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Abstract

Let T :X → X be a deterministic dynamical system preserving a probability
measure µ. A dynamical Borel-Cantelli lemma asserts that for certain sequences
of subsets An ⊂ X and µ-almost every point x ∈ X the inclusion Tnx ∈ An

holds for infinitely many n. We discuss here systems which are either symbolic
(topological) Markov chain or Anosov diffeomorphisms preserving Gibbs measures.
We find sufficient conditions on sequences of cylinders and rectangles, respectively,
that ensure the dynamical Borel-Cantelli lemma.

1 Introduction

Let T : X → X be a transformation preserving a probability measure µ. We use notation
µ(f) :=

∫
f dµ for integrable functions f on X.

Let An ⊂ X be a sequence of measurable sets. Put Bn = T−nAn and consider the set

lim sup
n

Bn := ∩∞m=1 ∪∞n=m Bn

of points which belong to infinitely many Bn. A classical Borel-Cantelli lemma in prob-
ability theory states:

Lemma 1.1 (Borel-Cantelli) (i) If
∑
µ(Bn) < ∞, then µ(lim supnBn) = 0, i.e. al-

most every point x ∈ X belongs to finitely many Bn.
(ii) If

∑
µ(Bn) = ∞ and Bn are independent, then µ(lim supnBn) = 1, i.e. almost every

point x ∈ X belongs to infinitely many Bn.

In terms of the transformation T , the lemma can be restated as follows.
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Lemma 1.2 (i) If
∑
µ(An) < ∞, then for almost every point x ∈ X there are only

finitely many n such that T nx ∈ An.
(ii) If

∑
µ(An) = ∞ and T−nAn are independent, then for almost every point x ∈ X

there are infinitely many n such that T nx ∈ An.

The second part of the lemma has a limited value for deterministic dynamical systems,
since one rarely works with purely independent sets. This paper is devoted to extensions
of the second part of the lemma to certain dynamical systems – Anosov diffeomorphisms
and topological Markov chains.

Below we always assume that
∑
n µ(An) = ∞.

Definition. A sequence of subsets An ⊂ X is called a Borel-Cantelli (BC) sequence if
for µ-a.e. x ∈ X there are infinitely many n such that T nx ∈ An.

Let
χn(x) := χT−nAn(x)

be the indicator of the set Bn = T−nAn. We set

SN(x) :=
N∑
n=1

χn(x)

and

E ′
N := µ(SN) =

N∑
n=1

µ(An) .

Definition. A sequence of subsets An ⊂ X is said to be a strongly Borel-Cantelli
(sBC) sequence if for µ-a.e. x ∈ X we have SN(x)/EN → 1 as N →∞.

A stronger version of the classical Borel-Cantelli lemma is known, see Theorem 6.6
in [6]:

Lemma 1.3 If
∑
µ(Bn) = ∞ and the events Bn are independent, then SN(x)/EN → 1

almost surely as N →∞. Moreover, the independence requirement can be relaxed to the
pairwise independence, i.e. it is enough to require µ(Bm∩Bn) = µ(Bm)µ(Bn) for m 6= n.

In particular, if Bn = T−nAn are pairwise independent, then the sequence {An} is an
sBC sequence.

Consider the quantity

Rmn := µ(Bm ∩Bn)− µ(Bm)µ(Bn) = µ(T−mAm ∩ T−nAn)− µ(Am)µ(An)

which characterizes the dependence of Bm and Bn.
A sufficient condition for {An} to be an sBC sequence, in terms of Rmn, was first

found by W. Schmidt, see a proof by Sprindžuk [14], in the context of Diophantine
approximations. It was recently adapted to dynamical systems by D. Kleinbock and
G. Margulis [9]:
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(SP) Assume that

∃C > 0 :
N∑

m,n=M

Rmn ≤ C ·
N∑

n=M

µ(An)

for all N ≥M ≥ 1.

Theorem 1.4 ([14], Chapter I, Lemma 10, or [9], Lemma 2.6) If the sequence {An} sat-
isfies (SP), then it is an sBC sequence; moreover, for a.e. x ∈ X one has

SN = EN +O
(
E

1/2
N log3/2+εEN

)
. (1.1)

W. Philipp was first to derive the asymptotics (1.1) in the context of dynamical
system, and he called it a quantitative Borel-Cantelli lemma [12].

Note that there exist remarkable characterizations of some ergodic properties of dy-
namical systems in terms of BC and sBC sequences. We summarize these in the following

Proposition 1.5 Let T be a measure preserving transformation of a probability space
(X,µ). Then:
(i) T is ergodic ⇐⇒ every constant sequence An ≡ A, µ(A) > 0, is BC ⇐⇒ every
such sequence is sBC, i.e. SN/EN → 1 µ-almost everywhere;
(ii) T is weakly mixing ⇐⇒ every sequence {An} that only contains finitely many
distinct sets, none of them of measure zero, is BC ⇐⇒ for every such sequence one has
SN/EN → 1 in the L2 metric, i.e. µ(SN/EN − 1)2 → 0;
(iii) T is lightly mixing1 ⇐⇒ every sequence that only contains finitely many distinct
sets, possibly of measure zero, is BC.

See Section 3 for the proof. Note that in part (ii), the first equivalence was proved by
Y. Guivarc’h and A. Raugi (private communication); our proof is slightly different. Part
(iii) was pointed out to us by A. del Junco.

Note also that there exist no measure-preserving system such that every sequence
{An} that only contains two distinct sets, one of positive measure and the other of
measure zero, is sBC. This follows from a result of U. Krengel [10]. On the other hand, if
µ has K property, then any sequence that only contains finitely many sets, none of them
of measure zero, is sBC (J.-P. Conze, private communication).

It is important to mention that for any (nontrivial) measure-preserving system (X,µ, T )
there are sequences of subsets of X (with divergent sum of measures) which are not BC.
More precisely, the following is true:

1T is said to be lightly mixing (see [7]) if for every two sets A,B of positive measure one has
µ(T−nA ∩B) > 0 for large enough n; this condition lies strictly between mixing and weak mixing.

3



Proposition 1.6 Let (X,µ) be a probability space. If µ is nontrivial (that is, there are
sets with measure strictly between 0 and 1), then for any µ-preserving transformation T of
X there exists a sequence {An} of measurable subsets of X with

∑∞
n=1 µ(An) = ∞ which

is not BC. Furthermore, if µ is non-atomic, then for any µ-preserving transformation
T of X there exists a sequence {An} of measurable subsets of X with

∑∞
n=1 µ(An) = ∞

such that for a.e. x ∈ X there are at most finitely many n for which T nx ∈ An.

See the end of Section 3 for the proof. With a little extra work, one can always find
a non BC sequence of sets that are nested: A1 ⊃ A2 ⊃ · · ·. We omit the proof.

Observe that a non-BC sequence can be easily constructed when T is invertible: one
can simply take An = T nA, where 0 < µ(A) < 1. Therefore to prove the BC or sBC
property for certain classes of sequences it is necessary to impose certain restrictions on
the sets An, which, roughly speaking, guarantee that the sets Bm and Bn become nearly
independent for large |m− n|.

The first Borel-Cantelli lemma for deterministic dynamical systems was proved in
1969 by W. Philipp:

Theorem 1.7 ([12]) Assume that T (x) = βx (mod 1) with β > 1, or T (x) = {1/x}
(the Gauss transformation) and µ is the unique T -invariant smooth measure on [0, 1].
Then any sequence {An} of subintervals (with divergent sum of measures) is an sBC
sequence, and (1.1) holds.

In particular, one can take any x0 ∈ (0, 1) and consider what could be called “a
target shrinking to x0” (terminology borrowed from [8]), i.e. a sequence of intervals
An = (x0 − rn, x0 + rn) with rn → 0. Then almost all orbits {T nx} get into infinitely
many such intervals whenever rn decays slowly enough. This can be thought of as a
quantitative strengthening of density of almost all orbits (cf. the paper [1] for a similar
approach to the rate of recurrence).

More generally, if X is a metric space (e.g. a Riemannian manifold), one can try to
prove that any sequence {An} of balls in X is BC or sBC; as in the example above, this
would imply that all points x0 ∈ X can be “well approximated” by orbit points T nx for
almost all x. D. Dolgopyat recently proved the following:

Theorem 1.8 ([5]) Let T : X 7→ X be an Anosov diffeomorphism with a smooth in-
variant probability measure µ. Then any sequence of round balls (with divergent sum of
measures) is sBC.

Another example of a dynamical Borel-Cantelli lemma is given in the paper [9], where
the following theorem was essentially proved:

Theorem 1.9 ([9]) Let G be a connected semisimple center-free Lie group without com-
pact factors, Γ an irreducible lattice in G, µ the normalized Haar measure on G/Γ, g a
partially hyperbolic element of G, and let T be the left shift T (x) = gx, x ∈ G/Γ. Let
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{An} be a sequence of subsets of G/Γ with divergent sum of measures and “uniformly
regular boundaries”, namely, such that for some δ > 0 and 0 < c < 1 one has

µ(δ−neighborhood of ∂An) ≤ cµ(An) for all n . (1.2)

Then there exist positive C1, C2 such that for µ-a.e. x ∈ G/Γ one has

C1 ≤ lim inf
N→∞

SN(x)/EN ≤ lim sup
N→∞

SN(x)/EN ≤ C2 ;

in particular, {An} is a BC sequence.

It is shown in [9] that the above condition (1.2) is satisfied if G/Γ is not compact and
the sets {An} are complements of balls centered in a fixed point x0 ∈ G/Γ. This way
one gets a description of growth of almost all orbits T nx as follows: if a sequence Rn

increases slowly enough, then for almost all x one has dist(x0, T
nx) ≥ Rn for infinitely

many n. This has important applications to geometry and number theory.
When this paper was under preparation, we learned that J.-P. Conze and A. Raugi

[4] proved a dynamical Borel-Cantelli lemma for certain Markov processes and one-sided
topological Markov chains with Gibbs measures.

2 Statement of results

Our paper deals with Anosov diffeomorphisms and the corresponding symbolic systems
– topological Markov chains.

Let T : X 7→ X be a transitive Anosov diffeomorphism. Let R = {R1, . . . , RM} be
a finite Markov partition of X, and A the corresponding transition matrix of zeroes and
ones. For definitions and basic facts on Markov partitions, see [2, 3].

The matrix A is transitive, i.e. AK is completely positive for some K ≥ 1. Let
Σ = ΣA be the topological Markov chain for A, i.e. a set of doubly infinite sequences

ω = {ωi}∞i=−∞ ∈ {1, . . . ,M}ZZ defined by

Σ = {ω ∈ {1, . . . ,M}ZZ : Aωiωi+1
= 1 ∀i ∈ ZZ} .

The set Σ equipped with the product topology is a compact space, and there is a left shift
homeomorphism σ : Σ 7→ Σ defined by (σω)i = ωi+1. Let π : Σ 7→ X be the projection
defined by

π(ω) = ∩∞i=−∞T−iRωi
.

Then π is a continuous surjection and π ◦ σ = T ◦ π. Fix an a ∈ (0, 1) and let da be
a metric on Σ defined by da(ω, ω

′) = an where n = max{n:ωi = ω′i, ∀|i| < n}. It is
consistent with the product topology. The projection π is now Hölder continuous.

There are classes of Gibbs measures on both X and Σ defined by potential functions.
For any Hölder continuous function ψ: Σ → IR there is a unique σ-invariant Gibbs measure
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µψ on Σ. For any Hölder continuous function ϕ:X → IR there is a unique T -invariant
Gibbs measure µϕ on X. In the latter case, the function ψ = ϕ ◦ π is Hölder continuous
on Σ, and the measure µψ projects to µϕ in the sense that π : Σ 7→ X is µψ-almost
everywhere one-to-one and π∗µψ = µϕ.

Gibbs measures include all practically interesting invariant measures on X and Σ,
e.g. all smooth invariant measures on X, Sinai-Ruelle-Bowen (SRB) measures, measures
of maximal entropy (i.e. Margulis measures on X and Parry measures on Σ) etc.

We first study topological Markov chains separately from Anosov diffeomorphisms.
Let Σ be a topological Markov chain with a transitive matrix A. Let µ be an arbitrary
Gibbs measure defined by a Hölder continuous potential. Naturally interesting subsets
of Σ are cylinders, which include all balls in the metric da.

A cylinder C ⊂ Σ is obtained by fixing symbols on a finite interval Λ = [n−, n+] ⊂ ZZ,
i.e. for some ωΛ ∈ {1, . . . ,M}Λ, ωΛ = {ωn− , . . . , ωn+}, we set

C = C(ωΛ); = {ω′ ∈ Σ:ω′i = ωi for n− ≤ i ≤ n+} (2.1)

Each cylinder is open and closed in Σ. We call n− and n+ the left and right endpoints
of an interval Λ, respectively, and (n− + n+)/2 the center of Λ.

Note that not every sequence of cylinders is a BC sequence. For example, let Cn =
σnC for a fixed cylinder C. It is obviously not a BC sequence. Hence, we need some
restrictions on cylinders to ensure quasi-independence of σm−nCn and Cm for large |m−n|.

Definition. We say that two intervals [n−1 , n
+
1 ] and [n−2 , n

+
2 ] are D-nested for D ≥ 0 if

either [n−1 , n
+
1 ] ⊂ [n−2 −D,n+

2 +D] or [n−2 , n
+
2 ] ⊂ [n−1 −D,n+

1 +D].

Theorem 2.1 Let {Cn} be a sequence of cylinders defined on intervals Λn ⊂ ZZ. Let
D ≥ 0 be a constant. Assume that for all m,n the intervals Λm,Λn are D-nested. Then
{Cn} satisfies (SP) and hence, if in addition

∑
µ(Cn) = ∞, it is an sBC sequence and

(1.1) holds.

Examples.
1. Let the left endpoints of Λn lie in the interval [0, D], then Λn are D-nested. We call
such intervals Λn D-aligned. (Similarly one can talk about right endpoints.)
2. Let the centers of Λn lie in the interval [−D/2, D/2], then Λn are D-nested. We
call such intervals Λn D-centered. Note that cylinders defined on 0-centered intervals
are precisely balls in Σ with respect to the metric da defined above. Therefore the
“quantitative orbit density” phenomenon (see the discussion after Theorem 1.7) holds
for Gibbs measures on topological Markov chains. Specifically, if one fixes ω0 ∈ Σ and
considers “a target shrinking to ω0”, that is, a sequence of balls (or centered at ω0, then
µ-almost all orbits {σnω} get into infinitely many such balls whenever the sum of their
measures diverges.

The following two theorems show that the assumptions of Theorem 2.1 cannot be
easily relaxed. We need to introduce some terminology generalizing the two examples
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above. Let {ln} be a sequence of positive numbers. We say that a sequence {Λn} of
intervals is {ln}-centered (resp. {ln}-aligned) if the center (resp. the left endpoint) of
each Λn belongs to [−ln/2, ln/2] (resp., [0, ln]).

Theorem 2.2 Let {ln} be a sequence of natural numbers such that ln →∞. Then there
is a sequence of cylinders {Cn} with divergent sum of measures which is defined on {ln}-
centered (or, alternatively, {ln}-aligned) intervals Λn ⊂ ZZ and does not satisfy (SP).

Theorem 2.3 Let ε > 0. There is a sequence of cylinders {Cn} with
∑
µ(Cn) = ∞ which

is defined on {ε|Λn|}-centered (or, alternatively, {ε|Λn|}-aligned) intervals Λn ⊂ ZZ and
is not a BC sequence. Moreover, for a.e. ω ∈ Σ there are only finitely many n such that
σnω ∈ Cn.

Theorems 2.2 and 2.3 show that it is not enough, even for the BC property, that the
cylinders are ‘relatively well’ centered or aligned.

Remarks.
1. Suppose that each of the sets Cn is a union of at most kn cylinders satisfying the
nested condition. It is clear that the conclusion of Theorem 2.1 still holds when the
sequence {kn} is bounded. On the other hand, Theorem 2.2 shows that a sequence of
unions Cn of kn 0-centered cylinders may not satisfy (SP) if {kn} is unbounded, while
Theorem 2.3 shows that {Cn} is not necessarily BC if kn is of order na with some a > 0.
2. Consider a one-sided topological Markov chain σ : Σ+ 7→ Σ+ defined on the space Σ+

of one-sided sequences:

Σ+ = {ω ∈ {1, . . . ,M}ZZ+ : Aωiωi+1
= 1 ∀i ∈ ZZ+} ;

here ZZ+ = {0, 1, 2, . . .}. Note that the shift σ preserves Σ+ but is not invertible, every
sequence ω may have up to M preimages. One-sided topological Markov chains give
symbolic representation for piecewise smooth expanding interval maps satisfying the
Markov condition.

Theorems 2.1–2.3 apply to one-sided topologically mixing Markov chains without
change. Note, however, that all the cylinders must be defined on intervals Λ ⊂ ZZ+.
In particular, our theorems hold for cylinders defined on intervals that are D-aligned,
{ln}-aligned and {ε|Λn|}-aligned, respectively2. Consider the metric d+

a on Σ+ given by
d+
a (ω, ω′) = an where n = max{n:ωi = ω′i, ∀i < n}. In this metric, balls are cylinders

defined on 0-aligned intervals. Therefore the “quantitative orbit density” phenomenon,

which follows from Theorem 1.7 if Σ+ = {1, . . . ,M}ZZ+ and µ is the product measure,
is extended to hold for an arbitrary Gibbs measure on a one-sided topological Markov
chain.

2Note that in this case the result of Theorem 2.1 can be derived from a recent manuscript by Conze
and Raugi [4].
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It is also worthwhile to mention that Theorem 2.3 gives examples of non-BC sequences
of cylinders in the setting of one-sided shifts. In fact, the idea of the proof works for an
arbitrary measure-preserving system and produces examples of non-BC sequences in the
generality of Proposition 1.6.

Back to Anosov diffeomorphisms, the above theorems can be restated by replacing
cylinders with their projections on the manifold X and the T -invariant measure π∗µ on
X. The projection π(C) of a cylinder C = C(ωΛ) is a rectangle

π(C) = ∩n+

i=n−T
−iRωi

(2.2)

in terms of of the formula (2.1). These are very special rectangles generated by the given
Markov partition. It would be of natural interest to extend our results to other classes
of rectangles, which we do next.

Recall that a rectangle R is a subset of X of a small diameter such that for any points
x, y ∈ R the intersection W s

x ∩W u
y of the local stable manifold W s

x through x and the
local unstable manifold W u

y through y is a point that also belongs in R. For x ∈ R put
W u,s
x (R) = W u,s

x ∩R. For x, y,∈ R put [x, y] = W s
x ∩W u

y . Then for any z ∈ R we have

R = [W u
z (R),W s

z (R)] = {[x, y]:x ∈ W u
z (R), y ∈ W s

z (R)} .

So, R has a direct product structure and W u
z (R), W s

z (R) can be thought of as coordinate
planes in R. Note that ∂R = ∂uR ∪ ∂sR, where

∂uR = [W u
z (R), ∂W s

z (R)] and ∂sR = [∂W u
z (R),W s

z (R)]

(these sets do not depend on z ∈ R).
We will consider small enough rectangles such that all local unstable manifoldsW u

x (R),
x ∈ R are almost parallel, and so are all stable manifolds W s

x(R), x ∈ R. Hence, the
diameters of our rectangles are ≤ ε1 with some fixed small ε1 > 0. Our rectangles are
not necessarily connected.

Our main assumption must be some sort of ‘roundness’ of rectangles, the necessity of
which we explained above. For any ε > 0 put

W u
z (R, ε) := {x ∈ W u

z (R): dist(x, ∂W u
z (R)) < ε}

and
Ru
z (ε) := [W u

z (R, ε),W s
z ] . (2.3)

This is a sort of ε-neighborhood of the stable boundary ∂sR. Similarly, the ε-neighborhood
of the unstable boundary ∂uR is defined, call it Rs

z(ε).
Now fix another constant ε0 ∈ (0, ε1) and some constants C0 > 0, γ > 0.

Definition. We say that a rectangle R is u-quasiround if for some z ∈ R
(i) the set W u

z (R) has (external) diameter ≤ ε1 and internal diameter ≥ ε0 (note that
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this set will be perfectly round if ε0 = ε1);
(ii) For all ε > 0

µ(Ru
z (ε)) ≤ C0| ln ε|−1−γµ(R) (2.4)

Similarly, s-quasiround rectangles are defined.

Note that the definition of u- and s-quasiroundness depends on the pre-fixed constants
ε1, ε0, C0, γ.

The choice of z in this definition is not important, since the same properties will also
holds for all z ∈ R, with possibly slightly different values of ε1, ε0 and C0. The exact
values of ε1, ε0, C0, γ may affect some constants in our estimates, but otherwise will be
irrelevant.

Note that if the set ∂W u
z (R) is smooth or piecewise smooth and the measure on W u

z

induced by µ is smooth, then µ(Ru
z (ε)) ≤ const · εµ(R). It is quite common in hyperbolic

dynamics to assume that the measure of ε-neighborhoods of boundaries or singularities
is bounded by const·εa for some a > 0. Our bound (2.4) is milder than that.

Next, we need to consider arbitrary small rectangles that satisfy some sort of round-
ness condition.

Definition. We call a rectangle R eventually quasiround (EQR) if there are two
integers k− ≤ k+ such that T k

+
(R) is u-quasiround and T k

−
(R) is s-quasiround.

The integers k± may not be uniquely defined for a rectangle R, but each of them is
defined by R up to a small additive depending on the ratio ε1/ε0, so the choice of k± for
a given R will not be important.

EQR rectangles in the Anosov setting play a role similar to that of cylinders for
TMC’s, and the numbers k−, k+ correspond to the endpoints of cylinders. Note, however,
that EQR rectangles are not generated by any Markov partitions. On the other hand,
we impose the regularity condition (2.4) on the boundary of EQR rectangles, while no
such condition was assumed for cylinders.

Note that if dimX = 2, then stable and unstable manifolds are one-dimensional,
and, with appropriate choice of ε0, ε1, every connected rectangle is EQR. Indeed, the
property (i) follows from the uniform hyperbolicity of T and the compactness of X, while
the property (ii) follows from our Lemma 4.8 in Section 4 (note that the set Ru

z (ε) in this
case consists of two connected rectangles).

Definition. We say that two EQR rectangles R1, R2 with the corresponding integers
k−1 , k

+
1 and k−2 , k

+
2 characterizing their quasiroundness are D-nested for D ≥ 0 if either

[k−1 , k
+
1 ] ⊂ [k−2 −D, k+

2 +D] or [k−2 , k
+
2 ] ⊂ [k−1 −D, k+

1 +D].

Theorem 2.4 Let T : X 7→ X be an Anosov diffeomorphism with a Gibbs measure µ
defined by a Hölder continuous potential ϕ on X, and D ≥ 0 a constant. Let {Rn} be
a sequence of EQR rectangles. Assume that for all m,n ≥ 1 the rectangles Rm, Rn are
D-nested. Then {Rn} satisfies (SP) and hence, if in addition

∑
µ(Rn) = ∞, it is an

sBC sequence and (1.1) holds.
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Examples.
3. If a sequence of EQR rectangles Rn satisfies the condition

|k−n + k+
n | ≤ D = const (2.5)

then it is an sBC sequence and verifies (1.1).
4. In particular, if T is a linear 2-D toral automorphism and µ the Lebesgue measure,
then any sequence of connected rectangles with uniformly bounded ratio of stable and
unstable sides (which is sometimes called ‘aspect ratio’) satisfies the condition (2.5) and
hence the conclusion of Theorem 2.4 holds.
5. Let T : X 7→ X be the baker’s transformation of the unit square X = [0, 1]× [0, 1] and
µ the Lebesgue measure. Note that T is discontinuous but still admits a finite Markov
partition. Then any sequence of balls with diverging measures is a BC sequence. Indeed,
in each ball B ⊂ X one can find a ‘dyadic’ square R ⊂ B such that µ(R) ≥ 0.1µ(B).
Dyadic squares correspond to 0-centered cylinders in the symbolic space, so one can apply
Theorem 2.1 and obtain the sBC property for the dyadic squares, which implies (at least)
the BC property for the original balls.

Next, we generalize Example 4 to nonlinear Anosov diffeomorphisms. Let T :X → X,
dimX = 2, be an Anosov diffeomorphism of a surface. Recall that in this case every
connected rectangle R ⊂ X is EQR. For a connected rectangle R we denote

du(R) = sup
z∈R

|W u
z (R)| and ds(R) = sup

z∈R
|W s

z (R)| ,

where |W u|, |W s| stand for the Lebesgue measures (lengths) of the corresponding curves
W u,W s. Let B ≥ 1. We say that a rectangle R has a B-bounded aspect ratio if

B−1 ≤ du(R)/ds(R) ≤ B .

Note that rectangles with B-bounded aspect ratio are, in the geometric sense, close to
squares (i.e., ‘round’). This geometric version of roundness is somewhat more preferable
and easier to check than the dynamical roundness assumed by (2.5).

Theorem 2.5 Let T :X → X, dimX = 2, be an Anosov diffeomorphism with a Gibbs
measure µ defined by a Hölder continuous potential ϕ on X, and B ≥ 1 a constant.
Let {Rn} be a sequence of connected rectangles with (uniformly) B-bounded aspect ratio.
Then {Rn} satisfies (SP) and hence, if in addition

∑
µ(Rn) = ∞, it is an sBC sequence

and (1.1) holds.

The extensions of Theorems 2.2 and 2.3 to EQR rectangles can also be obtained but
are hardly worth pursuing, because the examples of cylinders constructed in 2.2 and 2.3
can be simply projected on X and produce the corresponding examples of rectangles.
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3 Proofs for topological Markov chains

The following facts about Gibbs measures are standard:
Fact 1 For any cylinder C defined on an interval Λ

c1θ
|Λ|
1 ≤ µ(C) ≤ c2θ

|Λ|
2 ,

where c1, c2 > 0 and θ1, θ2 ∈ (0, 1) only depend on the Gibbs measure µ.
Fact 2 Let C1 ⊂ C be cylinders defined on intervals Λ1,Λ (note that in this case Λ1 ⊃ Λ),
then

c1θ
|Λ1|−|Λ|
1 ≤ µ(C1)/µ(C) ≤ c2θ

|Λ1|−|Λ|
2 .

Fact 3 Let C1, C2 be cylinders defined on disjoint intervals [n−1 , n
+
1 ] and [n−2 , n

+
2 ] in ZZ.

Assume, without loss of generality that n+
1 < n−2 . Then

|µ(C1 ∩ C2)− µ(C1)µ(C2)| ≤ c3θ
n−2 −n

+
1

3 µ(C1)µ(C2) ,

where c3 > 0 and θ3 ∈ (0, 1) only depend on the Gibbs measure µ.

Facts 1 and 2 can be proved with the help of a normalized potential for the Gibbs
measure µ, see [3]. Fact 3 is proved by R. Bowen in [2].

Let us introduce the following notation. If Λ1 = [n−1 , n
+
1 ] and Λ2 = [n−2 , n

+
2 ] are two

intervals (not necessarily disjoint), define an “asymmetric distance” δ(Λ1,Λ2) by

δ(Λ1,Λ2) = min{D: Λ2 is in the D−neighborhood of Λ1}

Equivalently, δ(Λ1,Λ2) = max{n+
2 − n+

1 , n
−
1 − n−2 , 0}. Clearly, δ(Λ1,Λ2) = 0 if and only

if Λ2 ⊂ Λ1. It is also clear that Λ1,Λ2 are D-nested if and only if one of the distances
δ(Λ1,Λ2) and δ(Λ2,Λ1) does not exceed D.

Lemma 3.1 If C1, C2 are cylinders defined on intervals Λ1 and Λ2, respectively, then

|µ(C1 ∩ C2)− µ(C1)µ(C2)| ≤ c4θ
δ(Λ1,Λ2)
4 µ(C1) ,

where c4 > 0 and θ4 ∈ (0, 1) only depend on the Gibbs measure µ.

Proof. This follows from Facts 1 and 3 if Λ1 and Λ2 are disjoint, and from Facts 1
and 2 if they are not. 2

Proof of Theorem 2.1. We estimate the quantityRmn = µ(Cm∩σm−nCn)−µ(Cn)µ(Cm).
Without loss of generality, assume that the interval Λm is “nested” in Λn, i.e. Λm lies in
the D-neighborhood of Λn. Note that we do not assume any relation between m and n,
or between µ(Cm) and µ(Cn). Our assumption easily implies that Λn − (m − n) is not
in the (|m−n| −D)-neighborhood of Λm. Applying Lemma 3.1 to the cylinders Cm and
σm−nCn, one gets

|Rmn| ≤ c4θ
δ(Λm,Λn−(m−n))
4 µ(Cm) ≤ c4θ

|m−n|−D
4 µ(Cm)
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Summing up over all n satisfying our nesting condition (that Λm is “nested” in Λn) gives
a quantity bounded by const·µ(Cm). Now summing up over m = M, . . . , N proves (SP).
2

In the following proofs of Theorems 2.2 and 2.3 we use a special construction. Let T
be a measure preserving transformation (invertible or not) of a probability space (X,µ),
and let {Ãk} be a sequence of measurable subsets of X and {lk} a sequence of natural
numbers. Put s0 = 0 and sk = l1 + · · · + lk for k ≥ 1. Consider a new sequence of sets
{An} defined as follows:

T 1−l1Ã1, T
2−l1Ã1, . . . , T

−1Ã1, Ã1, T
1−l2Ã2, . . . , T

−1Ã2, Ã2, T
1−l3Ã3, . . . , T

−1Ã3, Ã3, . . .

Note that the nth set in this sequence is

An = T n−skÃk , (3.1)

where k is defined by sk−1 < n ≤ sk. We denote this k by by k = kn. We will say that
the new sequence, {An}, is derived from {Ãk} and {lk}.

Proof of Theorem 2.2. Without loss of generality, assume that ln is monotonic, 1 ≤
l1 ≤ l2 ≤ · · ·. Let {C̃} be a cylinder defined on some interval [0, l] (alternatively, we
can assume that its center is at zero). Now consider the sequence of cylinders {Cn}
derived from the constant sequence C̃k = C̃ and {lk}. Then Cn is defined on an interval
Λn whose left endpoint lies in the interval [0, lk] where k = kn is defined above. Since
{lk} is monotonic, the left endpoint of Λn lies in [0, ln], so the nesting condition of
Theorem 2.2 is satisfied. It is now easy to see that for N = l1 + · · · + lk we have
EN =

∑N
n=1 µ(Cn) = (l1 + · · ·+ lk)µ(C̃), while

N∑
m,n=1

Rmn ≥
1

2

(
l21 + · · ·+ l2k

)
µ(C̃) .

It is clear that the right hand side of this inequality grows faster than CEN for any
C > 0, which violates (SP). 2

We write an ≈ bn for two sequences of numbers {an} and {bn} if there are constants
0 < c1 < c2 <∞ such that c1 < an/bn < c2 for all n (the constants c1, c2 may depend on
the topological Markov chain (ΣA, σ) and the Gibbs measure µ).

Proof of Theorem 2.3. Let {C̃k} be a sequence of cylinders defined on intervals Λ̃k

with left endpoints at zero such that µ(C̃k) ≈ 1/(k ln2 k). (Again, we could assume that
the centers of {Λ̃k} are at zero.) It follows from Fact 1 that |Λ̃k| ≈ log k. For each
k ≥ 1, let lk = [ε|Λ̃k|]. Consider the sequence of cylinders {Cn} derived from {C̃k}
and {lk}. Then Cn is defined on an interval Λn whose left endpoint lies in the interval
[0, ε|Λn|]. Since lk ≈ log k, we have

∑
µ(Cn) =

∑
k lkµ(C̃k) = ∞. On the other hand,∑

k µ(C̃k) <∞. Hence, by Lemma 1.2 (i), for a.e. ω ∈ Σ there are at most finitely many
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k ≥ 0 such that σskω ∈ C̃k. Now, by (3.1), Cn = σn−skC̃k, hence there are at most
finitely many n such that σnω ∈ Cn. 2

Lastly, we give proofs of two propositions from the introduction.
Proof of Proposition 1.5. Part (i) easily follows from the ergodic theorem. For part

(ii), let T be weakly mixing and {An} contain finitely many distinct subsets of X of
positive measure, call them F1, . . . , Fk. Since c1 < EN/N < c2 for some constants
0 < c1 < c2 <∞, to show that

µ(SN/EN − 1)2 → 0 as N →∞ (3.2)

it is enough to prove that

µ(SN − EN)2 =
N∑

m,n=1

Rmn = o(N2) (3.3)

The weak mixing of T implies that for any Fi, Fj

N∑
n=1

|µ(T−nFi ∩ Fj)− µ(Fi)µ(Fj)| = o(N) ,

and since we only have finitely many pairs (Fi, Fj), the term o(N) here is uniform in i, j.
This completes the proof of (3.3). On the other hand, if (3.2) holds, one can choose a
subsequence {Nk} such that SNk

/ENk
→ 1 almost surely. Thus SNk

→∞ on a set of full
measure, which clearly implies that {An} is a BC sequence.

Assume now that T is not weakly mixing. If it is not ergodic, the constant sequence
An = A, where A is a nontrivial invariant set, is clearly not a BC sequence. Other-
wise T has a factor isomorphic to a rotation of a circle (because T has a non-constant
eigenfunction with eigenvalue exp(2πθi) with some 0 < θ < 1, see e.g. [11], p. 65–68).
If θ is rational, then T k is not ergodic for some k and the claim follows as above. If θ
is irrational, then the factor measure is Lebesgue. To finish the proof of (ii) it is then
enough to consider an irrational rotation of a circle and find a sequence of (nonempty)
arcs {An} that only contains finitely many distinct arcs but is not BC. This is a simple
exercise. Part (iii) follows from the definitions in a straightforward way and is also left
as an exercise to the reader. 2

Proof of Proposition 1.6. If for some ε there are no measurable subsets A of X with
0 < µ(A) < ε, then (assuming µ is nontrivial) T is not weakly mixing, so the claim
follows from the previous proposition. Otherwise there exists a sequence {Ãk} of sets of
positive measure such that

∑∞
k=1 µ(Ãk) <∞. Define a sequence {lk} of natural numbers

by lk = [1/µ(Ãk)] + 1, and let {An} be a sequence derived from {Ãk} and {lk}. Then
clearly

∑∞
n=1 µ(An) = ∞. On the other hand, we can argue as in the proof of Theorem 2.3

to show that for a.e. x ∈ X there are at most finitely many n such that T nx ∈ An. 2
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4 Proofs for Anosov diffeomorphisms

In this section we use an approach based on the shadowing property and specification.
Ruelle recently demonstrated the power and elegance of this approach in [13], and we
follow his lines.

We recall certain standard facts about transitive Anosov diffeomorphisms. We will
denote by Λ finite or infinite intervals of ZZ. For a finite interval Λ = [n−, n+], we denote
by |Λ| = n+−n− + 1 the cardinality of Λ. For two disjoint intervals Λ1,Λ2 we denote by

dist(Λ1,Λ2) = min{|i− j|: i ∈ Λ1, j ∈ Λ2}

the length of the gap between them.

Expansiveness. Any Anosov diffeomorphism T : X 7→ X is expansive, i.e. there is a
δ > 0 (called expansivity constant) such that

∀k ∈ ZZ d(T kx, T ky) < δ ⇔ x = y .

In fact, due to the hyperbolicity of T , for some C > 0 and 0 < θ < 1 one has

∀|k| ≤ n d(T kx, T ky) < δ ⇒ d(x, y) < Cθ−n . (4.1)

Let Λ ⊂ ZZ be an interval of ZZ, finite or not. Let x = (xk)k∈Λ ∈ XΛ. Given α > 0,
we say that x is an α-pseudo-orbit if

d(T kx, xk+1) < α whenever k, k + 1 ∈ Λ .

We say that the orbit of x ∈ X β-shadows x if

d(T kx, xk) < β ∀k ∈ Λ .

Shadowing lemma. For any β > 0 there is an α > 0 such that every α-pseudoorbit is
β-shadowed by a true orbit of some x ∈ X.

Note that if Λ = ZZ and β < δ/2, then the true orbit shadowing x is unique by the
expansivity. We fix a β < δ/2 and this fixes the corresponding α > 0.

Note that if the pseudoorbit is periodic, then it is shadowed by a true periodic orbit
with the same period.

Given α > 0, there is an integer K > 0 such that for every x, y ∈ X and n ≥ K there
is a z ∈ X such that

d(z, x) < α and d(T nz, y) < α ,

which follows from the topological transitivity of T . (Note that our choice of α made
above also fixes K.)

Using this remark, we can interpolate (concatenate) several α-pseudoorbits defined
on intervals of ZZ separated by gaps of lengths ≥ K in the following way.
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Specification. Let α-pseudoorbits xj be defined on disjoint intervals of ZZ separated by
gaps of length ≥ K. Then the xj are all β-shadowed by one true orbit of some x ∈ X.

One can also find a periodic orbit that β-shadows all xj, with period P := imax −
imin +K, where imax and imin are the maximum and the minimum points of the union of
the intervals of ZZ on which the pseudoorbits xj are defined.

Due to the expansivity, the number of periodic orbits of period P in the above con-
struction is less than some L independent of the lengths of the intervals of ZZ where the
pseudoorbits are defined. The value of L only depends on the number of these intervals
and the lengths of gaps between them. In our further arguments, we will interpolate no
more than four pseudoorbits at a time, and the gaps between them will never exceed 2K,
so we just fix the corresponding constant L.

Now, let g : X 7→ IR be a Hölder continuous function. The bound (4.1) implies the
following.

Approximation of sums along orbits. There is a constant B = B(g) such that

∀k ∈ [p, q] d(T kx, T ky) < δ ⇒

∣∣∣∣∣∣
q∑

k=p

g(T kx)−
q∑

k=p

g(T ky)

∣∣∣∣∣∣ ≤ B .

Furthermore, let the specification property be used to shadow two finite orbits {T kx′},
k ∈ Λ′, and {T kx′′}, k ∈ Λ′′, with

K ≤ dist(Λ′,Λ′′) ≤ 2K ,

by a periodic orbit of z of period

P = |Λ′|+ |Λ′′|+ dist(Λ′,Λ′′) +K ,

then ∣∣∣∣∣∣
∑
k∈Λ′

g(T kx′) +
∑
k∈Λ′′

g(T kx′′)−
P∑
k=1

g(T kz)

∣∣∣∣∣∣ ≤ B′ := 2B + 3K||g||∞ . (4.2)

Note that B′ is a constant, just like B, independent of the lengths of the intervals Λ′,Λ′′.
For n ≥ 1, let

Fix(T n, X) = {x ∈ X:T nx = x}

be the set of periodic points of period n in X.

Periodic orbit approximation of Gibbs measures. Let µ be a Gibbs measure
corresponding to a Hölder continuous potential ϕ : X 7→ IR. For each n ≥ 1, let µn be
an atomic probability measure concentrated on Fix(T n, X) that assigns weight

µn(x) = Z−1
n exp[ϕ(x) + ϕ(Tx) + · · ·+ ϕ(T n−1x)] (4.3)

to each point x ∈Fix(T n, X) (here Zn is a normalizing factor). Then µn weakly converges
to µ as n→∞.
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Variational principle. Let ϕ : X 7→ IR be a continuous function and Pϕ its topological
pressure. Then

sup
ν

[hν(T ) + ν(ϕ)] = Pϕ , (4.4)

where the supremum is taken over all T -invariant probability measures ν onX, and hν(T )
is the Kolmogorov-Sinai entropy of ν. Any measure ν that turns (4.4) into an equality is
called an equilibrium state for ϕ. Equilibrium states exist for every continuous function
ϕ. If ϕ is Hölder continuous on X, the equilibrium state is unique and coincides with
the Gibbs measure for the potential ϕ.

We now prove a few technical lemmas. Let µ be a Gibbs measure on X corresponding
to a Hölder continuous potential ϕ.

We generalize our notation of Section 3 by writing for any two variable quantities A
and B

A ≈ B ⇔ 0 < c1 < A/B < c2 <∞

for some constants c1, c2 that only depend on T : X 7→ X and the Gibbs measure µ.

Lemma 4.1 The normalizing factor (the analogue of partition function) Zn in (4.3)
satisfies

Zn ≈ ePϕn .

Note that it is standard to compute the topological pressure as

Pϕ = lim
n→∞

1

n
lnZn .

The estimate in our lemma is sharper than this standard formula.
We need an elementary sublemma that is a modification of a standard one, see

Lemma 1.18 in [2].

Sublemma 4.2 Let {an}∞n=1 be a sequence of real numbers such that |am+n−am−an| ≤ R
for all m,n ≥ 1 and some constant R > 0. Then P := limn→∞ an/n exists. Furthermore,
|an − Pn| ≤ 2R for all n.

Proof. Fix an m ≥ 1. For n ≥ 1, write n = km + l with 0 ≤ l ≤ m − 1. Then it
follows by induction on k that |an − kam − al| ≤ kR. Hence,∣∣∣∣∣ann − kam

km+ l
− al
km+ l

∣∣∣∣∣ ≤ kR

km+ l
.

Letting n→∞ gives

am
m
− R

m
≤ lim inf

n

an
n
≤ lim sup

n

an
n
≤ am

m
+
R

m
.
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Hence, P := lim an/n exists. Next, assume that am > Pm + 2R for some m. Then
a2nm > 2nmP+(2n+1)R which follows by induction on n. Hence lim sup an/n ≥ P+R/m,
a contradiction. A similar contradiction results from the assumption am < Pm− 2R. 2

Proof of Lemma 4.1. It is enough to show that

R := sup
m,n

| lnZm+n − lnZm − lnZn| <∞

and apply the previous sublemma to the sequence an = lnZn. So, we need to show that

Zm+n ≈ ZmZn .

For fixed n,m, put Λ′ = [0,m−K] and Λ′′ = [m,m+n−K]. For any x ∈Fix(Tm+n, X)
consider x′ = {x, . . . , Tm−Kx} and x′′ = {Tmx, . . . , Tm+n−Kx}, these are two pseudoor-
bits defined on the intervals Λ′ and Λ′′ separated by a gap of length K. Each of them
can be shadowed by a true periodic orbit, of periods m and n, respectively, and there are
at most L of those periodic orbits for each of x′ and x′′. On the other hand, for every
pair of periodic orbits y′ ∈Fix(Tm, X) and y′′ ∈Fix(T n, X) consider two pseudoorbits
y′ = {y′, . . . , Tm−Ky′} defined on Λ′ and y′′ = {y′′, . . . , T n−Ky′} defined on the interval
Λ′′ by associating T iy′′ to m+ i ∈ Λ′′. Then there is a true periodic orbit of period m+n
shadowing both y′ and y′′, and the number of those periodic orbits does not exceed L.
Now the result follows from (4.2). 2

Note that the potential ϕ − Pϕ corresponds to the same measure µ and has zero
topological pressure. Hence we may just assume that Pϕ = 0 in what follows. Then
Zn ≈ 1.

We assume, as we may, that ε1 in the definition of EQR rectangles does not exceed
the expansivity constant δ.

Lemma 4.3 Let R be an EQR rectangle with integers k+ and k− characterizing the
quasiroundedness of R. Let x ∈ R. Then

µ(R) ≈ exp[ϕ(T k
−
x) + · · ·+ ϕ(T k

+

x)] .

Proof. Consider a pseudoorbit x = {T−k−x, . . . , T k+
x} defined on the interval

Λ = [−k−, k+]. Let n � |Λ|. Note that y ∈ R if and only if (i) W s(T k
+
y) intersects

W u(T k
+
x), and (ii) W u(T k

−
y) intersects W s(T k

−
x). This definitely happens if the orbit

y = {T k−y, . . . , T k+
y} ε0-shadows x. On the other hand, if y ∈ R, then y ε1-shadows x.

Hence, we can apply our previous estimates with α = ε0 and α = ε1, the value of α only
affects the values of all constants, which are not essential. So, we may simply assume
that y ∈ R if and only if y α-shadows x.

Now, for any y ∈Fix(T n, X) consider the pseudoorbit y = {T k++Ky, . . . , T n+k−−Ky}
defined on the interval Λ′ = [k+ + K,n + k− − K]. Then y is shadowed by a true
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periodic orbit of period p := n − (k+ − k−) −K + 1, and the number of those periodic
orbits is less than L. On the other hand, for any z ∈Fix(T p, X) consider a pseudoorbit
z = {z, . . . , T p−1z} defined on the interval Λ′ by associating T iz to k+ + K + i ∈ Λ′.
Then there is a true periodic orbit of period n shadowing both x and z, and the number
of those periodic orbits does not exceed L. Now the result follows from (4.2) and the
facts Zn ≈ 1 and Zp ≈ 1. 2

Lemma 4.4 Let R1, R2 be two EQR rectangles with integers k±1 and k±2 characterizing
the quasiroundedness of R1, R2. Denote Λi = [k−i , k

+
i ] for i = 1, 2. Let x ∈ R1 ∩ R2.

Then

µ(R1 ∩R2) ≤ c · exp

 ∑
i∈Λ1∪Λ2

ϕ(T ix)

 ,

with some c > 0 that only depends on the Gibbs measure µ.

Proof. The proof of the previous lemma applies with the following simple adjustments.
Note that if y ∈ R1∩R2, then the orbit of y ε1-shadows that of x on Λ1∪Λ2. So, to get an
upper bound on µ(R1∩R2), we can take into account all n-periodic orbits that α-shadow
the orbit of x on Λ1∪Λ2 with α = ε1. Now, if Λ1 and Λ2 overlap, the argument is exactly
like in the proof of the previous lemma. Let Λ1 and Λ2 be disjoint with dist(Λ1,Λ2) = J .
If J ≤ 2K, we can simply disregard such a small gap and apply the previous argument.
If J > 2K, we replace the part of the orbit of y ∈Fix(T n, X) of length J between Λ1

and Λ2 by periodic orbits of period J − 2K. To conclude the argument, we now need
an obvious extension of (4.2) from two to four pseudoorbits with gaps of length K in
between. This extension is straightforward. 2

Lemma 4.5 There is a constant ∆ > 0 such that for all n ≥ 1 and x ∈ Fix(T n, X) we
have

ϕ(x) + ϕ(Tx) + · · ·+ ϕ(T n−1x) ≤ −∆n .

Proof. Let δx be the delta measure concentrated at x. The measure

δx,n =
1

n
(δx + · · ·+ δTn−1x)

is T -invariant, so by the variational principle we have

δx,n(ϕ) =
1

n

(
ϕ(x) + · · ·+ ϕ(T n−1x)

)
≤ 0 .

We now need to prove that

sup
n≥1

sup
x∈Fix(Tn,X)

δx,n(ϕ) < 0 .
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If this is not true, then there is a sequence of periodic points xk ∈Fix(T nk , X) such
that δxk,nk

(ϕ) → 0. We take any limit point of the sequence of measures δxk,nk
in the

weak topology, it will be a T -invariant measure, call it ν. We have ν(ϕ) = 0, so by the
uniqueness part of the variational principle ν = µ, so µ(ϕ) = 0 and hence hµ(T ) = 0.
But it is known that hµ(T ) > 0 for any Gibbs measure, a contradiction. 2

Combining this lemma with the specification property and (4.2) gives

Corollary 4.6 There is a constant B0 > 0 such that for all n ≥ 1 and x ∈ X

−∆0n ≤ ϕ(x) + ϕ(Tx) + · · ·+ ϕ(T n−1x) ≤ B0 −∆n

with ∆0 = ||ϕ||∞.

We can now prove analogues of Facts 1 and 2 of Section 3 for Anosov diffeomorphisms.
Our constants, such as ci, θi, will only depend on the Gibbs measure µ and the values of
ε0, ε1 in the definition of EQR rectangles. We use notation of Lemmas 4.3 and 4.4.

Lemma 4.7 Let R be an EQR rectangle and k := k+ − k−. Then

c5θ
k
5 ≤ µ(R) ≤ c6θ

k
6

with some c5, c6 > 0 and θ5, θ6 ∈ (0, 1).

Lemma 4.8 Let R1, R2 be EQR rectangles with the corresponding intervals Λi = [k−i , k
+
i ],

i = 1, 2. Put k := |Λ2 \ Λ1|. Then

µ(R1 ∩R2) ≤ c7θ
k
7µ(R1)

with some c7 > 0 and θ7 ∈ (0, 1).

Proof. Lemmas 4.7 and 4.8 follow from Lemmas 4.3 and 4.4 and Corollary 4.6. 2

Note that so far we only used the property (i) of the quasiround rectangles, we did
not use (2.4).

Lemma 4.9 Let R1, R2 be EQR rectangles such that the intervals Λ1 = [k−1 , k
+
1 ] and

Λ2 = [k−2 , k
+
2 ] are disjoint. Put k := dist(Λ1,Λ2). Then

|µ(R1 ∩R2)− µ(R1)µ(R2)| ≤ c8
µ(R1) + µ(R2)

|ak + b|1+γ

with some constants c8 > 0, a > 0 and b.
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Proof. Our proof uses Markov partitions and symbolic dynamics. Let R be a Markov
partition and Σ the corresponding symbolic space, a topological Markov chain. We now
partition the rectangles R1 and R2 into subrectangles generated by the Markov partition
R as follows. Let C ⊂ Σ be a cylinder defined on an interval Λ ⊂ ZZ. We say that its
projection π(C) is properly inside Ri, i = 1, 2, if

(i) π(C) ⊂ Ri, and
(ii) for any larger cylinder C ′ ⊃ C its projection π(C ′) is not a subset of Ri.

Denote by Ci the collection (in general, countable) of cylinders that are properly inside
Ri. Since Ri is a rectangle, one can easily check that all the cylinders in Ci are disjoint.
Next, it follows from the assumption (2.4) that µ(∂Ri) = 0, hence

µ(Ri \
⋃
C∈Ci

π(C)) = 0 ,

i.e. the rectangles π(C), C ∈ Ci, make a (mod 0) partition of Ri.
Now consider the collection C1 and an arbitrary cylinder C ∈ C1 defined on an interval

Λ = [k−, k+]. Observe that if t := k+ − k+
1 > 0, then, using the notation of (2.3), we

have π(C) ⊂ Ru
1,z(ε) with ε = cθt for any z ∈ R1. Here c > 0 and θ ∈ (0, 1) are

constants determined by the hyperbolicity properties of T and the sizes of rectangles of
the Markov partition R. Similarly, if C ∈ C2 is defined on an interval Λ = [k−, k+] and
t = k−1 − k− > 0, then π(C) ⊂ Rs

2,z(ε) with ε = cθt.
Now define subcollections C ′i ⊂ Ci for i = 1, 2 that contain all cylinders C defined on

intervals Λ = [k−, k+] satisfying k+ − k+
1 > k/3 for i = 1 and k−1 − k− > k/3 for i = 2

(recall that k = dist(Λ1,Λ2)). By the assumption (2.4)

µ
(
∪C∈C′iπ(C)

)
≤ C0

µ(Ri)

|ak + b|1+γ

with constants a = − ln θ1/3 > 0 and b = − ln c. So, the parts π(C), C ∈ C′i, can be
removed from Ri with no harm. Denote by

R̃i = Ri \
(
∪C∈C′iπ(C)

)
the remaining parts of Ri.

Note that R̃1 and R̃2 consist (mod 0) of projections of cylinders C ′ ∈ C1 \ C ′1 and
C ′′ ∈ C2 \ C ′2, respectively, and the gap between the intervals on which C ′ and C ′′ are
defined is always ≥ k/3. Hence we can use the subadditivity of the correlation function
and Fact 3 of Section 3 to get

|µ(R̃1 ∩ R̃2)− µ(R̃1)µ(R̃2)| = |µ((∪π(C ′)) ∩ ( ∪ π(C ′′))− µ( ∪ π(C ′))µ( ∪ π(C ′′))|
≤

∑
C′

∑
C′′
|µ(π(C ′) ∩ π(C ′′))− µ(π(C ′))µ(π(C ′′))|

≤
∑
C′

∑
C′′
c3θ

k/3
3 µ(π(C ′))µ(π(C ′′))

≤ c3θ
k/3
3 µ(R̃1)µ(R̃2) .

This completes the proof of Lemma 4.9. 2
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Lemma 4.10 Let R1, R2 be EQR rectangles with the corresponding intervals Λ1 and Λ2.
Then

|µ(R1 ∩R2)− µ(R1)µ(R2)| ≤ c9
µ(R1) + µ(R2)

|a1δ(Λ1,Λ2) + b|1+γ
.

Here δ(Λ1,Λ2) is the asymmetric distance defined in Section 3, a1 = a/2, and c9 > 0 is
a constant.

Proof. If |Λ2| ≥ 1
2
δ(Λ1,Λ2), then, by Lemmas 4.7 and 4.8, both µ(R1 ∩ R2) and

µ(R1)µ(R2) are bounded from above by cθδ(Λ1,Λ2)µ(R1), with some c > 0 and 0 < θ < 1
depending only on µ. Otherwise dist(Λ1,Λ2) ≥ δ(Λ1,Λ2)/2, and the claim follows from
Lemma 4.9. 2

Proof of Theorem 2.4 goes by the same lines as the proof of Theorem 2.1. We estimate
the quantity Rmn = µ(Rm∩Tm−nRn)−µ(Rn)µ(Rm). Without loss of generality, assume
that δ(Λn,Λm) ≤ D. By Lemma 4.10 (applied to the rectangles Rm and Tm−nRn), we
have

|Rmn| ≤ c9
µ(Rm) + µ(Rn)

|a1|m− n| − a1D + b|1+γ
.

We use this bound if |m− n| ≥ D − b/a1, otherwise we can use an obvious bound

|Rmn| ≤ µ(Rm) + µ(Rn) .

Summing up over all over all n with δ(Λn,Λm) ≤ D, and then over m = M, . . . , N , proves
(SP). 2

For the proof of Theorem 2.5, we need two more lemmas. Recall that now dimX = 2
and every connected rectangle is EQR.

Lemma 4.11 Let Rm and R∗ be two connected rectangles with B-bounded aspect ratio,
and k±m, k±∗ integers characterizing their quasiroundness. Assume that Rm ∩ R∗ 6= ∅. If
du(Rm) ≥ du(R∗), then

k+
∗ ≥ k+

m + c10 ln du(Rm)/du(R∗) .

Similarly, if ds(Rm) ≥ ds(R∗), then

k−∗ ≤ k−m − c10 ln ds(Rm)/ds(R∗) .

Here c10 = c10(ε0, ε1, B) > 0 is a constant.

Proof. This follows from standard distortion bounds. 2

Proof of Theorem 2.5. Denote by k±n the integers characterizing the quasiroundness
of Rn. We may assume that all Rn are small enough, and then the uniform boundedness
of their aspect ratio ensures that k+

n ≥ 0 and k−n ≤ 0 for all n ≥ 1.
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We estimate the quantity Rmn = µ(Rm ∩ Tm−nRn) − µ(Rn)µ(Rm). The set R∗ =
Tm−nRn is a connected rectangle whose quasiroundness is characterized by the integers
k±∗ := k±n + (n−m). Without loss of generality, assume that du(Rm) ≥ du(Rn).

We consider three cases:
Case 1. Assume that either (i) n−m ≥ 2k+

m or (ii) n−m ≤ 2k−m. In the case (i) we
have

k+
∗ − k+

m ≥ n−m− k+
m ≥ |n−m|/2 ,

and in the case (ii) we have

k−m − k−∗ ≥ k−m − (n−m) ≥ |n−m|/2 .

In either case we apply Lemma 4.10 and obtain

|Rmn| ≤ c9
µ(Rm) + µ(Rn)

|a2|n−m|+ b|1+γ

with a2 = a1/2 > 0.
Case 2. Assume that 2k−m ≤ n − m ≤ 2k+

m and R∗ ∩ Rm 6= ∅. If n > m, then
du(R∗) ≤ θn−mdu(Rm), and if n ≤ m, then ds(R∗) ≤ θm−nds(Rm) for some constant
θ < 1, due to the uniform hyperbolicity of T . Hence, Lemma 4.11 implies that if n > m,
then

k+
∗ − k+

m ≥ c11|n−m|
and if n ≤ m, then

k−m − k−∗ ≥ c11|n−m|
with some constant c11 > 0. Again, we use Lemma 4.10 and obtain

|Rmn| ≤ c9
µ(Rm) + µ(Rn)

|a3|n−m|+ b|1+γ

with a3 = c11a1.
Case 3. Assume that 2k−m ≤ n−m ≤ 2k+

m andR∗∩Rm = ∅. Then Rmn = µ(Rm)µ(Rn).
It follows from Lemma 4.7 that

a4| lnµ(Rm)|+ b4 ≤ k+
m − k−m ≤ a5| lnµ(Rm)|+ b5

with some a4, a5 > 0 and −∞ < b4, b5 < ∞, and similar bounds hold for Rn. Our
assumption du(Rn) ≤ du(Rm) and the B-boundedness of aspect ratio imply that k+

n ≥
ε2k

+
m and k−n ≤ ε2k

−
m for some constant ε2 > 0, due to uniform bounds on expansion and

contraction rates of T . Therefore,

µ(Rn) ≤ c12[µ(Rm)]κ

with some constants c12 > 0 and κ > 0. Holding m fixed and summing over all n that
satisfy the conditions of Case 3 gives∑

n

Rmn ≤ 2c12[µ(Rm)]1+κ(a5| lnµ(Rm)|+ b5) ≤ c13µ(Rm)
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with some constant c13 > 0.
Lastly, summing up over all m,n = M, . . . , N proves (SP). 2

Acknowledgements. The authors want to thank Vitaly Bergelson, Jean-Pierre
Conze, Dmitry Dolgopyat, Yves Guivarc’h, Andres del Junco and Albert Raugi for helpful
discussions, and the referee for useful comments.

References

[1] M. Boshernitzan, Quantitative recurrence results, Invent. Math. 113 (1993), 617–
631.

[2] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms,
Lect. Notes Math. 470, Springer-Verlag, Berlin, 1975.

[3] N. Chernov, Invariant measures for hyperbolic dynamical systems, to appear in In:
Handbook of Dynamical Systems, Vol. I, Ed. A. Katok and B. Hasselblatt, Elsevier.

[4] J.-P. Conze and A. Raugi, Convergence des potentiels pour un opérateur de transfert,
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