
symbols is conjectured. One can easily show that our symbolic dynamics with
16 symbols is equivalent to this and therefore we obtain a proof of the symbolic
dynamics proposed in [?]. For other studies of the symbolic dynamics in the
stadium billiard see [?, ?, ?] and references therein.
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